51
|
Smid SD. Gastrointestinal endocannabinoid system: multifaceted roles in the healthy and inflamed intestine. Clin Exp Pharmacol Physiol 2008; 35:1383-7. [PMID: 18671715 DOI: 10.1111/j.1440-1681.2008.05016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The endogenous cannabinoid (endocannabinoid) system is emerging as a key modulator of intestinal physiology, influencing motility, secretion, epithelial integrity and immune function in the gut, in addition to influencing satiety and emesis. 2. Accumulating evidence suggests that the endocannabinoid system may play a pivotal role in the pathophysiology of gastrointestinal disease, particularly in the light of recent studies demonstrating an effect of endocannabinoids on the development of experimental inflammation and linkages with functional clinical disorders characterized by altered motility. 3. The predominant endocannabinoids, anandamide and 2-arachidonoylglycerol, not only mediate their effects via two recognized cannabinoid receptor subtypes, namely CB(1) and CB(2), but emerging evidence now shows they are also substrates for cyclo-oxygenase (COX)-2, generating a distinct and novel class of prostaglandin ethanolamides (prostamides) and prostaglandin glycerol esters. These compounds are bioactive and may mediate an array of biological effects distinct to those of conventional prostanoids. 4. The effects of prostamides on gastrointestinal motility, secretion, sensation and immune function have not been characterized extensively. Prostamides may play an important role in gastrointestinal inflammation, particularly given the enhanced expression of both COX-2 and endocannabinoids that occurs in the inflamed gut. 5. Further preclinical studies are needed to determine the therapeutic potential of drugs targeting the endocannabinoid system in functional and inflammatory gut disorders, to assist with the determination of feasibility for clinical translation.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
52
|
Fioramonti J, Bueno L. Role of cannabinoid receptors in the control of gastrointestinal motility and perception. Expert Rev Gastroenterol Hepatol 2008; 2:385-97. [PMID: 19072387 DOI: 10.1586/17474124.2.3.385] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of endocannabinoids and cannabinoid CB1 receptors in key areas of the intestinal wall, such as cholinergic neurons, supports a role for cannabinoids in the control of gastrointestinal motility. Activation of CB1 receptors inhibits the peristaltic reflex and slows down gastrointestinal and colonic transit. Endocannabinoids play an important inhibitory role in the control of the occurrence of transient lower esophageal sphincter relaxations. Cannabinoid receptor agonists inhibit gastric emptying and intestinal motility in humans. There is strong anatomical support for a role of CB1 receptors in the control of gastrointestinal perception, since these receptors have been identified in key sites of the neuronal circuitry involved in the transmission of visceral pain. Experimental data indicate a visceral antinociceptive action of cannabinoid receptor agonists, which remains to be confirmed in humans.
Collapse
Affiliation(s)
- Jean Fioramonti
- Neurogastroenterology and Nutrition Unit, INRA, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse Cedex 9, France.
| | | |
Collapse
|
53
|
Aviello G, Matias I, Capasso R, Petrosino S, Borrelli F, Orlando P, Romano B, Capasso F, Di Marzo V, Izzo AA. Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice. J Mol Med (Berl) 2008; 86:413-22. [PMID: 18278475 DOI: 10.1007/s00109-008-0305-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022]
Abstract
Gastric emptying regulates food intake. Oleoylethanolamide (OEA), an endogenous acylethanolamide chemically related to the endocannabinoid anandamide, inhibits food intake, but its effect on gastric emptying is unknown. Here, we investigated the effect and the role of OEA on gastric emptying in mice fed either a standard (STD) or a high-fat diet (HFD) for 14 weeks. Gastric emptying was reduced by OEA, but not by its saturated analog, palmitoylethanolamide. The effect of OEA was unaffected by rimonabant (cannabinoid CB1 receptor antagonist), SR144528 (cannabinoid CB2 receptor antagonist), 5'-iodoresiniferatoxin (transient receptor potential vanilloid type 1 antagonist), or MK886 (peroxisome proliferator-activated receptor-alpha) antagonist. Compared to STD mice, HFD mice showed delayed gastric emptying and higher levels of gastric OEA. HFD-induced increase in OEA levels was accompanied by increased expression of the OEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-selective phospholipase D and decreased expression of the OEA-degrading enzyme fatty acid amide hydrolase. These results might suggest that elevation of gastric OEA could possibly contribute to the delayed gastric emptying observed in HFD-fed animals. HFD regulates OEA levels in the stomach through an increase of its biosynthesis and a decrease of its enzymatic degradation. The inhibitory effect of OEA on gastric emptying here observed might underlie part of the anorexic effects of this compound previously reported.
