51
|
Xu Y, Chen Y, Wu J, Pan J, Liao C, Su H. The utility of Vision Transformer in preoperatively predicting microvascular invasion status of hepatocellular carcinoma. HPB (Oxford) 2023; 25:533-542. [PMID: 36801198 DOI: 10.1016/j.hpb.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Microvascular invasion (MVI) is a risk factor for early recurrence and poor prognosis of hepatocellular carcinoma (HCC). Preoperative assessment of MVI status is beneficial for clinical therapy and prognosis evaluation. METHODS A total of 305 surgically resected patients were included retrospectively. All recruited patients underwent plain and contrast-enhanced abdominal CT. They were then randomly divided into training and validation sets in a ratio of 8:2. Self-attention-based ViT-B/16 and ResNet-50 analyzed CT images to predict MVI status preoperatively. Then, Grad-CAM was used to generate an attention map showing the high-risk MVI patches. Using five-fold cross validation, the performance of each model was evaluated. RESULTS Among 305 HCC patients, 99 patients were pathologically MVI-positive and 206 were MVI-negative. ViT-B/16 with fusion phase predicted the MVI status with an AUC of 0.882 and an accuracy of 86.8% in the validation set, which is similar to ResNet-50 with an AUC of 0.875 and an accuracy of 87.2%. The fusion phase improved performance a bit as compared to the single phase used for MVI prediction. The influence of peritumoral tissue on predictive ability was limited. A color visualization of the suspicious patches where microvascular has invaded was presented by attention maps. CONCLUSION ViT-B/16 model can predict preoperative MVI status in CT images of HCC patients. Assisted by attention maps, it can assist patients in making tailored treatment decisions.
Collapse
Affiliation(s)
- Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Yingying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Jinming Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou 325000, Zhejiang province, China; Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China; Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang province, China
| | - Chengwei Liao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Huang Su
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou 325000, Zhejiang province, China; Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China; Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang province, China.
| |
Collapse
|
52
|
PET-guided attention for prediction of microvascular invasion in preoperative hepatocellular carcinoma on PET/CT. Ann Nucl Med 2023; 37:238-245. [PMID: 36723705 DOI: 10.1007/s12149-023-01822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE To achieve PET/CT-based preoperative prediction of microvascular invasion in hepatocellular carcinoma by combining the advantages of PET and CT. METHODS This retrospective study included a total of 100 patients from two institutions who underwent PET/CT imaging. The above patients were divided into a training cohort (n = 70) and a validation cohort (n = 30). This study was based on PET/CT images to evaluate the possibility of microvascular invasion (MVI) of patients. In this study, we proposed a two-branch PET-guided attention network to predict MVI. The model used a two-branch network to extract image features from PET and CT, respectively. The PET-guided attention module aimed to enable the model to focus on the lesion region and reduce the disturbance of irrelevant and redundant information. Model performance was evaluated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS The method outperformed the single-modality prediction model for preoperative hepatocyte microvascular invasion, achieving an AUC of 0.907. On the validation set, accuracy reached 0.846, precision reached 0.881, recall 0.793, and F1-score 0.835. CONCLUSION The model exploits the particularities of the molecular metabolic function of PET and the anatomical structure of CT and can strongly improve the accuracy of clinical diagnosis of MVI.
Collapse
|
53
|
Lin GH, Wang I, Lee SC, Huang CY, Wang YC, Hsieh CL. Development of a 13-item Short Form for Fugl-Meyer Assessment of Upper Extremity Scale Using a Machine Learning Approach. Arch Phys Med Rehabil 2023:S0003-9993(23)00049-7. [PMID: 36736809 DOI: 10.1016/j.apmr.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To develop and validate a short form of the Fugl-Meyer Assessment of Upper Extremity Scale (FMA-UE) using a machine learning approach (FMA-UE-ML). In addition, scores of items not included in the FMA-UE-ML were predicted. DESIGN Secondary data from a previous study, which assessed individuals post-stroke using the FMA-UE at 4 time points: 5-30 days post-stroke screen, 2-month post-stroke baseline assessment, 6-month post-stroke assessment, and 12-month post-stroke assessment. SETTING Rehabilitation units in hospitals. PARTICIPANTS A total of 408 individuals post-stroke (N=408). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The 30-item FMA-UE. RESULTS We established 29 candidate versions of the FMA-UE-ML with different numbers of items, from 1 to 29, and examined their concurrent validity and responsiveness. We found that the responsiveness of the candidate versions obviously declined when the number of items was less than 13. Thus, the 13-item version was selected as the FMA-UE-ML. The concurrent validity was good (intra-class correlation coefficients ≥0.99). The standardized response means of the FMA-UE-ML and FMA-UE were 0.54-0.88 and 0.52-0.91, respectively. The Pearson's rs between the change scores of the FMA-UE-ML and those of the FMA-UE were 0.96-0.98. The predicted item scores had acceptable to good accuracy (Kappa=0.50-0.92). CONCLUSIONS The FMA-UE-ML seems a promising short form to improve administrative efficiency while retaining good concurrent validity and responsiveness. In addition, the FAM-UE-ML can provide all item scores of the FMA-UE for users.
