51
|
Jeong JW, Asano E, Juhász C, Chugani HT. Quantification of primary motor pathways using diffusion MRI tractography and its application to predict postoperative motor deficits in children with focal epilepsy. Hum Brain Mapp 2013; 35:3216-26. [PMID: 24142581 DOI: 10.1002/hbm.22396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/21/2013] [Accepted: 08/02/2013] [Indexed: 11/08/2022] Open
Abstract
As a new tool to quantify primary motor pathways and predict postoperative motor deficits in children with focal epilepsy, the present study utilized a maximum a posteriori probability (MAP) classification of diffusion weighted imaging (DWI) tractography combined with Kalman filter. DWI was performed in 31 children with intractable focal epilepsy who underwent epilepsy surgery. Three primary motor pathways associated with "finger," "leg," and "face" were classified using DWI-MAP classifier and compared with the results of invasive electrical stimulation mapping (ESM) via receiver operating characteristic (ROC) curve analysis. The Kalman filter analysis was performed to generate a model to determine the probability of postoperative motor deficits as a function of the proximity between the resection margin and the finger motor pathway. The ROC curve analysis showed that the DWI-MAP achieves high accuracy up to 89% (finger), 88% (leg), 89% (face), in detecting the three motor areas within 20 mm, compared with ESM. Moreover, postoperative reduction of the fiber count of finger pathway was associated with postoperative motor deficits involving the hand. The prediction model revealed an accuracy of 92% in avoiding postoperative deficits if the distance between the resection margin and the finger motor pathway seen on preoperative DWI tractography was 19.5 mm. This study provides evidence that the DWI-MAP combined with Kalman filter can effectively identify the locations of cortical motor areas even in patients whose motor areas are difficult to identify using ESM, and also can serve as a reliable predictor for motor deficits following epilepsy surgery.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Carman and Ann Adams Department of Pediatrics, Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, USA; Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
52
|
Ruge MI, Kickingereder P, Grau S, Dorn F, Galldiks N, Treuer H, Sturm V. Stereotactic iodine-125 brachytherapy for the treatment of WHO grades II and III gliomas located in the central sulcus region. Neuro Oncol 2013; 15:1721-31. [PMID: 24046261 DOI: 10.1093/neuonc/not126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resection of gliomas located in eloquent brain areas remains a neurosurgical challenge. The reported incidence of transient or permanent neurological deficits after microsurgery in eloquent brain ranges 20%-100%, or 0%-47% among contemporary neurosurgical series. The aim of this study was to assess the feasibility of stereotactic brachytherapy (SBT) as a local treatment alternative to microsurgical resection for patients with gliomas in highly eloquent areas, located in the central sulcus region (CSR). METHOD Between 1997 and 2010, 60 patients with World Health Organization (WHO) grades II and III gliomas located in the CSR were treated with SBT (iodine-125 seeds; cumulative therapeutic dose, 50-65 Gy). Following SBT, WHO grade III glioma patients additionally received percutaneous radiotherapy (median boost dose, 25.2 Gy). We evaluated procedure-related complications, clinical outcome, and progression-free survival. RESULTS Procedure-related mortality was zero. Within 30 days of SBT, 3 patients (5%) had transient neurological deficits, and 8 patients (13%) had temporarily increased seizure activity. One patient (1.6%) deteriorated permanently. Space-occupying cysts (6 patients) and radiation necrosis (1 patient) developed after a median of 38 months and required surgical intervention. Seizure activity, rated 12 months following SBT, decreased in 82% of patients (Engel classes I-III). Median progression-free survivals were 62.2 ± 19.7 months (grade II gliomas) and 26.1 ± 17.9 months (grade III gliomas). CONCLUSIONS Compared with microsurgical resection, SBT harbors a low risk of procedural complications, is minimally invasive, and seems to be an effective local treatment option for patients with inoperable, eloquent WHO grade II and III gliomas in the CSR. However, the value of SBT for treating gliomas still needs to be determined in prospective, randomized studies.
Collapse
Affiliation(s)
- Maximilian I Ruge
- Corresponding Author: Maximilian I. Ruge, MD, Department of Stereotactic and Functional Neurosurgery, University Clinics of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
53
|
Siero JC, Bhogal A, Jansma JM. Blood Oxygenation Level–dependent/Functional Magnetic Resonance Imaging. PET Clin 2013; 8:329-44. [DOI: 10.1016/j.cpet.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 2013; 200:W483-503. [PMID: 23617516 DOI: 10.2214/ajr.12.9724] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. Our objective is to review the imaging characteristics and applications of conventional and advanced neuroimaging techniques of supratentorial intracranial masses in the pediatric population. Specifically, we review astrocytomas, oligodendrogliomas, primary neuroectodermal tumors, dysembryoplastic neuroepithelial tumors, gangliogliomas, arachnoid cysts, and choroid plexus and pineal region masses. CONCLUSION. Advanced imaging methods, such as MR spectroscopy, perfusion MRI, functional MRI, diffusion-tensor imaging, and tractography, help develop a more accurate differential diagnosis and aid in planning tumor treatment.