Collapse
Affiliation(s)
- Gabriella Aviello
- Endocannabinoid Research Group, Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 2007; 153:263-70. [PMID: 17906675 PMCID: PMC2219529 DOI: 10.1038/sj.bjp.0707486] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The emerging potential for the cannabinoid (CB) system in modulating gastrointestinal inflammation has gained momentum over the last few years. Traditional and anecdotal use of marijuana for gastrointestinal disorders, such as diarrhoea and abdominal cramps is recognized, but the therapeutic benefit of cannabinoids in the 21st century is overshadowed by the psychoactive problems associated with CB1 receptor activation. However, the presence and function of the CB2 receptor in the GI tract, whilst not yet well characterized, holds great promise due to its immunomodulatory roles in inflammatory systems and its lack of psychotropic effects. This review of our current knowledge of CB2 receptors in the gastrointestinal tract highlights its role in regulating abnormal motility, modulating intestinal inflammation and limiting visceral sensitivity and pain. CB2 receptors represent a braking system and a pathophysiological mechanism for the resolution of inflammation and many of its symptoms. CB2 receptor activation therefore represents a very promising therapeutic target in gastrointestinal inflammatory states where there is immune activation and motility dysfunction.
Collapse
Affiliation(s)
- K L Wright
- Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | - M Duncan
- Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary Calgary, Alberta, Canada
| | - K A Sharkey
- Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary Calgary, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
55
|
Izzo AA, Aviello G, Petrosino S, Orlando P, Marsicano G, Lutz B, Borrelli F, Capasso R, Nigam S, Capasso F, Di Marzo V. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J Mol Med (Berl) 2007; 86:89-98. [PMID: 17823781 PMCID: PMC2755791 DOI: 10.1007/s00109-007-0248-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 11/29/2022]
Abstract
Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography-mass spectrometry; caspase-3 and caspase-9 expressions were measured by Western blot analysis. Colonic ACF formation after AOM administration was associated with increased levels of 2-arachidonoylglycerol (with no changes in FAAH and cannabinoid receptor mRNA levels) and reduction in cleaved caspase-3 and caspase-9 expression. The FAAH inhibitor N-arachidonoylserotonin increased colon endocannabinoid levels, reduced ACF formation, and partially normalized cleaved caspase-3 (but not caspase-9) expression. Notably, N-arachidonoylserotonin completely prevented the formation of ACF with four or more crypts, which have been show to be best correlated with final tumor incidence. The effect of N-arachidonoylserotonin on ACF formation was mimicked by the cannabinoid receptor agonist HU-210. No differences in ACF formation were observed between CB(1) receptor-deficient and wild-type mice. It is concluded that pharmacological enhancement of endocannabinoid levels (through inhibition of endocannabinoid hydrolysis) reduces the development of precancerous lesions in the mouse colon. The protective effect appears to involve caspase-3 (but not caspase-9) activation.
Collapse
Affiliation(s)
- Angelo A. Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Gabriella Aviello
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Stefania Petrosino
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (NA), Italy
- Department of Pharmaceutical Sciences, University of Salerno, Fisciano, Italy
| | - Pierangelo Orlando
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Giovanni Marsicano
- Molecular Genetics of Behaviour, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
- U 862 Centre de Recherche INSERM François Magendie, Equipe AVENIR 4, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Beat Lutz
- Molecular Genetics of Behaviour, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Santosh Nigam
- Eicosanoid and Lipid Research Division, Centre for Experimental Gynecology and Breast Research, Free University Berlin, Berlin, Germany
- Centre for Experimental Gynecology and Breast Research, Free University Berlin, Berlin, Germany
| | - Francesco Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (NA), Italy
| | | |
Collapse
|
56
|
Abstract
Mammalian tissues express the cannabinoid 1 (CB(1)) receptor and the cannabinoid 2 (CB(2)) receptor, the latter being involved in inflammation and pain. In somatic nerve pathways, the analgesic effects of CB(2) agonism are well documented. Two papers published in the Journal have provided evidence that CB(2) receptor activation inhibits visceral afferent nerve activity in rodents. These exciting findings are discussed in the context of recent data highlighting the emerging role of CB(2) receptor as a critical target able to counteract hypermotility in pathophysiological states, gut inflammation and possibly colon cancer.
Collapse
Affiliation(s)
- A A Izzo
- Endocannabinoid Research Group, Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|