51
|
Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS JOURNAL 2017; 19:1317-1331. [PMID: 28664465 DOI: 10.1208/s12248-017-0110-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA.
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, California, 95211, USA
| |
Collapse
|
52
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
53
|
Abdullahi W, Davis TP, Ronaldson PT. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS JOURNAL 2017; 19:931-939. [PMID: 28447295 DOI: 10.1208/s12248-017-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA.
| |
Collapse
|
54
|
Yamamoto K, Sato K, Yukita M, Yasuda M, Omodaka K, Ryu M, Fujita K, Nishiguchi KM, Machida S, Nakazawa T. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection. J Neurochem 2017; 140:495-508. [PMID: 27859240 PMCID: PMC5299490 DOI: 10.1111/jnc.13902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022]
Abstract
Latanoprost was first developed for use in glaucoma therapy as an ocular hypotensive agent targeting the prostaglandin F2α (FP) receptor. Subsequently, latanoprost showed a neuroprotective effect, an additional pharmacological action. However, although it is well-known that latanoprost exerts an ocular hypotensive effect via the FP receptor, it is not known whether this is also true of its neuroprotective effect. Klotho was firstly identified as the gene linked to the suppression of aging phenotype: the defect of klotho gene in mice results aging phenotype such as hypokinesis, arteriosclerosis, and short lifespan. After that, the function of klotho was also reported to maintain calcium homeostasis and to exert a neuroprotective effect in various models of neurodegenerative disease. However, the function of klotho in eyes including retina is still poorly understood. Here, we show that klotho is a key factor underlying the neuroprotective effect of latanoprost during post-axotomy retinal ganglion cell (RGC) degeneration. Importantly, a quantitative RT-PCR gene expression analysis of klotho in sorted rat retinal cells revealed that the highest expression level of klotho in the retina was in the RGCs. Latanoprost acid, the biologically active form of latanoprost, inhibits post-traumatic calpain activation and concomitantly facilitates the expression and shedding of klotho in axotomized RGCs. This expression profile is a good match with the localization, not of the FP receptor, but of organic anion transporting polypeptide 2B1, known as a prostaglandin transporter, in the ocular tissue. Furthermore, an organic anion transporting polypeptide 2B1 inhibitor suppressed latanoprost acid-mediated klotho shedding ex vivo, whereas an FP receptor antagonist did not. The klotho fragments shed from the RGCs reduced the intracellular level of reactive oxygen species, and a specific klotho inhibitor accelerated and increased RGC death after axotomy. We conclude that the shed klotho fragments might contribute to the attenuation of axonal injury-induced calpain activation and oxidative stress, thereby protecting RGCs from post-traumatic neuronal degeneration.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kota Sato
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
| | - Masayoshi Yukita
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Masayuki Yasuda
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kazuko Omodaka
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
| | - Morin Ryu
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kosuke Fujita
- Department of Retinal Disease ControlTohoku University Graduate School of MedicineMiyagiJapan
| | - Koji M. Nishiguchi
- Department of Advanced Ophthalmic MedicineTohoku University Graduate School of MedicineMiyagiJapan
| | - Shigeki Machida
- Department of OphthalmologyDokkyo Medical University Koshigaya HospitalSaitamaJapan
- Department of OphthalmologyIwate Medical University School of MedicineIwateJapan
| | - Toru Nakazawa
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
- Department of Retinal Disease ControlTohoku University Graduate School of MedicineMiyagiJapan
- Department of Advanced Ophthalmic MedicineTohoku University Graduate School of MedicineMiyagiJapan
| |
Collapse
|
55
|
Shams T, Lu X, Zhu L, Zhou F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. Xenobiotica 2017; 48:197-205. [DOI: 10.1080/00498254.2017.1282647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tahiatul Shams
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| |
Collapse
|
56
|
Sasaki S, Futagi Y, Ideno M, Kobayashi M, Narumi K, Furugen A, Iseki K. Interaction of atorvastatin with the human glial transporter SLC16A1. Eur J Pharmacol 2016; 788:248-254. [PMID: 27341998 DOI: 10.1016/j.ejphar.2016.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
|
57
|
Yang ZZ, Li L, Wang L, Xu MC, An S, Jiang C, Gu JK, Wang ZJJ, Yu LS, Zeng S. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression. Sci Rep 2016; 6:33338. [PMID: 27629937 PMCID: PMC5024137 DOI: 10.1038/srep33338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine.
