51
|
Sertznig P, Seifert M, Tilgen W, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases. Am J Clin Dermatol 2008; 9:15-31. [PMID: 18092840 DOI: 10.2165/00128071-200809010-00002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate lipid, glucose, and amino acid metabolism. More recently, PPARs and corresponding ligands have been shown in skin and other organs to regulate important cellular functions, including cell proliferation and differentiation, as well as inflammatory responses. These new functions identify PPARs and corresponding ligands as potential targets for the treatment of various skin diseases and other disorders. It has been shown that in inflammatory skin disorders, including hyperproliferative psoriatic epidermis and the skin of patients with atopic dermatitis, the expression of both PPARalpha and PPARgamma is decreased. This observation suggests the possibility that PPARalpha and PPARgamma activators, or compounds that positively regulate PPAR gene expression, may represent novel NSAIDs for the topical or systemic treatment of common inflammatory skin diseases such as atopic dermatitis, psoriasis, and allergic contact dermatitis. Moreover, recent findings indicate that PPAR-signaling pathways may act as a promising therapeutic target for the treatment of hyperproliferative skin diseases including skin malignancies. Studies in non-diabetic patients suggest that oral thiazolidinediones, which are synthetic ligands of PPARgamma, not only exert an antidiabetic effect but also may be beneficial for moderate chronic plaque psoriasis by suppressing proliferation and inducing differentiation of keratinocytes; furthermore, they may even induce cell growth arrest, apoptosis, and terminal differentiation in various human malignant tumors. It has been reported that PPARalpha immunoreactivity is reduced in human keratinocytes of squamous cell carcinoma (SCC) and actinic keratosis (AK), while PPARdelta appears to be upregulated. Additionally, the microvessel density is significantly higher in AK and SCC that express high levels of PPARdelta. PPARdelta has been demonstrated to have an anti-apoptotic role and to maintain survival and differentiation of epithelial cells, whereas PPARalpha and PPARgamma activators induce differentiation and inhibit proliferation and regulate apoptosis. In melanoma, the growth inhibitory effect of PPARgamma activation is independent of apoptosis and seems to occur primarily through induction of cell cycle arrest in the G1 phase of the cell cycle or induction of re-differentiation. PPARalpha activation causes inhibition of migration of melanoma cells and anchorage-independent growth, whereas primary tumor growth remains unaltered. In clinical trials of gemfibrozil, a PPARalpha ligand, significantly fewer patients treated with this lipid-lowering drug were diagnosed with melanoma as compared to those in the control group. In conclusion, an increasing body of evidence indicates that PPAR signaling pathways may represent interesting therapeutic targets for a broad variety of skin disorders, including inflammatory skin diseases such as psoriasis and atopic dermatitis, and skin malignancies.
Collapse
Affiliation(s)
- Pit Sertznig
- Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
52
|
Su Y, Vanderlaag K, Ireland C, Ortiz J, Grage H, Safe S, Frankel AE. 1,1-Bis(3'-indolyl)-1-(p-biphenyl)methane inhibits basal-like breast cancer growth in athymic nude mice. Breast Cancer Res 2008; 9:R56. [PMID: 17764562 PMCID: PMC2206732 DOI: 10.1186/bcr1761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/18/2007] [Accepted: 08/31/2007] [Indexed: 01/08/2023] Open
Abstract