Collapse
|
55
|
Abstract
The sensorimotor flow of information can be divided in three steps: perception, processing and reaction. Environmental impulses are conducted through receptors to the central nervous system (CNS). The impulses arriving in the somatosensory cortex are processed through complex interactions between sensory and motor areas. The motor action in response to the environmental changes is transferred from the motor cortex via the pyramidal tract, spinal tracts and motor neurons to the respective muscles. With functional magnetic resonance imaging (fMRI) it is possible to assess somatosensory and motor activation in the different cortical areas involved. Clinically, this information is used to assess the local relationship between brain tumors and functionally important areas. This is important to ensure an optimal individual therapeutic approach with the aim of an as radical as possible tumor resection with preservation of the motor and somatosensory functions. Furthermore, fMRI enables the evaluation of pathological changes of cerebral activation. This review describes the functional somatosensory and motor systems and gives an insight into the potential of fMRI.
Collapse
Affiliation(s)
- M Garcia
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinik für Radiologie und Nuklearmedizin, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | | |
Collapse
|
56
|
Jeong JW, Asano E, Brown EC, Tiwari VN, Chugani DC, Chugani HT. Automatic detection of primary motor areas using diffusion MRI tractography: comparison with functional MRI and electrical stimulation mapping. Epilepsia 2013; 54:1381-90. [PMID: 23772829 DOI: 10.1111/epi.12199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE As an alternative tool to identify cortical motor areas for planning surgical resection in children with focal epilepsy, the present study proposed a maximum a posteriori probability (MAP) classification of corticospinal tract (CST) visualized by diffusion MR tractography. METHODS Diffusion-weighted imaging (DWI) was performed in 17 normally developing children and 20 children with focal epilepsy. An independent component analysis tractography combined with ball-stick model was performed to identify unique CST pathways originating from mouth/lip, finger, and leg areas determined by functional magnetic resonance imaging (fMRI) in healthy children and electrical stimulation mapping (ESM) in children with epilepsy. Group analyses were performed to construct stereotaxic probability maps of primary motor pathways connecting precentral gyrus and posterior limb of internal capsule, and then utilized to design a novel MAP classifier that can sort individual CST fibers associated with three classes of interest: mouth/lip, fingers, and leg. A systematic leave-one-out approach was applied to train an optimal classifier. A match was considered to occur if classified fibers contacted or surrounded true areas localized by fMRI and ESM. KEY FINDINGS It was found that the DWI-MAP provided high accuracy for the CST fibers terminating in proximity to the localization of fMRI/ESM: 78%/77% for mouth/lip, 77%/76% for fingers, 78%/86% for leg (contact), and 93%/89% for mouth/lip, 91%/89% for fingers, and 92%/88% for leg (surrounded within 2 cm). SIGNIFICANCE This study provides preliminary evidence that in the absence of fMRI and ESM data, the DWI-MAP approach can effectively retrieve the locations of cortical motor areas and underlying CST courses for planning epilepsy surgery.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Lee L, Sitoh YY, Ng I, Ng WH. Cortical reorganization of motor functional areas in cerebral arteriovenous malformations. J Clin Neurosci 2013; 20:649-53. [DOI: 10.1016/j.jocn.2012.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/14/2012] [Accepted: 07/04/2012] [Indexed: 11/28/2022]
|
58
|
Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C. Mapping the hand, foot and face representations in the primary motor cortex — Retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 2013; 66:531-42. [DOI: 10.1016/j.neuroimage.2012.10.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022] Open
|
59
|
González-Ortiz S, Oleaga L, Pujol T, Medrano S, Rumiá J, Caral L, Boget T, Capellades J, Bargalló N. Simple fMRI postprocessing suffices for normal clinical practice. AJNR Am J Neuroradiol 2013; 34:1188-93. [PMID: 23306014 DOI: 10.3174/ajnr.a3381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Whereas fMRI postprocessing tools used in research are accurate but unwieldy, those used for clinical practice are user-friendly but are less accurate. We aimed to determine whether commercial software for fMRI postprocessing is accurate enough for clinical practice. METHODS Ten volunteers underwent fMRI while performing motor and language tasks (hand, foot, and orolingual movements; verbal fluency; semantic judgment; and oral comprehension). We compared visual concordance, image quality (noise), voxel size, and radiologist preference for the activation maps obtained by using Neuro3D software (provided with our MR imaging scanner) and by using the SPM program commonly used in research. RESULTS Maps obtained with the 2 methods were classified as "partially overlapping" for 70% for motor and 72% for language paradigm experiments and as "overlapping" in 30% of motor and in 15% of language paradigm experiments. CONCLUSIONS fMRI is a helpful and robust tool in clinical practice for planning neurosurgery. Widely available commercial fMRI software can provide reliable information for therapeutic management, so sophisticated, less widely available software is unnecessary in most cases.
