51
|
Carrau F, Boido E, Ramey D. Yeasts for low input winemaking: Microbial terroir and flavor differentiation. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:89-121. [PMID: 32446413 DOI: 10.1016/bs.aambs.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vitis vinifera flowers and grape fruits are one of the most interesting ecosystem niches for native yeasts development. There are more than a 100 yeast species and millions of strains that participate and contribute to design the microbial terroir. The wine terroir concept is understood when grape and wine micro-regions were delimited by different quality characteristics after humans had been growing vines for more than 10,000 years. Environmental conditions, such as climate, soil composition, water management, winds and air quality, altitude, fauna and flora and microbes, are considered part of the "terroir" and contribute to a unique wine style. If "low input winemaking" strategies are applied, the terroir effect will be expected to be more authentic in terms of quality differentiation. Interestingly, the role of the microbial flora associated with vines was very little study until recently when new genetic technologies for massive species identification were developed. These biotechnologies allowed following their environmental changes and their effect in shaping the microbial profiles of different wine regions. In this chapter we explain the interesting positive effects on flavor diversity and wine quality obtained by using "friendly" native yeasts that allowed the microbial terroir flora to participate and contribute during fermentation.
Collapse
Affiliation(s)
- Francisco Carrau
- Área Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay.
| | - Eduardo Boido
- Área Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - David Ramey
- Ramey Wine Cellars, Healdsburg, CA, United States
| |
Collapse
|
52
|
Guzzon R, Malacarne M, Larcher R, Franciosi E, Toffanin A. The impact of grape processing and carbonic maceration on the microbiota of early stages of winemaking. J Appl Microbiol 2019; 128:209-224. [DOI: 10.1111/jam.14462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- R. Guzzon
- Centro di Trasferimento Tecnologico Fondazione Edmund Mach Trento Italy
| | - M. Malacarne
- Centro di Trasferimento Tecnologico Fondazione Edmund Mach Trento Italy
| | - R. Larcher
- Centro di Trasferimento Tecnologico Fondazione Edmund Mach Trento Italy
| | - E. Franciosi
- Dipartimento Qualità Alimentare e Nutrizione Fondazione Edmund Mach Trento Italy
| | - A. Toffanin
- Annita Toffanin, DiSAAA‐a Università di Pisa Pisa Italy
| |
Collapse
|
53
|
Dimopoulou M, Renault M, Dols-Lafargue M, Albertin W, Herry JM, Bellon-Fontaine MN, Masneuf-Pomarede I. Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
54
|
Berbegal C, Borruso L, Fragasso M, Tufariello M, Russo P, Brusetti L, Spano G, Capozzi V. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Int J Mol Sci 2019; 20:ijms20163980. [PMID: 31443334 PMCID: PMC6721008 DOI: 10.3390/ijms20163980] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.
Collapse
Affiliation(s)
- Carmen Berbegal
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
- EnolabERI BioTecMed, Universitat de València, 46100 Valencia, Spain
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mariagiovanna Fragasso
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Tufariello
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Unità Operativa di Supporto di Lecce, 73100 Lecce, Italy
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
55
|
Melkonian C, Gottstein W, Blasche S, Kim Y, Abel-Kistrup M, Swiegers H, Saerens S, Edwards N, Patil KR, Teusink B, Molenaar D. Finding Functional Differences Between Species in a Microbial Community: Case Studies in Wine Fermentation and Kefir Culture. Front Microbiol 2019; 10:1347. [PMID: 31293529 PMCID: PMC6603220 DOI: 10.3389/fmicb.2019.01347] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial life usually takes place in a community where individuals interact, by competition for nutrients, cross-feeding, inhibition by end-products, but also by their spatial distribution. Lactic acid bacteria are prominent members of microbial communities responsible for food fermentations. Their niche in a community depends on their own properties as well as those of the other species. Here, we apply a computational approach, which uses only genomic and metagenomic information and functional annotation of genes, to find properties that distinguish a species from others in the community, as well as to follow individual species in a community. We analyzed isolated and sequenced strains from a kefir community, and metagenomes from wine fermentations. We demonstrate how the distinguishing properties of an organism lead to experimentally testable hypotheses concerning the niche and the interactions with other species. We observe, for example, that L. kefiranofaciens, a dominant organism in kefir, stands out among the Lactobacilli because it potentially has more amino acid auxotrophies. Using metagenomic analysis of industrial wine fermentations we investigate the role of an inoculated L. plantarum in malolactic fermentation. We observed that L. plantarum thrives better on white than on red wine fermentations and has the largest number of phosphotransferase system among the bacteria observed in the wine communities. Also, L. plantarum together with Pantoea, Erwinia, Asaia, Gluconobacter, and Komagataeibacter genera had the highest number of genes involved in biosynthesis of amino acids.