Introduction 1,1-Bis (3'-indolyl)-1-(p-biphenyl) methane (CDIM9) has been identified as a new peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits both receptor dependent and independent antitumor activities. CDIM9 has not previously been studied with respect to its effects against basal-like breast cancer. Our goal in the present study was to investigate the anti-basal-like breast tumor activity of CDIM9 in vitro and in vivo. Methods The effects of CDIM9 on cell protein and DNA syntheses were determined in basal-like breast cancer MDA-MB231 and BT549 cells in vitro. Maximum tolerated dose and dose-limited toxicity were determined in BalB/c mice, and antitumor growth activities were assessed in MDA-MB231 basal-like breast tumor xenografts in athymic nude mice. Results CDIM9 exhibited selective cell cytotoxicity and anti-proliferation effects on basal-like breast cancer lines. In MDA-MB231 cell, CDIM9 induced caveolin-1 and p27 expression, which was significantly downregulated by co-treatment with the PPAR-γ antagonist GW9662. Nonsteroidal anti-inflammatory drug-activated gene-1 and activating transcription factor-3 were upregulated by CDIM9 through a PPAR-γ independent pathway. CDIM9 (40 mg/kg daily, intraperitoneally, for 35 days) inhibited the growth of subcutaneous MDA-MB231 tumor xenografts by 87%, and produced a corresponding decrease in proliferation index. Nearly half of the treated mice (46%) had complete durable remissions, confirmed by histology. The growth of an established tumor was inhibited by CDIM9 treatment (64 mg/kg daily, intraperitoneally, for 10 days), with a mean tumor growth inhibition of 67% as compared with controls. CDIM9 induced increases in tumor caveolin-1 and p27 in vivo, which may contribute to its antitumor activity in basal-like breast cancer. Conclusion CDIM9 showed potent antiproliferative effects on basal-like breast cancer cell in tissue culture and dramatic growth inhibition in animal models at safe doses. These findings justify further development of this drug for treatment of basal-like breast cancer.
Collapse
Affiliation(s)
- Yunpeng Su
- Scott & White Cancer Research Institute, South Airport Road, Temple, Texas 76502, USA
| | - Kathryn Vanderlaag
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466
| | - Courtney Ireland
- Scott & White Cancer Research Institute, South Airport Road, Temple, Texas 76502, USA
| | - Janelle Ortiz
- Scott & White Cancer Research Institute, South Airport Road, Temple, Texas 76502, USA
| | - Henry Grage
- Plantacor, Inc., 526 University Dr. East Suite 101A, College Station, Texas 77840 USA
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466
| | - Arthur E Frankel
- Scott & White Cancer Research Institute, South Airport Road, Temple, Texas 76502, USA
| |
Collapse
|
53
|
PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A 2008; 105:985-90. [PMID: 18199835 DOI: 10.1073/pnas.0711281105] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis and inflammation are central processes through which the tumor microenvironment influences tumor growth. We have demonstrated recently that peroxisome proliferator-activated receptor (PPAR)alpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of thrombospondin (TSP)-1 and prevents tumor growth. Hence, we speculated that pharmacologic activation of PPARalpha would promote tumor growth. Surprisingly, the PPARalpha agonist fenofibrate potently suppressed primary tumor growth in mice. This effect was not mediated by cancer-cell-autonomous antiproliferative mechanisms but by the inhibition of angiogenesis and inflammation in the host tissue. Although PPARalpha-deficient tumors were still susceptible to fenofibrate, absence of PPARalpha in the host animal abrogated the potent antitumor effect of fenofibrate. In addition, fenofibrate suppressed endothelial cell proliferation and VEGF production, increased TSP-1 and endostatin, and inhibited corneal neovascularization. Thus, both genetic abrogation of PPARalpha as well as its activation by ligands cause tumor suppression via overlapping antiangiogenic pathways. These findings reveal the potential utility of the well tolerated PPARalpha agonists beyond their use as lipid-lowering drugs in anticancer therapy. Our results provide a mechanistic rationale for evaluating the clinical benefits of PPARalpha agonists in cancer treatment, alone and in combination with other therapies.