Collapse
|
60
|
Functional reorganization oF the primary motor cortex in a patient with a large arteriovenous malFormation involving the precentral gyrus. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIt is known that the brain can compensate for deficits induced by acquired and developmental lesions through functional reorganization of the remaining parenchyma. Arteriovenous malformations (AVM) usually appear prenatally before a functional regional organization of the brain is fully established and patients generally do not present with motor deficits even when the AVM is located in the primary motor area indicating the redistribution of functions in cortical areas that are not pathologically altered. Here we present reorganization of the motor cortex in a patient with a large AVM involving most of the left parietal lobe and the paramedian part of the left precentral gyrus that is responsible for controlling the muscles of the lower limbs. Functional MRI showed that movements of both the right and left feet activated only the primary motor cortex in the right hemisphere, while there was no activation in the left motor cortex. This suggests that complete ipsilateral control over the movements of the right foot had been established in this patient. A reconstruction of the corticospinal tract using diffusion tensor imaging showed a near-complete absence of corticospinal fibers from the part of the left precentral gyrus affected by the AVM. From this clinical presentation it can be concluded that full compensation of motor deficits had occurred by redistributing function to the corresponding motor area of the contralateral
Collapse
|
61
|
Multimodal imaging and image analysis techniques for neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206685 DOI: 10.1016/b978-0-12-404706-8.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Functional neurosurgical procedures used to treat the debilitating motor symptoms of Parkinson's disease and that target small subcortical structures have typically relied on semi-qualitative manual approaches that rely upon the establishing qualitative between volumetric imaging data and print atlases. This chapter reviews many new high -precision and -accuracy techniques that can be used for the full automated localization of these targets. These techniques rely on the a priori development of neuroanatomical atlases derived from magnetic resonance imaging data, high-resolution identification of subcortical structures from histology, and spatially localized data bases of intra-operative recordings and successful surgical outcomes. Other novel structural and functional MRI techniques that allow for the direct visualization of thalamic sub nuclei are also reviewed.
Collapse
|
62
|
Bryszewski B, Pfajfer L, Antosik-Biernacka A, Tybor K, Smigielski J, Zawirski M, Majos A. Functional rearrangement of the primary and secondary motor cortex in patients with primary tumors of the central nervous system located in the region of the central sulcus depending on the histopathological type and the size of tumor: Examination by means of functional magnetic resonance imaging. Pol J Radiol 2012; 77:12-20. [PMID: 22802861 PMCID: PMC3389955 DOI: 10.12659/pjr.882576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background: The aim of this study was to analyze the reorganization of the centers of the motor cortex in patients with primary neuroepithelial tumors of the central nervous system (CNS) located in the region of the central sulcus in relation to the histopathological type and the size of tumor, as determined by means of functional magnetic resonance imaging (fMRI). Material/Methods: The fMRI was performed prior to the surgical treatment of patients with tumors located in the region of the central sulcus (WHO stage I and II, n=15; WHO stage III and IV, n=25). The analysis included a record of the activity in the areas of the primary motor cortex (M1) and the secondary motor cortex: the premotor cortex (PMA) and the accessory motor area (SMA). The results were correlated with the histopathological type of the tumor and its size expressed in cm3. Results: The frequency of activation of the motor center was higher in the group of patients who had less aggressive tumors, such as low-grade glioma (LGG), as well as in tumors of lower volume, and this was true both for the hemisphere where the tumor was located and in the contralateral one. Mean values of t-statistics of activation intensity, mean numbers of activated clusters, and their ranges were lower in all analyzed motor areas of LGG tumors. The values of t-statistics and activation areas were higher in the case of small tumors located in ipsilateral centers, and in large tumors located in contralateral centers, aside from the SMA area where the values of t-statistics were equal for both groups. The contralateral SMA area was characterized by the highest stability of all examined centers of secondary motor cortex. No significant association (p>0.05) was observed between the absolute value of the mean registered activity (t-statistics) and the size of examined areas (number of clusters) when the groups were stratified with regards to the analyzed parameters. Conclusions: The presence of a neoplastic lesion, its histopathological type and finally its size modulate the functional reorganization of the motor centers as suggested by the differences in the frequency of the neural center activation in the analyzed groups. Processes of functional rearrangement are more pronounced and more precisely defined in patients with less aggressive and/or smaller tumors. The contralateral accessory area is the most frequently activated center in all analyzed groups irrespective of the grade and size of the tumor.
