51
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
52
|
Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, Kim EJ, Pasquini L, Allen IE, Rankin KP, Toller G, Kramer JH, Geschwind DH, Coppola G, Huang EJ, Grinberg LT, Miller BL, Seeley WW. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol 2019; 137:27-46. [PMID: 30511086 PMCID: PMC6339592 DOI: 10.1007/s00401-018-1942-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.
Collapse
Affiliation(s)
- Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Sidhu
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie E Gaus
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ji-Hye L Hwang
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Libo Li
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, China
| | - Youngsoon Park
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Joo Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gianina Toller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
53
|
Katsumata Y, Fardo DW, Kukull WA, Nelson PT. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer's disease and cerebrovascular disease pathologies. Acta Neuropathol Commun 2018; 6:142. [PMID: 30567576 PMCID: PMC6299605 DOI: 10.1186/s40478-018-0641-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) proteinopathy is a common brain pathology in elderly persons, but much remains to be learned about this high-morbidity condition. Published stage-based systems for operationalizing disease severity rely on the involvement (presence/absence) of pathology in specific anatomic regions. To examine the comorbidities associated with TDP-43 pathology in aged individuals, we studied data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set. Data were analyzed from 929 included subjects with available TDP-43 pathology information, sourced from 27 different American Alzheimer's Disease Centers (ADCs). Cases with relatively unusual diseases including autopsy-proven frontotemporal lobar degeneration (FTLD-TDP or FTLD-tau) were excluded from the study. Our data provide new information about pathologic features that are and are not associated with TDP-43 pathologies in different brain areas-spinal cord, amygdala, hippocampus, entorhinal cortex/inferior temporal cortex, and frontal neocortex. Different research centers used cite-specific methods including different TDP-43 antibodies. TDP-43 pathology in at least one brain region was common (31.4%) but the pathology was rarely observed in spinal cord (1.8%) and also unusual in frontal cortex (5.3%). As expected, TDP-43 pathology was positively associated with comorbid hippocampal sclerosis pathology and with severe AD pathology. TDP-43 pathology was also associated with comorbid moderate-to-severe brain arteriolosclerosis. The association between TDP-43 pathology and brain arteriolosclerosis appears relatively specific since there was no detected association between TDP-43 pathology and microinfarcts, lacunar infarcts, large infarcts, cerebral amyloid angiopathy (CAA), or circle of Willis atherosclerosis. Together, these observations provide support for the hypothesis that many aged brains are affected by a TDP-43 proteinopathy that is more likely to be seen in brains with AD pathology, arteriolosclerosis pathology, or both.
Collapse
Affiliation(s)
- Yuriko Katsumata
- 0000 0004 1936 8438grid.266539.dDepartment of Biostatistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| | - David W. Fardo
- 0000 0004 1936 8438grid.266539.dDepartment of Biostatistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| | - Walter A. Kukull
- 0000000122986657grid.34477.33National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105 USA
| | - Peter T. Nelson
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dDepartment of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
54
|
Ludolph AC, Schuster J, Dorst J, Dupuis L, Dreyhaupt J, Weishaupt JH, Kassubek J, Weiland U, Petri S, Meyer T, Grosskreutz J, Schrank B, Boentert M, Emmer A, Hermann A, Zeller D, Prudlo J, Winkler AS, Grehl T, Heneka MT, Wollebæk Johannesen S, Göricke B. Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial. Lancet Neurol 2018; 17:681-688. [PMID: 29934198 DOI: 10.1016/s1474-4422(18)30176-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rasagiline, a monoamine oxidase B inhibitor with neuroprotective potential in Parkinson's disease, has shown a disease-modifying effect in the SOD1-Gly93Ala low-expressing mouse model of amyotrophic lateral sclerosis, both alone and in combination with riluzole. We sought to test whether or not rasagiline 1 mg/day can prolong survival in patients with amyotrophic lateral sclerosis also receiving riluzole. METHODS Patients with possible, probable, or definite amyotrophic lateral sclerosis were enrolled to our randomised, placebo-controlled, parallel-group, double-blind, phase 2 trial from 15 German network for motor neuron diseases (MND-NET) centres (university hospitals or clinics). Eligible patients were aged at least 18 years, had onset of progressive weakness within the 36 months before the study, had disease duration of more than 6 months and less than 3 years, and had a best-sitting slow vital capacity of at least 50%. After a 4-week screening period, eligible patients were randomly assigned (1:1) to receive either rasagiline (1 mg/day) or placebo in addition to riluzole (100 mg/day), after stratification for site of onset (bulbar or spinal) and study centre. Patients and all personnel assessing outcome parameters were masked to treatment allocation. Patients were followed up 2, 6, 12, and 18 months after randomisation. The primary endpoint was survival time, defined as the time to death or time to study cutoff date (ie, the last patient's last visit plus 14 days). Analyses of primary outcome and safety measures were done in all patients who received at least one dose of trial treatment (intention-to-treat population). The trial is registered with ClinicalTrials.gov, number NCT01879241. FINDINGS Between July 2, 2013, and Nov 11, 2014, 273 patients were screened for eligibility, and 252 patients were randomly assigned to receive rasagiline (n=127) or placebo (n=125). 