51
|
|
52
|
Arumugasamy SK, Chellasamy G, Gopi S, Govindaraju S, Yun K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
53
|
|
54
|
Abstract
Chymotrypsin is one of the most extensively known proteases participating in the pathogenesis of various diseases, which can be used in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Cheng Liu
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingjie Cui
- School of Automation
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Jia Cheng
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Li Gao
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
55
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
56
|
Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Un N, Mazurkiewicz J, Barroso M, Yan P, Intes X. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc Natl Acad Sci U S A 2019; 116:24019-24030. [PMID: 31719196 PMCID: PMC6883809 DOI: 10.1073/pnas.1912707116] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fluorescence lifetime imaging (FLI) provides unique quantitative information in biomedical and molecular biology studies but relies on complex data-fitting techniques to derive the quantities of interest. Herein, we propose a fit-free approach in FLI image formation that is based on deep learning (DL) to quantify fluorescence decays simultaneously over a whole image and at fast speeds. We report on a deep neural network (DNN) architecture, named fluorescence lifetime imaging network (FLI-Net) that is designed and trained for different classes of experiments, including visible FLI and near-infrared (NIR) FLI microscopy (FLIM) and NIR gated macroscopy FLI (MFLI). FLI-Net outputs quantitatively the spatially resolved lifetime-based parameters that are typically employed in the field. We validate the utility of the FLI-Net framework by performing quantitative microscopic and preclinical lifetime-based studies across the visible and NIR spectra, as well as across the 2 main data acquisition technologies. These results demonstrate that FLI-Net is well suited to accurately quantify complex fluorescence lifetimes in cells and, in real time, in intact animals without any parameter settings. Hence, FLI-Net paves the way to reproducible and quantitative lifetime studies at unprecedented speeds, for improved dissemination and impact of FLI in many important biomedical applications ranging from fundamental discoveries in molecular and cellular biology to clinical translation.
Collapse
Affiliation(s)
- Jason T Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180;
| | - Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208
| | - Nathan Un
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Joseph Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208
| | - Pingkun Yan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180;
| |
Collapse
|
57
|
Wang F, Planalp RP, Seitz WR. A Cu(II) Indicator Platform Based on Cu(II) Induced Swelling that Changes the Extent of Fluorescein Self-Quenching. Polymers (Basel) 2019; 11:polym11121935. [PMID: 31775268 PMCID: PMC6960841 DOI: 10.3390/polym11121935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
In this study, we established a new fluorescent indicator platform. The responsive element consists of poly(N-isopropylacrylamide) nanospheres that include small percentages of fluorescein and a ligand, anilinodiacetate (phenylIDA). Nanosphere diameters were determined to be in the range from 50 to 90 nm by scanning electron microscopy. They were entrapped in a polyacrylamide gel to prevent nanosphere aggregation. At pH 6, the ligand is negatively charged in the absence of metal ions. Charge-charge repulsion causes the nanosphere to swell. Dynamic light scattering measurements show that these nanospheres do not shrink and aggregate at high temperature. Cu(II) binding neutralizes the charge causing the particles to shrink. This brings fluoresceins closer together, increasing the degree of self-quenching. The intensity decreases by 30% as Cu(II) concentration increases. To rule out the possibility that the observed decrease in intensity was due to Cu(II) quenching of fluorescence, we also added Zn(II) and observed a decrease in intensity. This approach can be adapted to sense different metal ions and different concentrations of Cu(II) by changing the ligand.
Collapse
|
58
|
A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214719] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotransmitters as electrochemical signaling molecules are essential for proper brain function and their dysfunction is involved in several mental disorders. Therefore, the accurate detection and monitoring of these substances are crucial in brain studies. Neurotransmitters are present in the nervous system at very low concentrations, and they mixed with many other biochemical molecules and minerals, thus making their selective detection and measurement difficult. Although numerous techniques to do so have been proposed in the literature, neurotransmitter monitoring in the brain is still a challenge and the subject of ongoing research. This article reviews the current advances and trends in neurotransmitters detection techniques, including in vivo sampling and imaging techniques, electrochemical and nano-object sensing techniques for in vitro and in vivo detection, as well as spectrometric, analytical and derivatization-based methods mainly used for in vitro research. The document analyzes the strengths and weaknesses of each method, with the aim to offer selection guidelines for neuro-engineering research.
Collapse
|
59
|
Shi Z, Li G, Hu Y. Progress on the application of electrochemiluminescence biosensor based on nanomaterials. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Ochtrop P, Ernst S, Itzen A, Hedberg C. Exploring the Substrate Scope of the Bacterial Phosphocholine Transferase AnkX for Versatile Protein Functionalization. Chembiochem 2019; 20:2336-2340. [PMID: 31054261 DOI: 10.1002/cbic.201900200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 11/06/2022]
Abstract
Site-specific protein functionalization has become an indispensable tool in modern life sciences. Here, tag-based enzymatic protein functionalization techniques are among the most versatilely applicable approaches. However, many chemo-enzymatic functionalization strategies suffer from low substrate scopes of the enzymes utilized for functional labeling probes. We report on the wide substrate scope of the bacterial enzyme AnkX towards derivatized CDP-choline analogues and demonstrate that AnkX-catalyzed phosphocholination can be used for site-specific one- and two-step protein labeling with a broad array of different functionalities, displaying fast second-order transfer rates of 5×102 to 1.8×104 m-1 s-1 . Furthermore, we also present a strategy for the site-specific dual labeling of proteins of interest, based on the exploitation of AnkX and the delabeling function of the enzyme Lem3. Our results contribute to the wide field of protein functionalization, offering an attractive chemo-enzymatic tag-based modification strategy for in vitro labeling.
