51
|
Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions. J Mol Neurosci 2013; 52:216-24. [PMID: 24091788 DOI: 10.1007/s12031-013-0125-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Glaucoma is characterized by death of retinal ganglion cells (RGC), but its cause is still unknown. We used an autoimmune glaucoma model to study (1) apoptosis, (2) antibody occurrence, and (3) gliosis by immunohistochemistry. Rats were immunized with optic nerve homogenate (ONA). At 8 days no significant apoptosis or difference in RGCs was noted, but ONA retinas had a significantly higher GFAP(+) area (p = 0.02). At 14 days, significantly more TUNEL(+) (p = 0.0002) and caspase 3(+) (p = 0.004) were detected in ONA animals, but no difference in RGC density. Distinct IgM and IgG deposits (p = 0.04) were observed in ONA retinas. At 22 days, a significantly higher number of TUNEL(+) cells (p = 0.0002), caspase 3(+) cells (p = 0.0007), and concurrent a lower RGC density (p = 0.04) was noted in ONA animals. IgM and IgG deposits were observed in the ganglion cell layer of ONA retinas. The largest percentage of GFAP(+) area in the ONA group was observed at 22 days (p = 0.02). This data suggest that immunization with ocular antigens leads to apoptotic retinal ganglion cell death. Based on the co-localization of antibody deposits and apoptotic cells, we conclude that antibodies are engaged in eliciting RGC apoptosis in this animal model.
Collapse
|
52
|
Pumphrey SA, Pizzirani S, Pirie CG, Anwer MS, Logvinenko T. Western blot patterns of serum autoantibodies against optic nerve antigens in dogs with goniodysgenesis-related glaucoma. Am J Vet Res 2013; 74:621-8. [PMID: 23531071 DOI: 10.2460/ajvr.74.4.621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate whether differences existed between clinically normal dogs and dogs with goniodysgenesis-related glaucoma (GDRG) in serum autoantibodies against optic nerve antigens. ANIMALS 16 dogs with GDRG, 17 healthy dogs with unremarkable pectinate ligament and iridocorneal angle morphology, and 13 euthanized dogs with no major ocular abnormalities or underlying diseases. PROCEDURES Western blotting was performed with optic nerve extracts from the euthanized dogs as an antigen source and serum from clinically normal dogs and dogs with GDRG as a primary antibody (autoantibody) source. Blots were evaluated for presence and density of bands. RESULTS Multiple bands were identified on western blots from all dogs with GDRG and all clinically normal dogs, with a high degree of variability among individual dogs. Dogs with GDRG were significantly more likely than healthy dogs to have bands present at 38, 40, and 68 kDa. Dogs with GDRG had significant increases in autoreactivity at 40 and 53 kDa and a significant decrease in autoreactivity at 48 kDa. CONCLUSIONS AND CLINICAL RELEVANCE Significant differences in serum autoantibodies against optic nerve antigens were found in dogs with versus without GDRG. Although it remains unclear whether these differences were part of the pathogenesis of disease or were sequelae to glaucomatous changes, these findings provide support for the hypothesis that immune-mediated mechanisms play a role in the development or progression of GDRG. However, the high degree of variability among individual dogs and the considerable overlap between groups suggest that the clinical usefulness of this technique for distinguishing dogs with GDRG from clinically normal dogs is likely limited.
Collapse
Affiliation(s)
- Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | | | | | | | |
Collapse
|
53
|
Kokotas H, Kroupis C, Chiras D, Grigoriadou M, Lamnissou K, Petersen MB, Kitsos G. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med 2013; 50:2107-19. [PMID: 22745021 DOI: 10.1515/cclm-2012-0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/20/2012] [Indexed: 11/15/2022]
Abstract
Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘ open angle ’ and ‘ closed angle ’ glaucoma.Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma(POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.
Collapse
Affiliation(s)
- Haris Kokotas
- Department of Genetics, Institute of Child Health , Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
54
|
Status and perspectives of neuroprotective therapies in glaucoma: the European Glaucoma Society White Paper. Cell Tissue Res 2013; 353:347-54. [PMID: 23712457 DOI: 10.1007/s00441-013-1637-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma, a chronic progressive neuropathy and the most frequent cause of irreversible blindness worldwide, is commonly treated by medication or surgery aimed at lowering intraocular pressure. In view of the limited therapeutic options, the European Glaucoma Society (EGS) sponsored two Think Tank Meetings with the goal of assessing the current status and the overall perspectives for neuroprotective treatment strategies in glaucoma. The results of the meetings are summarized in this EGS White Paper.