Collapse
Affiliation(s)
- Zi-Zhao Yang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Li
- Zhejiang Provincial Key Laboratory of Geriatrics &Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, Zhejiang Province 310013, China
| | - Lu Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Cheng Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sai An
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Jing-Kai Gu
- School of Life Sciences, Jilin Univeristy, Changchun, 130012, China
| | - Zai-Jie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Lu-Shan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
58
|
Hubeny A, Keiser M, Oswald S, Jedlitschky G, Kroemer HK, Siegmund W, Grube M. Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy. Drug Metab Dispos 2016; 44:1562-8. [DOI: 10.1124/dmd.116.069807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
|
59
|
Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, Gillies MC, Zhou F. Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2. J Pharm Sci 2016; 105:884-890. [PMID: 26429523 DOI: 10.1002/jps.24663] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 11/09/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used to treat malaria and inflammatory diseases, long-term usage of which often causes severe side effects, especially retinopathy. Solute carrier transporters (SLCs) are important proteins responsible for the cellular uptake of endogenous and exogenous substances. Inhibitors competing with transporter substrates for SLCs often results in unfavorable toxicities and unsatisfactory therapeutic outcomes. We investigated the inhibitory effect of CQ and HCQ on substrate uptake mediated through a range of important SLC transporters in overexpressing human embryonic kidney (HEK293) cells. Our data revealed that both CQ and HCQ potently inhibit the uptake activity of organic anion transporting polypeptide 1A2 (OATP1A2). We recently reported OATP1A2 to be expressed in human retinal pigment epithelium (RPE), where it mediates cellular uptake of all-trans-retinol (atROL), a key step in the classical visual cycle. In this study, we demonstrate that CQ and HCQ could markedly impair atROL uptake in OATP1A2-expressing HEK293 cells and more importantly, in primary human RPE cells. Our study shows that CQ and HCQ are novel inhibitors of OATP1A2 and significantly impair OATP1A2-mediated substrate uptake, particularly transport of atROL into the RPE. This effect may compromise the function of the classic visual cycle leading to vision impairment and contribute to the retinopathy observed clinically in patients using CQ or HCQ.
Collapse
Affiliation(s)
- Chenghao Xu
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ting Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Weiyong Shen
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, Australia; School of Optometry and Vision Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
60
|
Marschallinger J, Schäffner I, Klein B, Gelfert R, Rivera FJ, Illes S, Grassner L, Janssen M, Rotheneichner P, Schmuckermair C, Coras R, Boccazzi M, Chishty M, Lagler FB, Renic M, Bauer HC, Singewald N, Blümcke I, Bogdahn U, Couillard-Despres S, Lie DC, Abbracchio MP, Aigner L. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 2015; 6:8466. [PMID: 26506265 PMCID: PMC4639806 DOI: 10.1038/ncomms9466] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/24/2015] [Indexed: 01/19/2023] Open
Abstract
As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood–brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias. The leukotriene receptor antagonist montelukast is an anti-asthmatic drug. Here, the authors show that montelukast reduces neuroinflammation, promotes hippocampal neurogenesis and restores learning and memory in old rats suffering from ageing-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Julia Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Renate Gelfert
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Illes
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Center for Spinal Cord Injuries, BG Trauma Center Murnau, 82418 Murnau am Staffelsee, Germany
| | - Maximilian Janssen
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Rotheneichner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, 6020 Innsbruck, Austria
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marta Boccazzi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | | | - Florian B Lagler
- Department for Paediatrics, Institute for Inborn Errors of Metabolism, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Marija Renic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Hans-Christian Bauer
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, 6020 Innsbruck, Austria
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sebastien Couillard-Despres
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
61
|
Fujii S, Setoguchi C, Kawazu K, Hosoya KI. Functional Characterization of Carrier-Mediated Transport of Pravastatin across the Blood-Retinal Barrier in Rats. Drug Metab Dispos 2015; 43:1956-9. [DOI: 10.1124/dmd.115.066266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023] Open
|
62
|
Liu H, Yu N, Lu S, Ito S, Zhang X, Prasad B, He E, Lu X, Li Y, Wang F, Xu H, An G, Unadkat JD, Kusuhara H, Sugiyama Y, Sahi J. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2– Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration. Drug Metab Dispos 2015; 43:1008-18. [DOI: 10.1124/dmd.115.064170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
|
63
|
Chan T, Zhu L, Madigan MC, Wang K, Shen W, Gillies MC, Zhou F. Human organic anion transporting polypeptide 1A2 (OATP1A2) mediates cellular uptake of all-trans-retinol in human retinal pigmented epithelial cells. Br J Pharmacol 2015; 172:2343-53. [PMID: 25560245 DOI: 10.1111/bph.13060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Vision depends on retinoid exchange between the retinal pigment epithelium (RPE) and photoreceptors. Defects in any step of the canonical visual cycle can lead to retinal degenerations. All-trans-retinol (atROL) plays an important role in visual signal transduction. However, how atROL enters human RPE from the apical membrane remains unclear. This study investigated the role of human organic anion transporting polypeptide 1A2 (OATP1A2) in atROL uptake in human RPE. EXPERIMENTAL APPROACH Immunoblotting and immunostaining elucidated the expression and localization of OATP1A2 in human RPE. Transporter functional studies were conducted to assess the interaction of OATP1A2 with atROL. KEY RESULTS Our study revealed OATP1A2 is expressed in human RPE, mainly at the apical membrane. Our data also indicated atROL inhibited the uptake of the typical OATP1A2 substrate, oestrone-3-sulfate (E3S), in over-expressing cells. Studies on the uptake of (3) H-atROL in these over-expressing cells revealed atROL is a substrate of OATP1A2. We confirmed these findings in human primary RPE cells. The transport of E3S and atROL was significantly reduced in human primary RPE cells with OATP1A2 siRNA silencing. CONCLUSION AND IMPLICATIONS Our data provides the first evidence of OATP1A2 expression in human RPE and more importantly, its novel role in the cellular uptake of atROL, which might be essential to the proper functioning of the canonical visual cycle. Our findings contribute to the understanding of the molecular mechanisms involved in retinoid transport between the RPE and photoreceptors and provide novel insights into potential pharmaceutical interventions for visual cycle disruption associated with retinal degenerations.
Collapse
Affiliation(s)
- Ting Chan
- Faculty of Pharmacy, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
64
|
|