Collapse
Affiliation(s)
- Philipp Ochtrop
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Stefan Ernst
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| |
Collapse
|
61
|
FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron 2019; 138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
|
62
|
Singh S, Singh A, Mittal M, Srivastava R, Sapra S, Nandan B. Fluorescence resonance energy transfer in multifunctional nanofibers designed via block copolymer self-assembly. Phys Chem Chem Phys 2019; 21:16137-16146. [PMID: 31292581 DOI: 10.1039/c9cp03349a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present study, we demonstrate the fabrication of multifunctional nanofibers, loaded with CdSe quantum dots (QDs) and sulforhodamine 101 (S101) dye, via the self-assembly process of a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP). The CdSe QDs and S101 dye were simultaneously incorporated in the cylindrical domains, constituted of P4VP blocks, of the self-assembled BCP structure. The cylindrical domains subsequently were isolated as individual nanofibers via the selective-swelling approach. The confinement imposed due to the nano-dimension geometry of the cylindrical domains enabled the QDs and S101 dye to localize within their Förster radius enabling an efficient fluorescence resonance energy transfer (FRET) between them. The mean lifetime of donor emission varied from 4.56 to 3.38 ns with the change in the ratio of S101 dye and CdSe QDs within the nanofibers. Furthermore, using efficiency measurements and the corresponding Förster distances, donor-acceptor distances were determined. Moreover, the kinetics of energy transfer from CdSe QDs to S101 was studied by the Poisson binding model, to understand the interactions between CdSe QDs and S101 dye molecules. The numbers of dye molecules per CdSe QD were determined, by assuming random distribution of S101 dye molecules around the CdSe QDs in the nanofibers. The results showed that the number of dye molecules per QD increased with increasing concentration of dye molecules in the nanofibers. The resulting multifunctional nanofibers could have potential applications in optoelectronics, photonics and sensors which utilize the FRET process.
Collapse
Affiliation(s)
- Sajan Singh
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ajeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mona Mittal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
63
|
MacNevin CJ, Watanabe T, Weitzman M, Gulyani A, Fuehrer S, Pinkin NK, Tian X, Liu F, Jin J, Hahn KM. Membrane-Permeant, Environment-Sensitive Dyes Generate Biosensors within Living Cells. J Am Chem Soc 2019; 141:7275-7282. [PMID: 30994345 DOI: 10.1021/jacs.8b09841] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dyes with environment-sensitive fluorescence have proven useful to study the spatiotemporal dynamics of protein activity in living cells. When attached to proteins, their fluorescence can reflect protein conformational changes, post-translational modifications, or protein interactions. However, the utility of such dye-protein conjugates has been limited because it is difficult to load them into cells. They usually must be introduced using techniques that perturb cell physiology, limit throughput, or generate fluorescent vesicles (e.g., electroporation, microinjection, or membrane transduction peptides). Here we circumvent these problems by modifying a proven, environment-sensitive biosensor fluorophore so that it can pass through cell membranes without staining intracellular compartments and can be attached to proteins within living cells using unnatural amino acid (UAA) mutagenesis. Reactive groups were incorporated for attachment to UAAs or small molecules (mero166, azide; mero167, alkyne; mero76, carboxylic acid). These dyes are bright and fluoresce at long wavelengths (reaching ε = 100 000 M-1 cm-1, ϕ = 0.24, with excitation 565 nm and emission 594 nm). The utility of mero166 was demonstrated by in-cell labeling of a UAA to generate a biosensor for the small GTPase Cdc42. In addition, conjugation of mero166 to a small molecule produced a membrane-permeable probe that reported the localization of the DNA methyltransferase G9a in cells. This approach provides a strategy to access biosensors for many targets and to more practically harness the varied environmental sensitivities of synthetic dyes.
Collapse
Affiliation(s)
- Christopher J MacNevin
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew Weitzman
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Akash Gulyani
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sheryl Fuehrer
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nicholas K Pinkin
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xu Tian
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
64
|
Qi Q, Taniguchi M, Lindsey JS. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). J Chem Inf Model 2019; 59:652-667. [PMID: 30715870 DOI: 10.1021/acs.jcim.8b00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the photophysical parameters that underpin Förster resonance energy transfer (FRET), perhaps the least explored is the spectral overlap term ( J). While by definition J increases linearly with acceptor molar absorption coefficient (ε(A) in M-1 cm-1), is proportional to wavelength (λ4), and depends on the degree of overlap of the donor fluorescence and acceptor absorption spectra, the question arose as to the value of J for the case of perfect spectral overlap versus that for representative fluorophores with incomplete spectral overlap. Here, Gaussian distributions of absorption and fluorescent spectra have been modeled that encompass varying degrees of overlap, full-width-at-half-maximum (fwhm), and Stokes shift. For ε(A) = 105 M-1 cm-1 and perfect overlap, the J value (in M-1 cm-1 nm4) ranges from 1.15 × 1014 (200 nm) to 7.07 × 1016 (1000 nm), is almost linear with λ4 (average of λabs and λflu), and is nearly independent of fwhm. For visible-region fluorophores with perfectly overlapped Gaussian spectra, the resulting value of J ( JG-0) is ∼0.71 ε(A)λ4 (M-1 cm-1 nm4). The experimental J values for homotransfer, as occurs in light-harvesting antennas, were calculated with spectra from a static database of 60 representative compounds (12 groups, 5 compounds each) and found to range from 4.2 × 1010 ( o-xylene) to 5.3 × 1016 M-1 cm-1 nm4 (a naphthalocyanine). The degree of overlap, defined by the ratio of the experimental J to the model JG-0 for perfectly overlapped spectra, ranges from ∼0.5% (coumarin 151) to 77% (bacteriochlorophyll a). The results provide insights into how a variety of factors affect the resulting J values. The high degree of spectral overlap for (bacterio)chlorophylls prompts brief conjecture concerning the relevance of energy transfer to the question "why chlorophyll".