Collapse
|
54
|
Pozzi A, Capdevila JH. PPARalpha Ligands as Antitumorigenic and Antiangiogenic Agents. PPAR Res 2008; 2008:906542. [PMID: 18725983 PMCID: PMC2517125 DOI: 10.1155/2008/906542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/01/2008] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor family of ligand-activated transcription factors. This subfamily is composed of three members-PPARalpha, PPARdelta, and PPARgamma-that differ in their cell and tissue distribution as well as in their target genes. PPARalpha is abundantly expressed in liver, brown adipose tissue, kidney, intestine, heart, and skeletal muscle; and its ligands have been used to treat diseases such as obesity and diabetes. The recent finding that members of the PPAR family, including the PPARalpha, are expressed by tumor and endothelial cells together with the observation that PPAR ligands regulate cell growth, survival, migration, and invasion, suggested that PPARs also play a role in cancer. In this review, we focus on the contribution of PPARalpha to tumor and endothelial cell functions and provide compelling evidence that PPARalpha can be viewed as a new class of ligand activated tumor "suppressor" gene with antiangiogenic and antitumorigenic activities. Given that PPAR ligands are currently used in medicine as hypolipidemic drugs with excellent tolerance and limited toxicity, PPARalpha activation might offer a novel and potentially low-toxic approach for the treatment of tumor-associated angiogenesis and cancer.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, S-3223 Medical Center North, Vanderbilt University, Nashville, TN 37232, USA
| | - Jorge H. Capdevila
- Department of Medicine, Division of Nephrology and Hypertension, S-3223 Medical Center North, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
55
|
Sertznig P, Seifert M, Tilgen W, Reichrath J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol 2007; 212:1-12. [PMID: 17443682 DOI: 10.1002/jcp.20998] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcriptional regulators that regulate lipid, glucose, and amino acid metabolism. In recent studies it also has been shown that these receptors are implicated in tumor progression, cellular differentiation, and apoptosis and modulation of their function is therefore considered as a potential target for cancer prevention and treatment. PPAR ligands and other agents influencing PPAR signalling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in a variety of human cancers and could represent a potential novel strategy to inhibit tumor carcinogenesis and progression. This review summarizes the currently available data on the roles of PPARs in relation to the processes of cell differentiation and carcinogenesis as well as their role as promising future therapeutic targets.
Collapse
Affiliation(s)
- P Sertznig
- Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
56
|
Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, Mei S, Falck JR, Capdevila JH. Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. J Biol Chem 2007; 282:17685-95. [PMID: 17405874 DOI: 10.1074/jbc.m701429200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisomal proliferator-activated nuclear receptor-alpha (PPARalpha), the target for most hypolipidemic drugs in current clinical use, regulates the transcription of genes involved in lipid metabolism and transport, and energy homeostasis. More recently, PPARalpha and its ligands have been implicated in inflammatory responses and the regulation of cell proliferation. PPARalpha also regulates the expression of Cyp4a fatty acid omega-hydroxylases and Cyp2c arachidonic acid epoxygenase genes. To study the role of the PPARalpha receptor and of its Cyp2c epoxygenase gene target in tumorigenesis, we treated mice injected with tumor cells with Wy-14,643, a PPARalpha-selective ligand. Compared with untreated controls, Wy-14643-treated animals showed marked reductions in tumor growth and vascularization, which were accompanied by decreases in the plasma levels of pro-angiogenic epoxygenase metabolites (EETs), hepatic EET biosynthesis, and Cyp2c epoxygenase expression. All these Wy-14643-induced responses were absent in PPARalpha(-/-) mice and are thus PPARalpha-mediated. Primary cultures of mouse lung endothelial cells treated with Wy-14643 showed reductions in cell proliferation and in the formation of capillary-like structures. These effects were absent in cells obtained from PPRAalpha(-/-) mice and reversed by the addition of EETs. These results identify important anti-angiogenic and anti-tumorigenic roles for PPARalpha, characterize the contribution of its Cyp2c epoxygenases gene target to these responses, and suggest potential anti-cancer roles for this nuclear receptor and its ligands.