Collapse
|
55
|
Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199-216. [PMID: 23541978 DOI: 10.1016/j.preteyeres.2013.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutewnberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Luo D, Liu K, Zhu B, Xu X. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach. Curr Eye Res 2013; 38:767-73. [PMID: 23484957 DOI: 10.3109/02713683.2013.770039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In primary open angle glaucoma (POAG) patients, elevated intraocular pressure usually leads to extracellular matrix remodeling and astrocytes activation. Thus, lamina cribrosa (LC) cells may play an important role in POAG progression. The objective of this study was to comprehensively explore gene expression profiles in LC cells of POAG patients. MATERIALS AND METHODS Using the GSE13534 microarray datasets downloaded from Gene Expression Omnibus database, the differentially expressed genes (DEGs) between LC cells from POAG patients and controls were firstly screened based on the classical t-test and false discovery rate <0.05 as a significant threshold. Subsequently, these DEGs were grouped into gene sets using a graph-clustering approach. The underlying molecular mechanisms were investigated by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. RESULTS A total of 57 DEGs were identified and 478 co-expression relationships were constructed among these DEGs. Among them, cytochrome p450 family 1 subfamily B (CYP1B1), brain-derived neurotrophic factor (BDNF) and myelin basic protein (MBP) showed high-degree relationships and they could interact with several genes. CYP1B1 is an important genetic gene involved in POAG and BDNF is an effective growth neurotrophic factor to weak POAG damage. MBP, versican (VCAN), integrin, alpha 4 (ITGA4) and N-cadherin (CDH2) may be involved in extracellular matrix remodeling in LC cells. FZD2 and FZD7 were enriched in basal cell carcinoma pathway. CONCLUSIONS The results demonstrate that the genes above may be associated with the pathogenesis of POAG.
Collapse
Affiliation(s)
- Dawei Luo
- Division of Ophthalmology, The First Affiliated People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
57
|
Gramlich OW, Beck S, von Thun und Hohenstein-Blaul N, Boehm N, Ziegler A, Vetter JM, Pfeiffer N, Grus FH. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013; 8:e57557. [PMID: 23451242 PMCID: PMC3581473 DOI: 10.1371/journal.pone.0057557] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/23/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND There is accumulating evidence that autoimmune components, such as autoantibodies and autoantibody depositions, play a role in the pathogenesis of neurodegenerative diseases like Alzheimeŕs disease or Multiple Sclerosis. Due to alterations of autoantibody patterns in sera and aqueous humor, an autoimmune component is also assumed in the pathogenesis of glaucoma, a common reason for irreversible blindness worldwide. So far there has been no convincing evidence that autoantibodies are accumulated in the retina of glaucoma patients and that the local immune homeostasis might be affected. METHODS AND RESULTS Six human glaucomatous donor eyes and nine samples from donors with no recorded ocular disease were included. Antibody microarrays were used to examine the patterns of pro-inflammatory proteins and complement proteins. Analysis of TNF-α and interleukin levels revealed a slight up-regulation exclusively in the glaucomatous group, while complement protein levels were not altered. IgG autoantibody accumulations and/or cellular components were determined by immunohistology (n = 4 per group). A significantly reduced number of retinal ganglion cells was found in the glaucomatous group (healthy: 104±7 nuclei/mm, glaucoma: 67±9 nuclei/mm; p = 0.0007). Cell loss was accompanied by strong retinal IgG autoantibody accumulations, which were at least twice as high as in healthy subjects (healthy: 5.0±0.5 IgG deposits/100 cells, glaucoma: 9.4±1.9 IgG deposits/100 cells; p = 0.004). CD27(+) cells and CD27(+)/IgG(+) plasma cells were observed in all glaucomatous subjects, but not in controls. CONCLUSION This work provides serious evidence for the occurrence of IgG antibody deposition and plasma cells in human glaucomatous retina. Moreover, the results suggest that these IgG deposits occurred in a pro-inflammatory environment which seems to be maintained locally by immune-competent cells like microglia. Thereby, glaucoma features an immunological involvement comparable to other neurodegenerative diseases, but also shows a multifactorial pathomechanism, which diverges and might be linked to the specific nature of both eye and retina.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | | | - Nils Boehm
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Anika Ziegler
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Jan M. Vetter
- Cornea Bank of Rhineland-Palatine, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Franz H. Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| |
Collapse
|
58
|
Tezel G. A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration. Prog Retin Eye Res 2013; 35:18-43. [PMID: 23396249 DOI: 10.1016/j.preteyeres.2013.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
59
|
Gramlich OW, Bell K, von Thun Und Hohenstein-Blaul N, Wilding C, Beck S, Pfeiffer N, Grus FH. Autoimmune biomarkers in glaucoma patients. Curr Opin Pharmacol 2013; 13:90-7. [DOI: 10.1016/j.coph.2012.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/16/2023]