Collapse
Affiliation(s)
- Qi Qi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Masahiko Taniguchi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Jonathan S Lindsey
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
65
|
Abstract
Good glucose management through an insulin dose regime based on the metabolism of glucose helps millions of people worldwide manage their diabetes. Since Banting and Best extracted insulin, glucose management has improved due to the introduction of insulin analogues that act from 30 minutes to 28 days, improved insulin dose regimes, and portable glucose meters, with a current focus on alternative sampling sites that are less invasive. However, a piece of the puzzle is still missing-the ability to measure insulin directly in a Point-of-Care device. The ability to measure both glucose and insulin concurrently will enable better glucose control by providing an improved estimate for insulin sensitivity, minimizing variability in control, and maximizing safety from hypoglycaemia. However, direct detection of free insulin has provided a challenge due to the size of the molecule, the low concentration of insulin in blood, and the selectivity against interferants in blood. This review summarizes current insulin detection methods from immunoassays to analytical chemistry, and sensors. We also discuss the challenges and potential of each of the methods towards Point-of-Care insulin detection.
Collapse
|
66
|
Jester BW, Tinberg CE, Rich MS, Baker D, Fields S. Engineered Biosensors from Dimeric Ligand-Binding Domains. ACS Synth Biol 2018; 7:2457-2467. [PMID: 30204430 DOI: 10.1021/acssynbio.8b00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biosensors are important components of many synthetic biology and metabolic engineering applications. Here, we report a second generation of Saccharomyces cerevisiae digoxigenin and progesterone biosensors based on destabilized dimeric ligand-binding domains that undergo ligand-induced stabilization. The biosensors, comprising one ligand-binding domain monomer fused to a DNA-binding domain and another fused to a transcriptional activation domain, activate reporter gene expression in response to steroid binding and receptor dimerization. The introduction of a destabilizing mutation to the dimer interface increased biosensor dynamic range by an order of magnitude. Computational redesign of the dimer interface and functional selections were used to create heterodimeric pairs with further improved dynamic range. A heterodimeric biosensor built from the digoxigenin and progesterone ligand-binding domains functioned as a synthetic "AND"-gate, with 20-fold stronger response to the two ligands in combination than to either one alone. We also identified mutations that increase the sensitivity or selectivity of the biosensors to chemically similar ligands. These dimerizing biosensors provide additional flexibility for the construction of logic gates and other applications.
Collapse
Affiliation(s)
- Benjamin W. Jester
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Christine E. Tinberg
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthew S. Rich
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
67
|
Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron 2018; 117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
68
|
Halder S, Kumari S, Kumar S, Aswal VK, Saha SK. Fluorescence Resonance Energy Transfer, Small-Angle Neutron Scattering, and Dynamic Light Scattering Study on Interactions of Gemini Surfactants Having Different Spacer Groups with Protein at Various Regions of Binding Isotherms. ACS OMEGA 2018; 3:11192-11204. [PMID: 31459229 PMCID: PMC6645604 DOI: 10.1021/acsomega.8b01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/03/2018] [Indexed: 06/07/2023]
Abstract
The binding interactions of three gemini surfactants having different spacer groups (12-4-12, 12-8-12, and 12-4(OH)-12) with a high concentration (150 μM) of bovine serum albumin (BSA) at various regions of binding isotherms have been studied by means of steady-state fluorescence and fluorescence anisotropy, time-correlated single-photon counting fluorescence of trans-2-[4-(dimethylamino)styryl]benzothiazole, small-angle neutron scattering (SANS), and dynamic light scattering (DLS) measurements. The fluorescence resonance energy transfer phenomenon between the twisted intramolecular charge transfer fluorescent molecule, trans-2-[4-(dimethylamino)styryl]benzothiazole as an acceptor, and tryptophan 213 (Trp-213) of BSA as a donor has been successfully used to probe the binding interactions of gemini surfactants with protein at all regions of binding isotherms. The increasing order of energy transfer efficiency at a higher concentration range of surfactants is 12-8-12 > 12-4-12 > 12-4(OH)-12. Stronger binding of micelles of gemini surfactant molecules having a comparatively more hydrophobic spacer group with the hydrophobic segments of the protein results in closer approach of trans-2-[4-(dimethylamino)styryl]benzothiazole molecules solubilized in micelles to Trp-213. The average excited-state lifetimes become shorter with a trend of increase in contribution from the fast component and decrease in contribution from the slow component to the decay with increasing concentration of a surfactant. The nonradiative rate constant of trans-2-[4-(dimethylamino)styryl]benzothiazole increases with increasing concentration of a surfactant because the average microenvironment around it in protein-surfactant aggregates is more polar as compared to that in native protein. SANS and DLS measurements were carried out for the study of the structural deformations in the protein, on enhancement of the concentration of the gemini surfactants. The necklace and bead model has been used for the analysis of SANS data for the protein-surfactant complexes. At a higher concentration range, 12-8-12 and 12-4-12 have a slightly smaller fractal dimension and a larger correlation length as compared to 12-4(OH)-12. DLS data show that the increasing order of hydrodynamic diameter for the complexes of protein with three gemini surfactants in their high concentration range is 12-4(OH)-12 < 12-4-12 < 12-8-12.