126 patients taking rasagiline and 125 taking placebo were included in the intention-to-treat analysis. For the primary outcome, the survival probability at the end of the study was 0·43 (95% CI 0·25-0·59) in the rasagiline group (n=126) and 0·53 (0·43-0·62) in the placebo group (n=125). The estimated effect size (hazard ratio) was 0·91 (one-sided 97·5% CI -infinity to 1·34; p=0·31). Rasagiline was well tolerated, and most adverse events were due to amyotrophic lateral sclerosis disease progression rather than treatment; the most frequent of these were dysphagia (32 [25%] taking rasagiline vs 24 [19%] taking placebo) and respiratory failure (25 [20%] vs 31 [25%]). Frequency of adverse events were comparable between both groups. INTERPRETATION Rasagiline was safe in patients with amyotrophic lateral sclerosis. There was no difference between groups in the primary outcome of survival, although post-hoc analysis suggested that rasagiline might modify disease progression in patients with an initial slope of Amyotrophic Lateral Sclerosis Functional Rating Scale Revised greater than 0·5 points per month at baseline. This should be confirmed in another clinical trial. FUNDING Teva Pharmaceutical Industries.
Collapse
Affiliation(s)
| | | | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Luc Dupuis
- Inserm, Université de Strasbourg, Strasbourg, France
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Ulrike Weiland
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas Meyer
- Charité-Universitätsmedizin Berlin, Humboldtuniversität, Berlin, Germany
| | | | - Berthold Schrank
- Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Matthias Boentert
- Department of Sleep Medicine and Neuromuscular Diseases, University Hospital Münster, Münster, Germany
| | | | - Andreas Hermann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Andrea S Winkler
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Torsten Grehl
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | | | | | - Bettina Göricke
- Department of Neurology, University Hospital of Göttingen, Göttingen, Germany
| | | |
Collapse
|
55
|
Turner MR, Eisen A, Kiernan MC, Ravits J, Swash M. Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2018; 89:657-666. [PMID: 29122933 DOI: 10.1136/jnnp-2017-317217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Kiernan
- Brain and Mind Centre, Sydney Medical School, The University of Sydney; Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - John Ravits
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
56
|
Kassubek J, Müller HP, Del Tredici K, Lulé D, Gorges M, Braak H, Ludolph AC. Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker. J Neurol Neurosurg Psychiatry 2018; 89:374-381. [PMID: 29101254 PMCID: PMC5869447 DOI: 10.1136/jnnp-2017-316365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Neuropathological studies in amyotrophic lateral sclerosis (ALS) have shown a dissemination in a regional sequence in four anatomically defined patterns. The aim of this retrospective study was to see whether longitudinal diffusion tensor imaging (DTI) data support the pathological findings. METHODS The application of DTI analysis to fibre structures that are prone to be involved at each neuropathological pattern of ALS was performed in a monocentre sample of 67 patients with ALS and 31 controls that obtained at least one follow-up scan after a median of 6 months. RESULTS At the group level, longitudinal ALS data showed significant differences for the stage-related tract systems. At the individual level, 27% of the longitudinally scanned patients with ALS showed an increase in ALS stage, while the remaining were stable or were at the highest ALS stage. Longitudinal fractional anisotropy changes in the respective tract systems correlated significantly with the slope of the revised ALS functional rating scale. INTERPRETATION The DTI-based protocol was able to image the disease patterns of ALS in vivo cross-sectionally and longitudinally, in support of DTI as a technical marker to image ALS stages.
Collapse
Affiliation(s)
- Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Kelly Del Tredici
- Clinical Neuroanatomy, Department of Neurology, University of Ulm, Ulm, Germany
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy, Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
57
|
Feneberg E, Gray E, Ansorge O, Talbot K, Turner MR. Towards a TDP-43-Based Biomarker for ALS and FTLD. Mol Neurobiol 2018; 55:7789-7801. [PMID: 29460270 PMCID: PMC6132775 DOI: 10.1007/s12035-018-0947-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
TDP-43 accumulates in nerve cells of nearly all cases of amyotrophic lateral sclerosis (ALS; the commonest form of motor neuron disease) and in the majority of Tau-negative frontotemporal lobar degeneration (FTLD). There is currently no biochemical test or marker of disease activity for ALS or FTLD, and the clinical diagnosis depends on the opinion of an experienced neurologist. TDP-43 has a key role in the pathogenesis of ALS/FTLD. Measuring TDP-43 in easily accessible biofluids, such as blood or cerebrospinal fluid, might reduce diagnostic delay and offer a readout for use in future drug trials. However, attempts at measuring disease-specific forms of TDP-43 in peripheral biofluids of ALS and FTLD patients have not yielded consistent results, and only some of the pathological biochemical features of TDP-43 found in human brain tissue have been detected in clinical biofluids to date. Reflecting on the molecular pathology of TDP-43, this review provides a critical overview on biofluid studies and future directions to develop a TDP-43-based clinical biomarker for ALS and FTLD.
