51
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
52
|
δ-Opioid Receptors and Inflammatory Cytokines in Hypoxia: Differential Regulation Between Glial and Neuron-Like Cells. Transl Stroke Res 2014; 5:476-83. [DOI: 10.1007/s12975-014-0342-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
53
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
54
|
Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y. δ-Opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP(+) and/or hypoxia. Exp Neurol 2014; 255:127-36. [PMID: 24613828 DOI: 10.1016/j.expneurol.2014.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
Abstract
Hypoxic/ischemic brain injury is a potential cause of Parkinson's disease (PD) with ɑ-synuclein playing a critical role in the pathophysiology. Since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine if DOR regulates ɑ-synuclein under hypoxia and/or MPP(+) stress. We found that in HEK293 cells 1) MPP(+) in normoxia enhanced ɑ-synuclein expression and the formation of ɑ-synuclein oligomers thereby causing cytotoxic injury; 2) hypoxia at 1% O2 for 48h or at 0.5% O2 for 24h also induced ɑ-synuclein overexpression and its oligomer formation with cell injury; 3) however, hypoxia at 1% O2 for 24h, though increasing ɑ-synuclein expression, did not cause ɑ-synuclein oligomer formation and cell injury; 4) UFP-512 mediated DOR activation markedly attenuated the hypoxic cell injury and ɑ-synuclein overexpression, which was largely attenuated by DOR antagonism with naltrindole or siRNA "knock-down" of the DOR; and 5) DOR activation enhanced CREB phosphorylation and prevented the collapse of mitochondrial membrane potential (△ψm). These findings suggest that DOR activation attenuates MPP(+) or severe hypoxia induced ɑ-synuclein expression/aggregation via a CREB pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jessica Li
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Harleen K Sandhu
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaoping Liao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jianlong Zhao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Guoqiang Wen
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
55
|
Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20:191-201. [PMID: 24456263 DOI: 10.1111/cns.12223] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 01/02/2023] Open
Abstract
Despite its widespread use, the underlying mechanism of deep brain stimulation (DBS) remains unknown. Once thought to impart a "functional inactivation", there is now increasing evidence showing that DBS actually can both inhibit neurons and activate axons, generating a wide range of effects. This implies that the mechanisms that underlie DBS work not only locally but also at the network level. Therefore, not only may DBS induce membrane or synaptic plastic changes in neurons over a wide network, but it may also trigger cellular and molecular changes in other cells, especially astrocytes, where, together, the glial-neuronal interactions may explain effects that are not clearly rationalized by simple activation/inhibition theories alone. Recent studies suggest that (1) high-frequency stimulation (HFS) activates astrocytes and leads to the release of gliotransmitters that can regulate surrounding neurons at the synapse; (2) activated astrocytes modulate synaptic activity and increase axonal activation; (3) activated astrocytes can signal further astrocytes across large networks, contributing to observed network effects induced by DBS; (4) activated astrocytes can help explain the disparate effects of activation and inhibition induced by HFS at different sites; (5) astrocytes contribute to synaptic plasticity through long-term potentiation (LTP) and depression (LTD), possibly helping to mediate the long-term effects of DBS; and (6) DBS may increase delta-opioid receptor activity in astrcoytes to confer neuroprotection. Together, the plastic changes in these glial-neuronal interactions network-wide likely underlie the range of effects seen, from the variable temporal latencies to observed effect to global activation patterns. This article reviews recent research progress in the literature on how astrocytes play a key role in DBS efficacy.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
56
|
Yang L, Zhao X, Sun M, Sun X, Yao L, Yu D, Ding Q, Gao C, Chai W. Delta opioid receptor agonist BW373U86 attenuates post-resuscitation brain injury in a rat model of asphyxial cardiac arrest. Resuscitation 2013; 85:299-305. [PMID: 24200890 DOI: 10.1016/j.resuscitation.2013.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/21/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether the DOR agonist BW373U86 conferred neuroprotection following ACA when given after resuscitation and to determine the long-term effects of chronic BW373U86 treatment on ACA-elicited brain injury. METHODS Animals were divided into acute and chronic treatment groups. Each group consisted of four sub-groups, including Sham, ACA, BW373U86 (BW373U86+ACA), and Naltrindole groups (Naltrindole and BW373U86+ACA). The DOR antagonist Naltrindole was used to confirm the possible receptor-dependent effects of BW373U86. ACA was induced by 8min of asphyxiation followed by resuscitation. All drugs were administered either immediately after the restoration of spontaneous circulation (ROSC) in acute-treatment groups or over 6 consecutive days in chronic-treatment groups. Alterations of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were analyzed by western blot and immunohistochemistry. Neurological functions were assessed by neurological deficit score (NDS) and Morris Water Maze performance. Neurodegeneration was monitored by immunofluorescence and Nissl staining. RESULTS ACA induced massive neuron loss and serious neurological function deficits. BW373U86 significantly reduced both of these negative effects and increased CREB and pCREB expression in the hippocampus; these effects were reversed with acute Naltrindole treatment. The protective effects of BW373U86 persisted until 28d post-ROSC with chronic treatment, but these effects were not reversed by Naltrindole. CONCLUSIONS BW373U86 attenuates global cerebral ischemic injury induced by ACA through both DOR-dependent and DOR-independent mechanisms. CREB might be an important molecule in mediating these neuroprotective effects.