Collapse
Affiliation(s)
- Sayantan Halder
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| | - Sunita Kumari
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| | - Sugam Kumar
- Solid
State Physics Division, Bhabha Atomic Research
Centre (BARC), Trombay, Mumbai, 400085 Maharashtra, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre (BARC), Trombay, Mumbai, 400085 Maharashtra, India
| | - Subit K. Saha
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| |
Collapse
|
69
|
A Fluorescent Biosensors for Detection Vital Body Fluids' Agents. SENSORS 2018; 18:s18082357. [PMID: 30042294 PMCID: PMC6111579 DOI: 10.3390/s18082357] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
The clinical applications of sensing tools (i.e., biosensors) for the monitoring of physiologically important analytes are very common. Nowadays, the biosensors are being increasingly used to detect physiologically important analytes in real biological samples (i.e., blood, plasma, urine, and saliva). This review focuses on biosensors that can be applied to continuous, time-resolved measurements with fluorescence. The material presents the fluorescent biosensors for the detection of neurotransmitters, hormones, and other human metabolites as glucose, lactate or uric acid. The construction of microfluidic devices based on fluorescence uses a variety of materials, fluorescent dyes, types of detectors, excitation sources, optical filters, and geometrical systems. Due to their small size, these devices can perform a full analysis. Microfluidics-based technologies have shown promising applications in several of the main laboratory techniques, including blood chemistries, immunoassays, nucleic-acid amplification tests. Of the all technologies that are used to manufacture microfluidic systems, the LTCC technique seems to be an interesting alternative. It allows easy integration of electronic and microfluidic components on a single ceramic substrate. Moreover, the LTCC material is biologically and chemically inert, and is resistant to high temperature and pressure. The combination of all these features makes the LTCC technology particularly useful for implementation of fluorescence-based detection in the ceramic microfluidic systems.
Collapse
|
70
|
Liu Y, Chen LY, Zeng H, Ward R, Wu N, Ma L, Mu X, Li QL, Yang Y, An S, Guo XX, Hao Q, Xu TR. Assessing the real-time activation of the cannabinoid CB1 receptor and the associated structural changes using a FRET biosensor. Int J Biochem Cell Biol 2018; 99:114-124. [PMID: 29626639 DOI: 10.1016/j.biocel.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 11/18/2022]
Abstract
The cannabinoid receptor 1 (CB1) is mainly expressed in the nervous system and regulates learning, memory processes, pain and energy metabolism. However, there is no way to directly measure its activation. In this study, we constructed a CB1 intramolecular fluorescence resonance energy transfer (FRET) sensor, which could measure CB1 activation by monitoring structural changes between the third intracellular loop and the C-terminal tail. CB1 agonists induced a time- and concentration-dependent increase in the FRET signal, corresponding to a reduction in the distance between the third intracellular loop and the C-terminal tail. This, in turn, mobilized intracellular Ca2+, inhibited cAMP accumulation, and increased phosphorylation of the ERK1/2 MAP kinases. The activation kinetics detected using this method were consistent with those from previous reports. Moreover, the increased FRET signal was markedly inhibited by the CB1 antagonist rimonabant, which also reduced phosphorylation of the ERK1/2 MAP kinases. We mutated a single cysteine residue in the sensor (at position 257 or 264) to alanine. Both mutation reduced the agonist-induced increase in FRET signal and structural changes in the CB1 receptor, which attenuated phosphorylation of the ERK1/2 MAP kinases. In summary, our sensor directly assesses the kinetics of CB1 activation in real-time and can be used to monitor CB1 structure and function.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lu-Yao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Hong Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Richard Ward
- Center for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Nan Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qiu-Lan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
71
|
Vandenberk N, Barth A, Borrenberghs D, Hofkens J, Hendrix J. Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance Energy Transfer Experiments. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niels Vandenberk
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, B-3590, Belgium
| |
Collapse
|
72
|
Otto JP, Wang L, Pochorovski I, Blau SM, Aspuru-Guzik A, Bao Z, Engel GS, Chiu M. Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand. Chem Sci 2018; 9:3694-3703. [PMID: 29780500 PMCID: PMC5935064 DOI: 10.1039/c8sc00818c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional electronic spectroscopy of energy transfer and competing dynamics highlights how conformational changes create issues with lifetime-based FRET measurements.