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Freeman SR, Drake AL, Heilig LF, Graber M, McNealy K, Schilling LM, Dellavalle RP. Statins, fibrates, and melanoma risk: a systematic review and meta-analysis. J Natl Cancer Inst 2006; 98:1538-46. [PMID: 17077356 DOI: 10.1093/jnci/djj412] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Large randomized, controlled clinical trials of lovastatin and gemfibrozil for heart disease prevention have reported statistically significantly lower melanoma incidences in persons receiving these medications. Results of in vitro animal model and human case-control studies also suggest that statins and fibrates may reduce the risk of melanoma. METHODS We performed a systematic review of trials that randomly assigned participants to receive statins or fibrates versus an alternative therapy for a minimum of 6 months. Trials were identified by searching five electronic databases and the reference lists of eligible publications. Unpublished data were solicited from trial investigators and pharmaceutical companies. A meta-analysis was performed using a fixed-effects model, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate pooled treatment effects. All statistical tests were two-sided. RESULTS We obtained data on incident melanomas from 20 of 36 qualifying randomized controlled trials (12 statin trials and eight fibrate trials), with a total of 70,820 participants. A total of 127 melanomas occurred among the 39,426 participants in the statin trials (59 among the 19,872 statin group participants and 68 among the 19,554 control group participants). A total of 27 melanomas occurred among the 31,394 participants enrolled in the fibrate trials (seven among the 12,324 fibrate group participants and 20 among the 19,070 control group participants). Overall, incidence of melanoma was not statistically significantly associated with the use of either statins (OR = 0.87, 95% CI = 0.61 to 1.23) or fibrates (OR = 0.45, 95% CI = 0.20 to 1.01). In a subgroup analysis by drug, only lovastatin use (in one trial) was statistically significantly associated with lower incidence of melanoma (OR = 0.52, 95% CI = 0.27 to 0.99). CONCLUSIONS These findings do not validate the possibility that statins or fibrates prevent melanoma.
Collapse
Affiliation(s)
- Scott R Freeman
- Department of Dermatology, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Francis SO, Mahlberg MJ, Johnson KR, Ming ME, Dellavalle RP. Melanoma chemoprevention. J Am Acad Dermatol 2006; 55:849-61. [PMID: 17052492 DOI: 10.1016/j.jaad.2006.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite efforts to promote sun protection behaviors, melanoma incidence continues to increase. The prognosis of advanced melanoma remains extremely poor in spite of treatment advances, emphasizing the importance of exploring additional preventive measures. OBJECTIVE We sought to summarize the results of published research on candidate chemoprevention agents for melanoma. METHODS We conducted a narrative review of the literature. RESULTS Investigation into a possible role in melanoma chemoprevention continues for multiple agents, including sunscreen, lipid-lowering medications, nonsteroidal anti-inflammatory drugs, dietary nutrients, immunomodulators, and other drugs, including retinoids, difluoromethylornithine, and T4 endonuclease V. LIMITATIONS Systematic review of the literature was not performed. CONCLUSION Because no agent yet emerges as a clear choice for effective melanoma chemoprevention, sun avoidance and sun protection remain the mainstay of melanoma prevention for persons at high risk.
Collapse
Affiliation(s)
- Shayla O Francis
- Department of Dermatology, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
59
|
Grabacka M, Plonka PM, Urbanska K, Reiss K. Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin Cancer Res 2006; 12:3028-36. [PMID: 16707598 DOI: 10.1158/1078-0432.ccr-05-2556] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Peroxisome proliferator-activated receptors (PPAR) regulate lipid and glucose metabolism but their anticancer properties have been recently studied as well. We previously reported the antimetastatic activity of the PPARalpha ligand, fenofibrate, against melanoma tumors in vivo. Here we investigated possible molecular mechanisms of fenofibrate anti metastatic action. EXPERIMENTAL DESIGN Monolayer cultures of mouse (B16F10) and human (SkMell88) melanoma cell lines, soft agar assay, and cell migration assay were used in this study. In addition, we analyzed PPARalpha expression and its transcriptional activity in response to fenotibrate by using Western blots and liciferase-based reporter system. RESULTS Fenofibrate inhibited migration of B16F10 and SkMel188 cells in Transwell chambers and colony formation in soft agar. These effects were reversed by PPAR inhibitor, GW9662. Western blot analysis revealed time-dependent down-regulation of Akt and extracellular signal-regulated kinase l/2 phosphorylation in fenofibrate-treated cells. A B16F10 cell line stably expressing constitutively active Akt mutant was resistant to fenofibrate. In contrast, Akt gene silencing with siRNA mimicked the fenofibrate action and reduced the migratory ability of B16F1O cells. In addition, fenofibrate strongly sensitized BI6FIO cells to the proapoptotic drug staurosporine, further supporting the possibility that fenofibrate-induced down-regulation of Akt function contributes to fenofibrate-mediated inhibition of metastatic potential in this experimental model. CONCLUSIONS Our results show that the PPAR-dependent antimetastatic activity of fenofibrate involves down-regulation of Akt phosphorylation and suggest that supplementation with this drug may improve the effectiveness of melanoma chemotherapy.