Collapse
Affiliation(s)
- Bartosz Bryszewski
- Department of Neurosurgery, Medical University of Łódź, Barlicki University Hospital No.1, Łódź, Poland
| | | | | | | | | | | | | |
Collapse
|
63
|
Kapsalakis IZ, Kapsalaki EZ, Gotsis ED, Verganelakis D, Toulas P, Hadjigeorgiou G, Chung I, Fezoulidis I, Papadimitriou A, Robinson JS, Lee GP, Fountas KN. Preoperative evaluation with FMRI of patients with intracranial gliomas. Radiol Res Pract 2012; 2012:727810. [PMID: 22848821 PMCID: PMC3403517 DOI: 10.1155/2012/727810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 01/13/2023] Open
Abstract
Introduction. Aggressive surgical resection constitutes the optimal treatment for intracranial gliomas. However, the proximity of a tumor to eloquent areas requires exact knowledge of its anatomic relationships to functional cortex. The purpose of our study was to evaluate fMRI's accuracy by comparing it to intraoperative cortical stimulation (DCS) mapping. Material and Methods. Eighty-seven patients, with presumed glioma diagnosis, underwent preoperative fMRI and intraoperative DCS for cortical mapping during tumor resection. Findings of fMRI and DCS were considered concordant if the identified cortical centers were less than 5 mm apart. Pre and postoperative Karnofsky Performance Scale and Spitzer scores were recorded. A postoperative MRI was obtained for assessing the extent of resection. Results. The areas of interest were identified by fMRI and DCS in all participants. The concordance between fMRI and DCS was 91.9% regarding sensory-motor cortex, 100% for visual cortex, and 85.4% for language. Data analysis showed that patients with better functional condition demonstrated higher concordance rates, while there also was a weak association between tumor grade and concordance rate. The mean extent of tumor resection was 96.7%. Conclusions. Functional MRI is a highly accurate preoperative methodology for sensory-motor mapping. However, in language mapping, DCS remains necessary for accurate localization.
Collapse
Affiliation(s)
- Ioannis Z. Kapsalakis
- Department of Neurology, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
| | - Eftychia Z. Kapsalaki
- Department of Diagnostic Radiology, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
| | - Efstathios D. Gotsis
- Department of MR Imaging, Advanced Diagnostic and Research Institute “Euromedica-Encephalos”, 15233 Athens, Greece
| | - Dimitrios Verganelakis
- Department of MR Imaging, Advanced Diagnostic and Research Institute “Euromedica-Encephalos”, 15233 Athens, Greece
| | - Panagiotis Toulas
- Department of MR Imaging, Advanced Diagnostic and Research Institute “Euromedica-Encephalos”, 15233 Athens, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
| | - Indug Chung
- Departments of Neurosurgery and Intraoperative Electrophysiology, Medical Center of Central Georgia, School of Medicine, Mercer University, Macon, GA 31201, USA
| | - Ioannis Fezoulidis
- Department of Diagnostic Radiology, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
| | - Alexandros Papadimitriou
- Department of Neurology, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
| | - Joe Sam Robinson
- Departments of Neurosurgery and Intraoperative Electrophysiology, Medical Center of Central Georgia, School of Medicine, Mercer University, Macon, GA 31201, USA
| | - Gregory P. Lee
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Kostas N. Fountas
- Department of Neurosurgery, School of Medicine, University Hospital of Larisa, University of Thessaly, 41110 Larisa, Greece
- Institute of Biomedical Research and Technology (BIOMED), Center for Research and Technology-Thessaly (CERETETH), 38500 Larissa, Greece
| |
Collapse
|
64
|
Eggebrecht AT, White BR, Ferradal SL, Chen C, Zhan Y, Snyder AZ, Dehghani H, Culver JP. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. Neuroimage 2012; 61:1120-8. [PMID: 22330315 DOI: 10.1016/j.neuroimage.2012.01.124] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/26/2012] [Accepted: 01/28/2012] [Indexed: 11/29/2022] Open
Abstract