Förster Resonance Energy Transfer (FRET) is the incoherent transfer of an electronic excitation from a donor fluorophore to a nearby acceptor. FRET has been applied as a probe of local chromophore environments and distances on the nanoscale by extrapolating transfer efficiencies from standard experimental parameters, such as fluorescence intensities or lifetimes. Competition from nonradiative relaxation processes is often assumed to be constant in these extrapolations, but in actuality, this competition depends on the donor and acceptor environments and can, therefore, be affected by conformational changes. To study the effects of nonradiative relaxation on FRET dynamics, we perform two-dimensional electronic spectroscopy (2DES) on a pair of azaboraindacene (BODIPY) dyes, attached to opposite arms of a resorcin[4]arene cavitand. Temperature-induced switching between two equilibrium conformations, vase at 294 K to kite at 193 K, increases the donor–acceptor distance from 0.5 nm to 3 nm, affecting both FRET efficiency and nonradiative relaxation. By disentangling different dynamics based on lifetimes extracted from a series of 2D spectra, we independently observe nonradiative relaxation, FRET, and residual fluorescence from the donor in both vase to kite conformations. We observe changes in both FRET rate and nonradiative relaxation when the molecule switches from vase to kite, and measure a significantly greater difference in transfer efficiency between conformations than would be determined by standard lifetime-based measurements. These observations show that changes in competing nonradiative processes must be taken into account when highly accurate measurements of FRET efficiency are desired.
Collapse
Affiliation(s)
- John P Otto
- Department of Chemistry , University of Chicago , Chicago , IL 60637 , USA .
| | - Lili Wang
- Department of Chemistry , University of Chicago , Chicago , IL 60637 , USA .
| | - Igor Pochorovski
- Department of Chemical Engineering , Stanford University , Stanford , CA 94305 , USA . ;
| | - Samuel M Blau
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA.,Senior Fellow , Canadian Institute for Advanced Research , Toronto , Ontario M5G 1Z8 , Canada
| | - Zhenan Bao
- Department of Chemical Engineering , Stanford University , Stanford , CA 94305 , USA . ;
| | - Gregory S Engel
- Department of Chemistry , University of Chicago , Chicago , IL 60637 , USA .
| | - Melanie Chiu
- Department of Chemical Engineering , Stanford University , Stanford , CA 94305 , USA . ;
| |
Collapse
|
73
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
74
|
Sylvia GM, Heng S, Bachhuka A, Ebendorff-Heidepriem H, Abell AD. A spiropyran with enhanced fluorescence: A bright, photostable and red-emitting calcium sensor. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
75
|
Becker MS, Müller PM, Bajorat J, Schroeder A, Giaisi M, Amin E, Ahmadian MR, Rocks O, Köhler R, Krammer PH, Li-Weber M. The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration. Oncotarget 2018; 7:51908-51921. [PMID: 27340868 PMCID: PMC5239523 DOI: 10.18632/oncotarget.10188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/04/2016] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation.
Collapse
Affiliation(s)
- Michael S Becker
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Paul M Müller
- Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Jörg Bajorat
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Anne Schroeder
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Marco Giaisi
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Ehsan Amin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of The Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of The Heinrich-Heine University, Düsseldorf, Germany
| | - Oliver Rocks
- Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Rebecca Köhler
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Peter H Krammer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| | - Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, Heidelberg, Germany
| |
Collapse
|
76
|
Engelhard DM, Meyer A, Berndhäuser A, Schiemann O, Clever GH. Di-copper(ii) DNA G-quadruplexes as EPR distance rulers. Chem Commun (Camb) 2018; 54:7455-7458. [DOI: 10.1039/c8cc04053b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paramagnetic Cu(ii) complexes, immobilized via four-point-attachment to both ends of G-quadruplexes, serve as EPR-based distance rulers for studying DNA structure.
Collapse
Affiliation(s)
- David M. Engelhard
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| | - Andreas Meyer
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Andreas Berndhäuser
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Guido H. Clever
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| |
Collapse
|
77
|
Chen B, Su Q, Kong W, Wang Y, Shi P, Wang F. Energy transfer-based biodetection using optical nanomaterials. J Mater Chem B 2018; 6:2924-2944. [DOI: 10.1039/c8tb00614h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on recent progress in the development of FRET probes and the applications of FRET-based sensing systems.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Wei Kong
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Yuan Wang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Peng Shi
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| |
Collapse
|
78
|
Faccio G, Salentinig S. Enzyme-Triggered Dissociation of a FRET-Based Protein Biosensor Monitored by Synchrotron SAXS. Biophys J 2017; 113:1731-1737. [PMID: 29045867 DOI: 10.1016/j.bpj.2017.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022] Open
Abstract
Protein biosensors are widely used for the monitoring of metabolite concentration and enzymatic activities inside living cells and in in vitro applications. Neutrophil elastase (NE) is a serine protease of relevance in inflammatory diseases whose activity can lead to pathological conditions if unregulated. This study focuses on the structural characterization of a biosensor for NE activity based on Förster resonance energy transfer (FRET). The cleavage by NE results in dissociation of the FRET fluorescent protein pair and alteration of the fluorescent emission spectrum. We have used small angle x-ray scattering at a high intensity synchrotron source, combined with model-free analysis of the scattering data, to demonstrate the structure of the biosensor and the effect of its exposure to NE on size and shape. These investigations, together with biochemical studies, established the nanostructure-activity relationship that may contribute to the detailed understanding of the FRET-based biosensor and guide the rational design of new biosensor constructs.