Collapse
Affiliation(s)
- Chrats Melkonian
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
| | - Willi Gottstein
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
| | - Sonja Blasche
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yongkyu Kim
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | - Kiran R. Patil
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bas Teusink
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
56
|
Sirén K, Mak SST, Melkonian C, Carøe C, Swiegers JH, Molenaar D, Fischer U, Gilbert MTP. Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro Fermentation of Riesling Must. Front Microbiol 2019; 10:697. [PMID: 31024486 PMCID: PMC6465770 DOI: 10.3389/fmicb.2019.00697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.
Collapse
Affiliation(s)
- Kimmo Sirén
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Siu Tze Mak
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Chrats Melkonian
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Carøe
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Douwe Molenaar
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
57
|
Sirén K, Mak SST, Fischer U, Hansen LH, Gilbert MTP. Multi-omics and potential applications in wine production. Curr Opin Biotechnol 2019; 56:172-178. [DOI: 10.1016/j.copbio.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
|
58
|
Martin V, Fariña L, Medina K, Boido E, Dellacassa E, Mas A, Carrau F. Oenological attributes of the yeast Hanseniaspora vineaeand its application for white and red winemaking. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flavour and some compounds associated with wine colour are known to be yeast strain-dependent. These metabolites are important for the sensory quality of wines, studies searching for increase aroma and color are a key area today in winemaking. The aim of this work was to study the oenological potential of the two main strains of Hanseniaspora vineae,native to Uruguay to better understand their successful application at winery level. It is known that these strains contribute with extracellular proteases and β-glucosidase enzyme activities that might increase cell lysis and flavor depending in grape varieties. Application and nutrient management of the process of these strains in production of white wines (Chardonnay, Macabeo and Petit Manseng) and red wine Tannat are discussed. Wines were evaluated to determine the volatile compounds composition and their effect compared to conventional processes. Low production of short and medium chain fatty acids and ethyl esters, and high production of acetate esters and isoprenoids are found compared to S. cerevisiaestrains. The most outstanding characteristic of the species H. vineaewas the production of benzenoids, phenylpropanoids and acetate esters. This behavior was reflected in the sensory evaluation, where all the fermentations performed with H. vineaewere considered superior compared to Saccharomyces cerevisiaewine strains.
Collapse
|
59
|
Vignani R, Liò P, Scali M. How to integrate wet lab and bioinformatics procedures for wine DNA admixture analysis and compositional profiling: Case studies and perspectives. PLoS One 2019; 14:e0211962. [PMID: 30753217 PMCID: PMC6376920 DOI: 10.1371/journal.pone.0211962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
The varietal authentication of wines is fundamental for assessing wine quality, and it is part of its compositional profiling. The availability of historical, cultural and chemical composition information is extremely important for quality evaluation. DNA-based techniques are a powerful tool for proving the varietal composition of a wine. SSR-amplification of genomic residual Vitis vinifera DNA, namely Wine DNA Fingerprinting (WDF) is able to produce strong, analytical evidence concerning the monovarietal nature of a wine, and for blended wines by generating the probability of the presence/absence of a certain variety, all in association with a dedicated bioinformatics elaboration of genotypes associated with possible varietal candidates. Together with WDF we could exploit Bioinformatics techniques, due to the number of grape genomes grown. In this paper, the use of WDF and the development of a bioinformatics tool for allelic data validation, retrieved from the amplification of 7 to 10 SSRs markers in the Vitis vinifera genome, are reported. The wines were chosen based on increasing complexity; from monovarietal, experimental ones, to commercial monovarietals, to blended commercial wines. The results demonstrate that WDF, after calculation of different distance matrices and Neighbor-Joining input data, followed by Principal Component Analysis (PCA) can effectively describe the varietal nature of wines. In the unknown blended wines the WDF profiles were compared to possible varietal candidates (Merlot, Pinot Noir, Cabernet Sauvignon and Zinfandel), and the output graphs show the most probable varieties used in the blend as closeness to the tested wine. This pioneering work should be meant as to favor in perspective the multidisciplinary building-up of on-line databanks and bioinformatics toolkits on wine. The paper concludes with a discussion on an integrated decision support system based on bioinformatics, chemistry and cultural data to assess wine quality.
Collapse
Affiliation(s)
- Rita Vignani
- Department of Life Science, University of Siena, Siena,
Italy
- Serge-genomics, Siena, Italy
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, United
Kingdom
| | - Monica Scali
- Department of Life Science, University of Siena, Siena,
Italy
| |
Collapse
|
60
|
Tufariello M, Maiorano G, Rampino P, Spano G, Grieco F, Perrotta C, Capozzi V, Grieco F. Selection of an autochthonous yeast starter culture for industrial production of Primitivo “Gioia del Colle” PDO/DOC in Apulia (Southern Italy). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Abstract
Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on mature grapes and play a significant role at the beginning of fermentation, producing enzymes and aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis, H. guilliermondii, H. uvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae, H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive contribution to winemaking. Some consistent results have shown more intense flavors and complex, full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases in alcohols and acids have been reported, due to different fermentation pathways compared to conventional wine yeasts.
Collapse
|