Collapse
Affiliation(s)
- Maja Grabacka
- Center for Neurovirology, Department of Neuroscience, School of Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
60
|
Dellavalle RP, Drake A, Graber M, Heilig LF, Hester EJ, Johnson KR, McNealy K, Schilling L. Statins and fibrates for preventing melanoma. Cochrane Database Syst Rev 2005; 2005:CD003697. [PMID: 16235336 PMCID: PMC11102950 DOI: 10.1002/14651858.cd003697.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Effective treatment for advanced melanoma is lacking. While no drug therapy currently exists for prevention of melanoma, in vitro, case-control, and animal model evidence suggest that lipid-lowering medications, commonly taken for high cholesterol, might prevent melanoma. OBJECTIVES To assess the effects of statin or fibrate lipid-lowering medications on melanoma outcomes. SEARCH STRATEGY We searched the Cochrane Skin Group Specialised Register (February 2003), CENTRAL (The Cochrane Library Issue 1, 2005), MEDLINE (to March 2003), EMBASE (to September 2003), CANCERLIT (to October 2002), Web of Science (to May 2003), and reference lists of articles. We approached study investigators and pharmaceutical companies for additional information (published or unpublished studies). SELECTION CRITERIA Trials involving random allocation of study participants, where experimental groups used statins or fibrates and participants were enrolled for at least four years of therapy. DATA COLLECTION AND ANALYSIS Three authors screened 109 abstracts of articles with titles of possible relevance. We then thoroughly examined the full text of 72 potentially relevant articles. We requested unpublished melanoma outcomes data from the corresponding author of each qualifying trial. MAIN RESULTS We identified 16 qualifying randomised controlled trials (RCTs) (seven statin, nine fibrate). Thirteen of these trials (involving 62,197 participants) provided data on incident melanomas (six statin, seven fibrate). A total of 66 melanomas were reported in groups receiving the experimental drug and 86 in groups receiving placebo or other control therapies. For statin trials this translated to an odds ratio of 0.90 (95% confidence interval 0.56 to 1.44) and for fibrate trials an odds ratio of 0.58 (95% confidence interval 0.19 to 1.82). Subgroup analyses failed to show statistically significant differences in melanoma outcomes by gender, melanoma occurrence after two years of participation in trial, stage or histology, or trial funding. Subgroup analysis by type of fibrate or statin also failed to show statistically significant differences, except for the statin subgroup analysis which showed reduced melanoma incidence for lovastatin, based on one trial only (odds ratio 0.52, 95% confidence interval 0.27 to 0.99). AUTHORS' CONCLUSIONS The melanoma outcomes data collected in this review of RCTs of statins and fibrates does not exclude the possibility that these drugs prevent melanoma. There was a 10% and 42% reduction for participants on statins and fibrates, respectively, however these results were not statistically significant. Until further evidence is established, limiting exposure to ultraviolet radiation remains the most effective way to reduce the risk of melanoma.
Collapse
Affiliation(s)
- R P Dellavalle
- Denver Veterans Affairs Medical Center, Dermatology, 1055 Clermont Street, Mail Stop 165, Denver, Colorado 80220, USA.
| | | | | | | | | | | | | | | |
Collapse
|