Collapse
Affiliation(s)
- Greta Faccio
- Laboratory for Biointerfaces, Department "Materials Meet Life", Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Department "Materials Meet Life", Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|
79
|
Pawar SV, Togiti UK, Trivedi P, Ghosh B, Bhattacharya A, Nag A. FRET-Mediated Zn 2+
Sensing in Aqueous Micellar Solution: Application in Cellular Imaging and Molecular Logic Gate. ChemistrySelect 2017. [DOI: 10.1002/slct.201701350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shweta V. Pawar
- Department of Chemistry; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| | - Uday Kumar Togiti
- Department of Chemistry; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| | - Prakruti Trivedi
- Department of Pharmacy; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| | - Balaram Ghosh
- Department of Pharmacy; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| | - Anupam Bhattacharya
- Department of Chemistry; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| | - Amit Nag
- Department of Chemistry; BITS Pilani Hyderabad Campus; Hyderabad- 500078 India
| |
Collapse
|
80
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
81
|
Brown CW, Buckhout-White S, Díaz SA, Melinger JS, Ancona MG, Goldman ER, Medintz IL. Evaluating Dye-Labeled DNA Dendrimers for Potential Applications in Molecular Biosensing. ACS Sens 2017; 2:401-410. [PMID: 28723206 DOI: 10.1021/acssensors.6b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA nanostructures provide a reliable and predictable scaffold for precisely positioning fluorescent dyes to form energy transfer cascades. Furthermore, these structures and their attendant dye networks can be dynamically manipulated by biochemical inputs, with the changes reflected in the spectral response. However, the complexity of DNA structures that have undergone such types of manipulation for direct biosensing applications is quite limited. Here, we investigate four different modification strategies to effect such dynamic manipulations using a DNA dendrimer scaffold as a testbed, and with applications to biosensing in mind. The dendrimer has a 2:1 branching ratio that organizes the dyes into a FRET-based antenna in which excitonic energy generated on multiple initial Cy3 dyes displayed at the periphery is then transferred inward through Cy3.5 and/or Cy5 relay dyes to a Cy5.5 final acceptor at the focus. Advantages of this design included good transfer efficiency, large spectral separation between the initial donor and final acceptor emissions for signal transduction, and an inherent tolerance to defects. Of the approaches to structural rearrangement, the first two mechanisms we consider employed either toehold-mediated strand displacement or strand replacement and their impact was mainly via direct transfer efficiency, while the other two were more global in their effect using either a belting mechanism or an 8-arm star nanostructure to compress the nanostructure and thereby modulate its spectral response through an enhancement in parallelism. The performance of these mechanisms, their ability to reset, and how they might be utilized in biosensing applications are discussed.
Collapse
Affiliation(s)
- Carl W. Brown
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | | | - Sebastián A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | | | | | |
Collapse
|
82
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
83
|
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2016; 91:15-23. [PMID: 27984706 DOI: 10.1016/j.bios.2016.12.014] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
Cancer is the second largest disease throughout the world with an increasing mortality rate over the past few years. The patient's survival rate is uncertain due to the limitations of cancer diagnosis and therapy. Early diagnosis of cancer is decisive for its successful treatment. A biomarker-based cancer diagnosis may significantly improve the early diagnosis and subsequent treatment. Biosensors play a crucial role in the detection of biomarkers as they are easy to use, portable, and can do analysis in real time. This review describes various biosensors designed for detecting nucleic acid and protein-based cancer biomarkers for cancer diagnosis. It mainly lays emphasis on different approaches to use electrochemical, optical, and mass-based transduction systems in cancer biomarker detection. It also highlights the analytical performances of various biosensor designs concerning cancer biomarkers in detail.
Collapse
Affiliation(s)
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
84
|
Affiliation(s)
- Jungho Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Korea.,Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - Se-Jin Park
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Korea.,Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - Dal-Hee Min
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Korea.,Department of Chemistry, Seoul National University , Seoul 08826, Korea.,Institute of Nanobio Convergence Technology, Lemonex Inc., Seoul 08826, Korea
| |
Collapse
|
85
|
de Picciotto S, Dickson PM, Traxlmayr MW, Marques BS, Socher E, Zhao S, Cheung S, Kiefer JD, Wand AJ, Griffith LG, Imperiali B, Wittrup KD. Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. J Mol Biol 2016; 428:4228-4241. [PMID: 27448945 PMCID: PMC5048519 DOI: 10.1016/j.jmb.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
Quantifying protein location and concentration is critical for understanding function in situ. Scaffold conjugated to environment-sensitive fluorophore (SuCESsFul) biosensors, in which a reporting fluorophore is conjugated to a binding scaffold, can, in principle, detect analytes of interest with high temporal and spatial resolution. However, their adoption has been limited due to the extensive empirical screening required for their development. We sought to establish design principles for this class of biosensor by characterizing over 400 biosensors based on various protein analytes, binding proteins, and fluorophores. We found that the brightest readouts are attained when a specific binding pocket for the fluorophore is present on the analyte. Also, interaction of the fluorophore with the binding protein it is conjugated to can raise background fluorescence, considerably limiting sensor dynamic range. Exploiting these two concepts, we designed biosensors that attain a 100-fold increase in fluorescence upon binding to analyte, an order of magnitude improvement over the previously best-reported SuCESsFul biosensor. These design principles should facilitate the development of improved SuCESsFul biosensors.
Collapse
Affiliation(s)
- Seymour de Picciotto
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paige M Dickson
- Department of Chemistry, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael W Traxlmayr
- Koch Institute for Integrative Cancer Research, 500 Main Street, Cambridge, MA 02139, USA
| | - Bryan S Marques
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elke Socher
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA
| | - Sixing Zhao
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephanie Cheung
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA
| | - Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
86
|
Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 2016; 87:918-930. [PMID: 27664412 DOI: 10.1016/j.bios.2016.09.061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 12/14/2022]
Abstract
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia
| | - Elena N Esimbekova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia.