|
60
|
Tezel G. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr Opin Pharmacol 2012; 13:23-31. [PMID: 23084793 DOI: 10.1016/j.coph.2012.09.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023]
Abstract
Although the immune system functions to preserve and restore tissue homeostasis, accumulating risk factors, prolonged glial activation, and sustained release of pro-inflammatory mediators in glaucoma may lead to a failure in the regulation of stress-induced immune response, and innate immune cells, autoreactive T cells, autoantibodies, and excess complement attack may exhibit potent stimuli that harm retinal ganglion cell somas, axons, and synapses. Identification of the cellular and molecular components of immune response pathways can provide immunomodulatory treatment strategies to attenuate neuroinflammation, protect neural tissue from collateral injury, and enhance endogenous recovery processes. This review highlights the current knowledge of molecular mechanisms regulating neuroinflammation in glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
61
|
Vu THK, Jager MJ, Chen DF. The Immunology of Glaucoma. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:303-11. [PMID: 26107602 DOI: 10.1097/apo.0b013e31826f57a3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The presence of specific antibodies and T cells that are specific in patients with glaucoma supports the idea that the immune system may play an important role in the initiation and/or sustainment of glaucomatous optic neuropathy, at least in some patients. At present, our understanding regarding immunological mechanisms associated with glaucomatous optic neuropathy is far from satisfactory. In this review, we examined evidence suggesting involvement of autoimmune responses in the pathogenesis of glaucoma. These include detection of autoantibodies and T cells and expression of cytokines and stress proteins in patients with glaucoma. Although immune responses are thought to be detrimental, some responses may exert a protective effect against neurodegenerative damage. Likely, the balance between positive and negative regulators determines the survival or demise of cells. It is vital that research continues to elucidate the roles of the immune system in glaucomatous neurodegeneration and the possibility of alternative modalities of treatment. These studies may also provide valuable molecular biomarkers for the diagnosis and identification of a specific cohort of patients with glaucoma, that is, those with normal-tension glaucoma.
Collapse
Affiliation(s)
- T H Khanh Vu
- From the *Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, MA; †Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; and ‡Veteran Affairs Boston Healthcare System, Boston, MA
| | | | | |
Collapse
|
62
|
Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N, Grus FH. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 2012; 7:e40616. [PMID: 22848388 PMCID: PMC3406064 DOI: 10.1371/journal.pone.0040616] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/11/2012] [Indexed: 12/25/2022] Open
Abstract
Background Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats. Methodology/Principal Findings Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals. Conclusions/Significance Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.
Collapse
Affiliation(s)
- Stephanie C Joachim
- Experimental Eye Research Institute, Ruhr University Eye Hospital, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun 2012; 26:96-102. [PMID: 21843631 DOI: 10.1016/j.bbi.2011.07.241] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/24/2011] [Accepted: 07/30/2011] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Autoantibody based immune processes are assumed to be involved in its pathogenesis. However, it is still unclear to what extent autoantibody patterns found in the eye (aqueous humor) are congruent to systemic autoantibodies (blood). Consistency would underline the specificity of known serum antibody markers for glaucoma. In this study we used antigen microarrays to analyze autoantibody reactivities in sera and corresponding aqueous humor samples of primary open-angle glaucoma patients (N=37) and non-glaucomatous controls (N=31). Compared to control subjects several divergent immunoreactivities were identified for the glaucoma group in both body fluids. Interestingly, 20% of the tested antigens revealed increased immunoreactivities (e.g., against HSP27, MBP, and α-1-antitrypsin) and 7.5% decreased immunoreactivities (e.g., against GFAP and β-L-crystallin), thus demonstrating a significant alteration of the autoantibody profiles in glaucoma patients. Using an artificial neural network in combination with a unique serum autoantibody pattern on prospective sera we were able to detect glaucoma with a specificity and sensitivity of approximately 93%. The intraindividual comparison revealed a strong correlation of detected immunoreactivities in sera and comparative aqueous humor samples in both study groups. These results emphasize the specificity of immunoreactions found in blood samples of glaucoma patients. Furthermore they indicate the necessity of analyzing not only up-regulated but also down-regulated antibody reactivities, which might be likewise relevant for the understanding of other diseases.