Collapse
Affiliation(s)
- Lu Yang
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Meiyan Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Xude Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Linong Yao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Daihua Yu
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Qian Ding
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Changjun Gao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China.
| | - Wei Chai
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710038, China.
| |
Collapse
|
57
|
Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury. PLoS One 2013; 8:e77732. [PMID: 24204940 PMCID: PMC3799633 DOI: 10.1371/journal.pone.0077732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/08/2013] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia, while causing neuronal injury, can activate innate neuroprotective mechanisms, minimizing neuronal death. In this report, we demonstrate that experimental cerebral ischemia/reperfusion injury in the mouse causes upregulation of the secretory protein trefoil factor 3 (TFF3) in the hepatocyte in association with an increase in serum TFF3. Partial hepatectomy (~60% liver resection) immediately following cerebral injury significantly lowered the serum level of TFF3, suggesting a contribution of the liver to the elevation of serum TFF3. Compared to wild-type mice, TFF3-/- mice exhibited a significantly higher activity of caspase 3 and level of cell death in the ischemic cerebral lesion, a larger fraction of cerebral infarcts, and a smaller fraction of the injured cerebral hemisphere, accompanied by severer forelimb motor deficits. Intravenous administration of recombinant TFF3 reversed changes in cerebral injury and forelimb motor function due to TFF3 deficiency. These observations suggest an endocrine neuroprotective mechanism involving TFF3 from the liver in experimental cerebral ischemia/reperfusion injury.
Collapse
|
58
|
Vicente-Sánchez A, Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol Brain 2013; 6:42. [PMID: 24093505 PMCID: PMC3851374 DOI: 10.1186/1756-6606-6-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
Background G protein-coupled receptors (GPCRs) are the targets of a large number of drugs currently in therapeutic use. Likewise, the glutamate ionotropic N-methyl-D-aspartate receptor (NMDAR) has been implicated in certain neurological disorders, such as neurodegeration, neuropathic pain and mood disorders, as well as psychosis and schizophrenia. Thus, there is now an important need to characterize the interactions between GPCRs and NMDARs. Indeed, these interactions can produce distinct effects, and whereas the activation of Mu-opioid receptor (MOR) increases the calcium fluxes associated to NMDARs, that of type 1 cannabinoid receptor (CNR1) antagonizes their permeation. Notably, a series of proteins interact with these receptors affecting their responses and interactions, and then emerge as novel therapeutic targets for the aforementioned pathologies. Results We found that in the presence of GPCRs, the HINT1 protein influences the activity of NMDARs, whereby NMDAR activation was enhanced in CNR1+/+/HINT1-/- cortical neurons and the cannabinoid agonist WIN55,212-2 provided these cells with no protection against a NMDA insult. NMDAR activity was normalized in these cells by the lentiviral expression of HINT1, which also restored the neuroprotection mediated by cannabinoids. NMDAR activity was also enhanced in CNR1-/-/HINT1+/+ neurons, although this activity was dampened by the expression of GPCRs like the MOR, CNR1 or serotonin 1A (5HT1AR). Conclusions The HINT1 protein plays an essential role in the GPCR-NMDAR connection. In the absence of receptor activation, GPCRs collaborate with HINT1 proteins to negatively control NMDAR activity. When activated, most GPCRs release the control of HINT1 and NMDAR responsiveness is enhanced. However, cannabinoids that act through CNR1 maintain the negative control of HINT1 on NMDAR function and their protection against glutamate excitotoxic insult persists.
Collapse
|
59
|
Tian X, Hua F, Sandhu HK, Chao D, Balboni G, Salvadori S, He X, Xia Y. Effect of δ-opioid receptor activation on BDNF-TrkB vs. TNF-α in the mouse cortex exposed to prolonged hypoxia. Int J Mol Sci 2013; 14:15959-76. [PMID: 23912236 PMCID: PMC3759895 DOI: 10.3390/ijms140815959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
We investigated whether δ-opioid receptor (DOR)-induced neuroprotection involves the brain-derived neurotrophic factor (BDNF) pathway. We studied the effect of DOR activation on the expression of BDNF and other proteins in the cortex of C57BL/6 mice exposed to hypoxia (10% of oxygen) for 1–10 days. The results showed that: (1) 1-day hypoxia had no appreciable effect on BDNF expression, while 3- and 10-day hypoxia progressively decreased BDNF expression, resulting in 37.3% reduction (p < 0.05) after 10-day exposure; (2) DOR activation with UFP-512 (1 mg/kg, i.p., daily) partially reversed the hypoxia-induced reduction of BDNF expression in the 3- or 10-day exposed cortex; (3) DOR activation partially reversed the hypoxia-induced reduction in functional TrkB (140-kDa) and attenuated hypoxia-induced increase in truncated TrkB (90-kDa) in the 3- or 10-day hypoxic cortex; and (4) prolonged hypoxia (10 days) significantly increased TNF-α level and decreased CD11b expression in the cortex, which was completely reversed following DOR activation; and (5) there was no significant change in pCREB and pATF-1 levels in the hypoxic cortex. We conclude that prolonged hypoxia down-regulates BDNF-TrkB signaling leading to an increase in TNF-α in the cortex, while DOR activation up-regulates BDNF-TrkB signaling thereby decreasing TNF-α levels in the hypoxic cortex.