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|
87
|
Single molecule fluorescence spectroscopy for quantitative biological applications. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
88
|
Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation. J Bacteriol 2016; 198:2673-81. [PMID: 27185826 DOI: 10.1128/jb.00259-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter.
Collapse
|
89
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
90
|
Lossi L, Cocito C, Alasia S, Merighi A. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Mol Neurodegener 2016; 11:34. [PMID: 27122136 PMCID: PMC4848850 DOI: 10.1186/s13024-016-0101-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/22/2016] [Indexed: 01/27/2023] Open
Abstract
Background Apoptosis takes place in naturally occurring neuronal death, but also in aging, neurodegenerative disorders, and traumatic brain injuries. Caspase 3 (Casp3) is the most important effector protease in apoptosis: being inactive inside the cell, it undergoes enzymatic cleavage and - hence - activation once the apoptotic cascade is triggered. Immunological techniques with antibodies against cleaved Casp3 (cCasp3) or assays with colorimetric/fluorogenic substrates are commonly in use, but they do not allow to directly follow the dynamics of activation in alive neurons that may be committed to die. Results By combined biolistic transfection, confocal microscopy, and fluorescence resonance energy transfer (FRET), we have implemented a methodology to dynamically monitor Casp3 activation in organotypic cerebellar slices from postnatal mice. After transfection with pSCAT3 FRET probes, we measured the ratio of the emissions of the donor/acceptor pair (ECFPem/Venusem) in fixed or alive cultures. In so doing, we i. discriminated the cellular compartment(s) of enzyme activation (nucleus, perikaryon, neurites); ii. demonstrated that Casp3 was constitutively active in the granule cells; iii. followed the fluctuations of ECFPem/Venusem, and its response to 25 mM KCl depolarization, or to increased intracellular Ca++ after NMDA (1 mM), kainic acid (1 mM), or A23187 (100–200 μM). The specificity of the active pSCAT3-DEVD probe was confirmed with RNA interference and after inhibition of Casp3 with Ac-DEVD-CMK (100 μM), as both sets of experiments brought ECFPem/Venusem to the values recorded with the control probe pSCAT3-DEVG. After double-transfection with pSCAT3-DEVD + pHcRed1-C1-survivin, we also showed a 44–56 % reduction of basal Casp3 activity in cells overexpressing survivin, a protein-member of the family of apoptosis inhibitors, with augmented survival (2.82 folds). Survivin-rescued cells were sensitive to 5 mM H2O2 oxidative stress but died without intervention of Casp3. Conclusions This ex vivo FRET-based methodology provides quantitative information on the functional and histological dynamics of Casp3 activation in individual neurons at a cell level resolution. Not only it can be combined with experimental manipulation of the apoptotic machinery inside the cell, but offers several advantages over existing protocols for monitoring apoptosis in live mammalian neurons, and has potential to be transferred in vivo. Due to the pivotal role of Casp3 in apoptosis, our approach is relevant for a better comprehension of molecular neurodegeneration in the normal and pathological brain. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Carolina Cocito
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Silvia Alasia
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Adalberto Merighi
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.
| |
Collapse
|
91
|
Kohnhorst CL, Schmitt DL, Sundaram A, An S. Subcellular functions of proteins under fluorescence single-cell microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:77-84. [PMID: 26025769 PMCID: PMC5679394 DOI: 10.1016/j.bbapap.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
A cell is a highly organized, dynamic, and intricate biological entity orchestrated by a myriad of proteins and their self-assemblies. Because a protein's actions depend on its coordination in both space and time, our curiosity about protein functions has extended from the test tube into the intracellular space of the cell. Accordingly, modern technological developments and advances in enzymology have been geared towards analyzing protein functions within intact single cells. We discuss here how fluorescence single-cell microscopy has been employed to identify subcellular locations of proteins, detect reversible protein-protein interactions, and measure protein activity and kinetics in living cells. Considering that fluorescence single-cell microscopy has been only recently recognized as a primary technique in enzymology, its potentials and outcomes in studying intracellular protein functions are projected to be immensely useful and enlightening. We anticipate that this review would inspire many investigators to study their proteins of interest beyond the conventional boundary of specific disciplines. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Casey L Kohnhorst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Danielle L Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Anand Sundaram
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
92
|
Keyvan Rad J, Mahdavian AR, Salehi-Mobarakeh H, Abdollahi A. FRET Phenomenon in Photoreversible Dual-Color Fluorescent Polymeric Nanoparticles Based on Azocarbazole/Spiropyran Derivatives. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02401] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Hamid Salehi-Mobarakeh
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Amin Abdollahi
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| |
Collapse
|
93
|
Rood MTM, Raspe M, ten Hove JB, Jalink K, Velders AH, van Leeuwen FWB. MMP-2/9-Specific Activatable Lifetime Imaging Agent. SENSORS (BASEL, SWITZERLAND) 2015; 15:11076-91. [PMID: 25985157 PMCID: PMC4481940 DOI: 10.3390/s150511076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
Optical (molecular) imaging can benefit from a combination of the high signal-to-background ratio of activatable fluorescence imaging with the high specificity of luminescence lifetime imaging. To allow for this combination, both imaging techniques were integrated in a single imaging agent, a so-called activatable lifetime imaging agent. Important in the design of this imaging agent is the use of two luminophores that are tethered by a specific peptide with a hairpin-motive that ensured close proximity of the two while also having a specific amino acid sequence available for enzymatic cleavage by tumor-related MMP-2/9. Ir(ppy)3 and Cy5 were used because in close proximity the emission intensities of both luminophores were quenched and the influence of Cy5 shortens the Ir(ppy)3 luminescence lifetime from 98 ns to 30 ns. Upon cleavage in vitro, both effects are undone, yielding an increase in Ir(ppy)3 and Cy5 luminescence and a restoration of Ir(ppy)3 luminescence lifetime to 94 ns. As a reference for the luminescence activation, a similar imaging agent with the more common Cy3-Cy5 fluorophore pair was used. Our findings underline that the combination of enzymatic signal activation with lifetime imaging is possible and that it provides a promising method in the design of future disease specific imaging agents.