Collapse
|
64
|
Joachim SC, Wax MB, Seidel P, Pfeiffer N, Grus FH. Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization in a rat model of experimental autoimmune glaucoma. Curr Eye Res 2011; 35:900-8. [PMID: 20858111 DOI: 10.3109/02713683.2010.495829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Antibodies against heat shock proteins have been identified in sera of human glaucoma patients in several studies and immunization with heat shock protein 60 (HSP 60) causes retinal ganglion cell (RGC) loss in an animal model of experimental autoimmune glaucoma. The aim of this study was to observe the time course of increased anti-retina antibody appearance in the serum and characterize the identification of prominent autoantibodies that accompany HSP 60 immunization in a rat model of experimental autoimmune glaucoma. METHODS Eight weeks after immunization with HSP 60 retinal flatmounts were prepared and RGCs were counted in eight predefined areas and compared to controls. Serum collected before, as well as four and eight weeks after, immunization was used to detect antibody patterns against bovine retinal antigens using Western blotting techniques. These patterns were analyzed by multivariate statistical methods. Autoantibodies that were prominently increased were further identified through mass spectrometry. Intraocular pressure was measured throughout the study. RESULTS After eight weeks, animals immunized with HSP 60 showed significant RGC loss of retinal flatmounts (P = 0.02), which was intraocular pressure independent. Early changes in antibody profiles, many of them significant upregulations, were detected. Antigens with significantly upregulated antibody reactivity after four weeks were identified as histone H2B type 1, S-arrestin, glial fibrillary acidic protein, vimentin, and heat shock protein 60. These upregulated autoantibodies returned to normal levels four weeks following their initial upregulation. Antibodies against retinaldehyde binding protein 1 on the other hand became upregulated after eight weeks. CONCLUSION This is the first study to identify the appearance and disappearance of retinal autoantibodies in the serum of rats at several time-points following their initial upregulation in response to HSP 60 immunization in a model of experimental autoimmune glaucoma.
Collapse
Affiliation(s)
- S C Joachim
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, Mainz, Germany
| | | | | | | | | |
Collapse
|
65
|
|
66
|
Abstract
PURPOSE To compare visual field defects obtained with both multifocal visual evoked potential (mfVEP) and Humphrey visual field (HVF) techniques to topographic optic disc measurements in patients with normal tension glaucoma (NTG) and high tension glaucoma (HTG). METHODS We studied 32 patients with NTG and 32 with HTG. All patients had reliable 24-2 HVFs with a mean deviation of -10 dB or better, a glaucomatous optic disc and an abnormal HVF in at least 1 eye. Multifocal VEPs were obtained from each eye and probability plots created. The mfVEP and HVF probability plots were divided into a central 10-degree radius and an outer arcuate subfield in both superior and inferior hemifields. Cluster analyses and counts of abnormal points were performed in each subfield. Optic disc images were obtained with the Heidelberg Retina Tomograph III. Eleven stereometric parameters were calculated. Moorfields regression analysis and the glaucoma probability score were performed. RESULTS There were no significant differences in mean deviation and pattern standard deviation values between NTG and HTG eyes. However, NTG eyes had a higher percentage of abnormal test points and clusters of abnormal points in the central subfields on both mfVEP and HVF than HTG eyes. For Heidelberg Retina Tomograph III, there were no significant differences in the 11 stereometric parameters or in the Moorfields regression analysis and glaucoma probability score analyses of the optic disc images. CONCLUSIONS The visual field data suggest more localized and central defects for NTG than HTG.
Collapse
|
67
|
Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res 2010; 93:178-86. [PMID: 20709058 DOI: 10.1016/j.exer.2010.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/26/2022]
Abstract
Neurodegenerative insults and glial activation during glaucomatous neurodegeneration initiate an immune response to restore tissue homeostasis and facilitate tissue cleaning and healing. However, increasing risk factors over a chronic and cumulative period may lead to a failure in the regulation of innate and adaptive immune response pathways and represent a route for conversion of the beneficial immunity into a neuroinflammatory degenerative process contributing to disease progression. Oxidative stress developing through the pathogenic cellular processes of glaucoma, along with the aging-related component of oxidative stress, likely plays a critical role in shifting the physiological equilibrium. This review aims to provide a perspective on the complex interplay of cellular events during glaucomatous neurodegeneration by proposing a unifying scheme that integrates oxidative stress-related risk factors with the altered regulation of immune response in glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
68
|
Bibliography. Current world literature. Glaucoma. Curr Opin Ophthalmol 2009; 20:137-45. [PMID: 19240547 DOI: 10.1097/icu.0b013e32832979bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|