Collapse
Affiliation(s)
- Emily Feneberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. .,John Radcliffe Hospital, West Wing Level 6, Oxford, OX3 9DU, UK.
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
58
|
Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135:213-226. [PMID: 29273900 PMCID: PMC5773656 DOI: 10.1007/s00401-017-1797-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022]
Abstract
In addition to motor neurone degeneration, up to 50% of amyotrophic lateral sclerosis (ALS) patients present with cognitive decline. Understanding the neurobiological changes underlying these cognitive deficits is critical, as cognitively impaired patients exhibit a shorter survival time from symptom onset. Given the pathogenic role of synapse loss in other neurodegenerative diseases in which cognitive decline is apparent, such as Alzheimer’s disease, we aimed to assess synaptic integrity in the ALS brain. Here, we have applied a unique combination of high-resolution imaging of post-mortem tissue with neuropathology, genetic screening and cognitive profiling of ALS cases. Analyses of more than 1 million synapses using two complimentary high-resolution techniques (electron microscopy and array tomography) revealed a loss of synapses from the prefrontal cortex of ALS patients. Importantly, synapse loss was significantly greater in cognitively impaired cases and was not due to cortical atrophy, nor associated with dementia-associated neuropathology. Interestingly, we found a trend between pTDP-43 pathology and synapse loss in the frontal cortex and discovered pTDP-43 puncta at a subset of synapses in the ALS brains. From these data, we postulate that synapse loss in the prefrontal cortex represents an underlying neurobiological substrate of cognitive decline in ALS.
Collapse
|
59
|
Agosta F, Spinelli EG, Marjanovic IV, Stevic Z, Pagani E, Valsasina P, Salak-Djokic B, Jankovic M, Lavrnic D, Kostic VS, Filippi M. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI. Neurology 2018; 90:e707-e716. [PMID: 29367447 DOI: 10.1212/wnl.0000000000005002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase (SOD1) gene compared with sporadic ALS. METHODS Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). RESULTS Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls (p = 0.001-0.02) and SOD1-related ALS (p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS (p < 0.001). No cord MTR differences were found between patient groups. CONCLUSIONS Patients with SOD1 ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies.
Collapse
Affiliation(s)
- Federica Agosta
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Edoardo Gioele Spinelli
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Ivan V Marjanovic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Zorica Stevic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Paola Valsasina
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Biljana Salak-Djokic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Milena Jankovic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Dragana Lavrnic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Vladimir S Kostic
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia
| | - Massimo Filippi
- From the Neuroimaging Research Unit (F.A., E.G.S., E.P., P.V., M.F.) and Department of Neurology (M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; and Clinic of Neurology (I.V.M., Z.S., B.S.-D., M.J., D.L., V.S.K.), Faculty of Medicine, University of Belgrade, Serbia.
| |
Collapse
|
60
|
Shenouda M, Zhang AB, Weichert A, Robertson J. Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD. ADVANCES IN NEUROBIOLOGY 2018; 20:239-263. [PMID: 29916022 DOI: 10.1007/978-3-319-89689-2_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of TDP-43 as a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) was first made in 2006. Prior to 2006 there were only 11 publications related to TDP-43, now there are over 2000, indicating the importance of TDP-43 to unraveling the complex molecular mechanisms that underpin the pathogenesis of ALS/FTLD. Subsequent to this discovery, TDP-43 pathology was also found in other neurodegenerative diseases, including Alzheimer's disease, the significance of which is still in the early stages of exploration. TDP-43 is a predominantly nuclear DNA/RNA-binding protein, one of a number of RNA-binding proteins that are now known to be linked with ALS/FTLD, including Fused in Sarcoma (FUS), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). However, what sets TDP-43 apart is the vast number of cases in which TDP-43 pathology is present, providing a point of convergence, the understanding of which could lead to broadly applicable therapeutics. Here we will focus on TDP-43 in ALS/FTLD, its nuclear and cytoplasmic functions, and consequences should these functions go awry.
Collapse
Affiliation(s)
- Marc Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Ashley B Zhang
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
61
|
Braak H, Del Tredici K. Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 77:74-83. [DOI: 10.1093/jnen/nlx104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
|
62
|
Eisen A, Braak H, Del Tredici K, Lemon R, Ludolph AC, Kiernan MC. Cortical influences drive amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:917-924. [PMID: 28710326 DOI: 10.1136/jnnp-2017-315573] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 11/04/2022]
Abstract
The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Roger Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | | | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|