Collapse
Affiliation(s)
- Marcus T M Rood
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands.
| | - Marcel Raspe
- Division of Cell Biology I, Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands.
| | - Jan Bart ten Hove
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands.
- Laboratory of BioNanoTechnology, Wageningen University, Wageningen 6700EK, The Netherlands.
| | - Kees Jalink
- Division of Cell Biology I, Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands.
| | - Aldrik H Velders
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands.
- Laboratory of BioNanoTechnology, Wageningen University, Wageningen 6700EK, The Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands.
- Laboratory of BioNanoTechnology, Wageningen University, Wageningen 6700EK, The Netherlands.
| |
Collapse
|
94
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
95
|
Liu C, Sheng Y, Sun Y, Feng J, Wang S, Zhang J, Xu J, Jiang D. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosens Bioelectron 2015; 70:455-61. [PMID: 25863343 DOI: 10.1016/j.bios.2015.03.070] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/15/2015] [Accepted: 03/27/2015] [Indexed: 02/05/2023]
Abstract
Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors.
Collapse
Affiliation(s)
- Chengcheng Liu
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yongjie Sheng
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanhong Sun
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Junkui Feng
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Shijin Wang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jin Zhang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Jiacui Xu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| | - Dazhi Jiang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
96
|
Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery. Future Med Chem 2014; 6:2113-29. [DOI: 10.4155/fmc.14.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lectin–glycan interactions play a role in biological processes, host–pathogen interactions and in disease. A more detailed understanding of these interactions is not only useful for the elucidation of their biological function but can also be applied in immunology, drug development and delivery and diagnostics. We review some commonly used biophysical techniques for studying lectin–glycan interactions; namely: frontal affinity chromatography, glycan/lectin microarray, surface plasmon resonance, electrochemical impedance spectroscopy, isothermal titration calorimetry, fluorescent assays, enzyme linked lectin sorbent assay and saturation transfer difference nuclear magnetic resonance spectroscopy. Each method is evaluated on efficiency, cost and throughput. We also consider the advantages and limitations of each technique and provide examples of their application in biology, drug discovery and delivery, immunology, glycoprofiling and biosensing.
Collapse
|
97
|
Mattei TA, Rehman AA. Technological developments and future perspectives on graphene-based metamaterials: a primer for neurosurgeons. Neurosurgery 2014; 74:499-516; discussion 516. [PMID: 24476906 DOI: 10.1227/neu.0000000000000302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Graphene, a monolayer atomic-scale honeycomb lattice of carbon atoms, has been considered the greatest revolution in metamaterials research in the past 5 years. Its developers were awarded the Nobel Prize in Physics in 2010, and massive funding has been directed to graphene-based experimental research in the last years. For instance, an international scientific collaboration has recently received a €1 billion grant from the European Flagship Initiative, the largest amount of financial resources ever granted for a single research project in the history of modern science. Because of graphene's unique optical, thermal, mechanical, electronic, and quantum properties, the incorporation of graphene-based metamaterials to biomedical applications is expected to lead to major technological breakthroughs in the next few decades. Current frontline research in graphene technology includes the development of high-performance, lightweight, and malleable electronic devices, new optical modulators, ultracapacitors, molecular biodevices, organic photovoltaic cells, lithium-ion microbatteries, frequency multipliers, quantum dots, and integrated circuits, just to mention a few. With such advances, graphene technology is expected to significantly impact several areas of neurosurgery, including neuro-oncology, neurointensive care, neuroregeneration research, peripheral nerve surgery, functional neurosurgery, and spine surgery. In this topic review, the authors provide a basic introduction to the main electrophysical properties of graphene. Additionally, future perspectives of ongoing frontline investigations on this new metamaterial are discussed, with special emphasis on those research fields that are expected to most substantially impact experimental and clinical neurosurgery in the near future.
Collapse
Affiliation(s)
- Tobias A Mattei
- *Invision Health Brain and Spine Center, Williamsville, New York; ‡University of Illinois College of Medicine at Peoria, Peoria, Illinois
| | | |
Collapse
|
98
|
Zadran S, Remacle F, Levine R. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype. PLoS One 2014; 9:e108171. [PMID: 25265448 PMCID: PMC4180445 DOI: 10.1371/journal.pone.0108171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.
Collapse
Affiliation(s)
- Sohila Zadran
- Institute of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Raphael Levine
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
99
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
100
|
Grünewald J, Jones DH, Brock A, Chiu HP, Bursulaya B, Ng K, Vo T, Patterson P, Uno T, Hunt J, Spraggon G, Geierstanger BH. Site-Specific Dual Labeling of Proteins by Using Small Orthogonal Tags at Neutral pH. Chembiochem 2014; 15:1787-91. [DOI: 10.1002/cbic.201402204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/06/2022]
|