Functional neuroimaging commands a dominant role in current neuroscience research. However its use in bedside clinical and certain neuro-scientific studies has been limited because the current tools lack the combination of being non-invasive, non-ionizing and portable while maintaining moderate resolution and localization accuracy. Optical neuroimaging satisfies many of these requirements, but, until recent advances in high-density diffuse optical tomography (HD-DOT), has been hampered by limited resolution. While early results of HD-DOT have been promising, a quantitative voxel-wise comparison and validation of HD-DOT against the gold standard of functional magnetic resonance imaging (fMRI) has been lacking. Herein, we provide such an analysis within the visual cortex using matched visual stimulation protocols in a single group of subjects (n=5) during separate HD-DOT and fMRI scanning sessions. To attain the needed voxel-to-voxel co-registration between HD-DOT and fMRI image spaces, we implemented subject-specific head modeling that incorporated MRI anatomy, detailed segmentation, and alignment of source and detector positions. Comparisons of the visual responses found an average localization error between HD-DOT and fMRI of 4.4+/-1mm, significantly less than the average distance between cortical gyri. This specificity demonstrates that HD-DOT has sufficient image quality to be useful as a surrogate for fMRI.
Collapse
Affiliation(s)
- Adam T Eggebrecht
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, East Bldg. CB 8225, St Louis, MO, 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Pillai JJ, Zacá D. Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas. World J Clin Oncol 2011; 2:397-403. [PMID: 22171282 PMCID: PMC3235658 DOI: 10.5306/wjco.v2.i12.397] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate neurovascular uncoupling (NVU) associated with low grade gliomas (LGG) using blood oxygen level dependent (BOLD) cerebrovascular reactivity mapping.
METHODS: Seven patients with low grade gliomas referred by neurosurgeons for presurgical mapping were included in this pilot study. Cerebrovascular reactivity (CVR) mapping was performed by acquiring BOLD images while patients performed a block-design breath-hold (BH) hypercapnia task. CVR mapping was expressed as BOLD percentage signal change (PSC) from baseline associated with performance of the BH hypercapnia task. Standard T2* Dynamic Susceptibility Contrast perfusion imaging was performed and relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) maps were generated. Structural T1 weighted MR images were also acquired. A correlation analysis between intratumoral normalized (via ratio with contralateral homologous regions) BOLD BH PSC [referred to as (nCVR)] and intratumoral normalized resting state rCBV (rCBF) values (i.e., nCBV and nCBF, respectively) was performed.
RESULTS: No significant correlation was seen between the normalized BOLD BH PSC (i.e., nCBV) and nCBV or nCBF. However, the average nCVR (median = 0.50, z = -2.28, P = 0.01) was significantly less than 1.0, indicating abnormally reduced vascular responses in the tumor regions relative to normal contralesional homologous regions, whereas the average nCBV (median = 0.94, z = -0.92, P = 0.375) and nCBF (median = 0.93, z = -1.16, P = 0.25) were not significantly higher or lower than 1.0, indicating iso-perfusion in the tumor regions relative to normal contralesional homologous regions. These findings suggest that in LGG, hyperperfusion that is seen in high grade gliomas is not present, but, nevertheless, abnormally decreased regional CVR is present within and adjacent to LGG. Since the patients all demonstrated at least some residual function attributable to the cortical regions of impaired CVR, but were incapable of producing a BOLD response in these regions regardless of the tasks performed, such regionally decreased CVR is indicative of NVU. The low nCVR ratios indicate high prevalence of NVU in this LGG cohort, which is an important consideration in the interpretation of clinical presurgical mapping with functional magnetic resonance (MR) imaging.
CONCLUSION: Our preliminary study shows that BH CVR mapping is clinically feasible and demonstrates an unexpectedly high prevalence of NVU in patients with LGG.
Collapse
Affiliation(s)
- Jay J Pillai
- Jay J Pillai, Domenico Zacá, Neuroradiology Division, Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine and The Johns Hopkins Hospital, 600 N. Wolfe Street, Phipps B-100, Baltimore, MD 21287, United States
| | | |
Collapse
|
66
|
Blatow M, Reinhardt J, Riffel K, Nennig E, Wengenroth M, Stippich C. Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla. J Magn Reson Imaging 2011; 34:429-37. [DOI: 10.1002/jmri.22629] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|