51
|
Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt N. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. J Appl Microbiol 2017; 123:875-885. [DOI: 10.1111/jam.13549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Q. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - J. Tang
- College of Environmental Science and Engineering; Nankai University; Tianjin China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education); Tianjin China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation; Tianjin China
| | - X. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - B. Song
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - M. Zhen
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - N.J. Ashbolt
- School of Public Health; University of Alberta; Edmonton AB Canada
| |
Collapse
|
52
|
Chang S, Zhang G, Chen X, Long H, Wang Y, Chen T, Liu G. The complete genome sequence of the cold adapted crude-oil degrader: Pedobacter steynii DX4. Stand Genomic Sci 2017; 12:45. [PMID: 28770030 PMCID: PMC5531107 DOI: 10.1186/s40793-017-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Pedobacter steynii DX4 was isolated from the soil of Tibetan Plateau and it can use crude oil as sole carbon and energy source at 15 °C. The genome of Pedobacter steynii DX4 has been sequenced and served as basis for analysis its metabolic mechanism. It is the first genome of crude oil degrading strain in Pedobacter genus. The 6.58 Mb genome has an average G + C content of 41.31% and encodes 5464 genes. In addition, annotation revealed that Pedobacter steynii DX4 has cold shock proteins, abundant response regulators for cell motility, and enzymes involved in energy conversion and fatty acid metabolism. The genomic characteristics could provide information for further study of oil-degrading microbes for recovery of crude oil polluted environment.
Collapse
Affiliation(s)
- Sijing Chang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Haozhi Long
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Yilin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
53
|
Jiao S, Luo Y, Lu M, Xiao X, Lin Y, Chen W, Wei G. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:497-505. [PMID: 28336094 DOI: 10.1016/j.envpol.2017.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 05/20/2023]
Abstract
Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl2) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingmei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao Xiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanbing Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
54
|
Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir. Front Microbiol 2017; 8:707. [PMID: 28487680 PMCID: PMC5403907 DOI: 10.3389/fmicb.2017.00707] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/05/2017] [Indexed: 11/30/2022] Open
Abstract
The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles.
Collapse
Affiliation(s)
- Tamara N. Nazina
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Natalya M. Shestakova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Ekaterina M. Semenova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Alena V. Korshunova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Nadezda K. Kostrukova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana P. Tourova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Liu Min
- Dagang Oil Field Group Ltd.Tianjin, China
| | | | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
55
|
Shahsavari E, Aburto-Medina A, Taha M, Ball AS. A quantitative PCR approach for quantification of functional genes involved in the degradation of polycyclic aromatic hydrocarbons in contaminated soils. MethodsX 2016; 3:205-11. [PMID: 27054096 PMCID: PMC4804383 DOI: 10.1016/j.mex.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major pollutants globally and due to their carcinogenic and mutagenic properties their clean-up is paramount. Bioremediation or using PAH degrading microorganisms (mainly bacteria) to degrade the pollutants represents cheap, effective methods. These PAH degraders harbor functional genes which help microorganisms use PAHs as source of food and energy. Most probable number (MPN) and plate counting methods are widely used for counting PAHs degraders; however, as culture based methods only count a small fraction (<1%) of microorganisms capable of carrying out PAH degradation, the use of culture-independent methodologies is desirable.This protocol presents a robust, rapid and sensitive qPCR method for the quantification of the functional genes involved in the degradation of PAHs in soil samples. This protocol enables us to screen a vast number of PAH contaminated soil samples in few hours. This protocol provides valuable information about the natural attenuation potential of contaminated soil and can be used to monitor the bioremediation process.
Collapse
Affiliation(s)
- Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), 72800 Puebla, Mexico
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
56
|
Shahi A, Aydin S, Ince B, Ince O. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:153-160. [PMID: 26685788 DOI: 10.1016/j.ecoenv.2015.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/18/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.
Collapse
Affiliation(s)
- Aiyoub Shahi
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sevcan Aydin
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Institutes of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
57
|
Leite GGF, Figueirôa JV, Almeida TCM, Valões JL, Marques WF, Duarte MDDC, Gorlach-Lira K. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol Prog 2015; 32:262-70. [PMID: 26588432 DOI: 10.1002/btpr.2208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/11/2015] [Indexed: 12/22/2022]
Abstract
Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016.
Collapse
Affiliation(s)
- Giuseppe G F Leite
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Juciane V Figueirôa
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Thiago C M Almeida
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Jaqueline L Valões
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Walber F Marques
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Maria D D C Duarte
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Krystyna Gorlach-Lira
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| |
Collapse
|
58
|
Liu Q, Tang J, Bai Z, Hecker M, Giesy JP. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Sci Rep 2015; 5:11068. [PMID: 26086670 PMCID: PMC4478889 DOI: 10.1038/srep11068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Genes that encode for enzymes that can degrade petroleum hydrocarbons (PHs) are critical for the ability of microorganisms to bioremediate soils contaminated with PHs. Distributions of two petroleum-degrading genes AlkB and Nah in soils collected from three zones of the Dagang Oilfield, Tianjin, China were investigated. Numbers of copies of AlkB ranged between 9.1 × 10(5) and 1.9 × 10(7) copies/g dry mass (dm) soil, and were positively correlated with total concentrations of PHs (TPH) (R(2) = 0.573, p = 0.032) and alkanes (C33 ~ C40) (R(2) = 0.914, p < 0.01). The Nah gene was distributed relatively evenly among sampling zones, ranging between 1.9 × 10(7) and 1.1 × 10(8) copies/g dm soil, and was negatively correlated with concentrations of total aromatic hydrocarbons (TAH) (R(2) = -0.567, p = 0.035) and ∑16 PAHs (R(2) = -0.599, p = 0.023). Results of a factor analysis showed that individual samples of soils were not ordinated as a function of the zones.
Collapse
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markus Hecker
- 1] School of Environment and sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- 1] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [3] School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China [4] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China [5] Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|