Collapse
Affiliation(s)
- Xuesong Tian
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Fei Hua
- Research Institute of Modern Medicine, The Third Medical College of Soochow University, Changzhou, Jiangsu 213002, China; E-Mail:
| | - Harleen K Sandhu
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Dongman Chao
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari I-09124, Italy; E-Mail:
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara I-44100, Italy; E-Mail:
| | - Xiaozhou He
- Research Institute of Modern Medicine, The Third Medical College of Soochow University, Changzhou, Jiangsu 213002, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (X.H.); (Y.X.); Tel./Fax: +1-713-500-6288 (Y.X.)
| | - Ying Xia
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
- Authors to whom correspondence should be addressed; E-Mails: (X.H.); (Y.X.); Tel./Fax: +1-713-500-6288 (Y.X.)
| |
Collapse
|
60
|
Tian X, Guo J, Zhu M, Li M, Wu G, Xia Y. δ-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat. PLoS One 2013; 8:e69252. [PMID: 23844255 PMCID: PMC3699518 DOI: 10.1371/journal.pone.0069252] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 06/13/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway. METHODS We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining. RESULTS DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased CD11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus. CONCLUSIONS DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion.
Collapse
MESH Headings
- Activating Transcription Factor 1/metabolism
- Animals
- Blotting, Western
- Brain/blood supply
- Brain/drug effects
- Brain/metabolism
- Brain Ischemia/complications
- Brain Ischemia/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- CD11b Antigen/metabolism
- Cerebrovascular Circulation/drug effects
- Cyclic AMP Response Element-Binding Protein/metabolism
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/metabolism
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Quinolines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Reperfusion Injury/etiology
- Reperfusion Injury/metabolism
Collapse
Affiliation(s)
- Xuesong Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Laboratory of Molecular Neurology, Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
- * E-mail: (JG) (YX)
| | - Min Zhu
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minwei Li
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gencheng Wu
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Xia
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (JG) (YX)
| |
Collapse
|
61
|
Effect of electroacupuncture on rat ischemic brain injury: importance of stimulation duration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:878521. [PMID: 23737851 PMCID: PMC3666426 DOI: 10.1155/2013/878521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/10/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022]
Abstract
We explored the optimal duration of electroacupuncture (EA) stimulation for protecting the brain against ischemic injury. The experiments were carried out in rats exposed to right middle cerebral artery occlusion (MCAO) for 60 min followed by 24-hr reperfusion. EA was delivered to “Shuigou” (Du 26) and “Baihui” (Du 20) acupoints with sparse-dense wave (5/20 Hz) at 1.0 mA for 5, 15, 30, and 45 min, respectively. The results showed that 30 min EA, starting at 5 minutes after the onset of MCAO (EA during MCAO) or 5 minutes after reperfusion (EA after MCAO), significantly reduced ischemic infarct volume, attenuated neurological deficits, and decreased death rate with a larger reduction of the ischemic infarction in the former group. Also in the group of EA during MCAO, this protective benefit was positively proportional to the increase in the period of stimulation, that is, increased protection in response to EA from 5- to 30-min stimulation. In all groups, EA induced a significant increase in cerebral blood flow and promoted blood flow recovery after reperfusion, and both blood flow volume and blood cell velocity returned to the preischemia level in a short period of time. Surprisingly, EA for 45 min did not show reduction in the neurological deficits or the infarct volume and instead demonstrated an increase in death rate in this group. Although EA for 45 min still increased the blood flow during MCAO, it led to a worsening of perfusion after reperfusion compared to the group subjected only to ischemia. The neuroprotection induced by an “optimal” period (30 min) of EA was completely blocked by Naltrindole, a δ-opioid receptor (DOR) antagonist (10 mg/kg, i.v.). These findings suggest that earlier EA stimulation leads to better outcomes, and that EA-induced neuroprotection against ischemia depends on an optimal EA-duration via multiple pathways including DOR signaling, while “over-length” stimulation exacerbates the ischemic injury.
Collapse
|