Collapse
Affiliation(s)
- Gong-Hong Lin
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Inga Wang
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Shih-Chieh Lee
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan
| | - Chien-Yu Huang
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ching Wang
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Lin Hsieh
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
54
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
55
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
56
|
Song W, Liu Y, Qiu L, Qing J, Li A, Zhao Y, Li Y, Li R, Zhou X. Machine learning-based warning model for chronic kidney disease in individuals over 40 years old in underprivileged areas, Shanxi Province. Front Med (Lausanne) 2023; 9:930541. [PMID: 36698845 PMCID: PMC9868668 DOI: 10.3389/fmed.2022.930541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chronic kidney disease (CKD) is a progressive disease with high incidence but early imperceptible symptoms. Since China's rural areas are subject to inadequate medical check-ups and single disease screening programme, it could easily translate into end-stage renal failure. This study aimed to construct an early warning model for CKD tailored to impoverished areas by employing machine learning (ML) algorithms with easily accessible parameters from ten rural areas in Shanxi Province, thereby, promoting a forward shift of treatment time and improving patients' quality of life. Methods From April to November 2019, CKD opportunistic screening was carried out in 10 rural areas in Shanxi Province. First, general information, physical examination data, blood and urine specimens were collected from 13,550 subjects. Afterward, feature selection of explanatory variables was performed using LASSO regression, and target datasets were balanced using the SMOTE (synthetic minority over-sampling technique) algorithm, i.e., albuminuria-to-creatinine ratio (ACR) and α1-microglobulin-to-creatinine ratio (MCR). Next, Bagging, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were employed for classification of ACR outcomes and MCR outcomes, respectively. Results 12,330 rural residents were included in this study, with 20 explanatory variables. The cases with increased ACR and increased MCR represented 1,587 (12.8%) and 1,456 (11.8%), respectively. After conducting LASSO, 14 and 15 explanatory variables remained in these two datasets, respectively. Bagging, RF, and XGBoost performed well in classification, with the AUC reaching 0.74, 0.87, 0.87, 0.89 for ACR outcomes and 0.75, 0.88, 0.89, 0.90 for MCR outcomes. The five variables contributing most to the classification of ACR outcomes and MCR outcomes constituted SBP, TG, TC, and Hcy, DBP and age, TG, SBP, Hcy and FPG, respectively. Overall, the machine learning algorithms could emerge as a warning model for CKD. Conclusion ML algorithms in conjunction with rural accessible indexes boast good performance in classification, which allows for an early warning model for CKD. This model could help achieve large-scale population screening for CKD in poverty-stricken areas and should be promoted to improve the quality of life and reduce the mortality rate.
Collapse
Affiliation(s)
- Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanfeng Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Lixia Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Aizhong Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yan Zhao
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,*Correspondence: Rongshan Li,
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Xiaoshuang Zhou,
| |
Collapse
|
57
|
Wang F, Chen Q, Chen Y, Zhu Y, Zhang Y, Cao D, Zhou W, Liang X, Yang Y, Lin L, Hu H. A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:156-164. [PMID: 36333180 DOI: 10.1016/j.ejso.2022.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). METHODS A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). CONCLUSION The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China.
| | - Qingqing Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China
| | - Yinan Chen
- SenseTime Research, 200030, Shanghai, PR China
| | - Yajing Zhu
- SenseTime Research, 200030, Shanghai, PR China
| | - Yuanyuan Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China; Medical College, Shaoxing University, 312000, Shaoxing, PR China
| | - Dan Cao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China; Department of Radiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, PR China
| | - Wei Zhou
- Department of Radiology, Huzhou Central Hospital, Affiliated to Huzhou University, 313000, Huzhou, PR China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Lanfen Lin
- College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, PR China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China.
| |
Collapse
|
58
|
Jiang Y, Wang K, Wang YR, Xiang YJ, Liu ZH, Feng JK, Cheng SQ. Preoperative and Prognostic Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Review Based on Artificial Intelligence. Technol Cancer Res Treat 2023; 22:15330338231212726. [PMID: 37933176 PMCID: PMC10631353 DOI: 10.1177/15330338231212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Microvascular invasion of hepatocellular carcinoma is an important factor affecting tumor recurrence after liver resection and liver transplantation. There are many ways to classify microvascular invasion, however, an international consensus is urgently needed. Recently, artificial intelligence has emerged as an important tool for improving the clinical management of hepatocellular carcinoma. Many studies about microvascular invasion currently focus on preoperative and prognosis prediction of microvascular invasion using artificial intelligence. In this paper, we review the definition and staging of microvascular invasion, especially the diagnosis of it by using artificial intelligence. In preoperative prediction, deep learning based on multimodal data modeling of radiomics-screened features, clinical features, and medical images is currently the most effective means. In prognostic prediction, pathology is the gold standard, and the techniques used should more effectively utilize the global features of the pathology images.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Ran Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan-Jun Xiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zong-Han Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
59
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
60
|
He T, Zou J, Sun K, Yang J, Lei T, Xu L, Liu J, Yin S, Li G. Global research status and frontiers on microvascular invasion of hepatocellular carcinoma: A bibliometric and visualized analysis. Front Oncol 2022; 12:1037145. [PMID: 36591459 PMCID: PMC9795233 DOI: 10.3389/fonc.2022.1037145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Over the past decade, several studies on the microvascular invasion (MVI) of hepatocellular carcinoma (HCC) have been published. However, they have not quantitatively analyzed the remarkable impact of MVI. Therefore, a more comprehensive understanding of the field is now needed. This study aims to analyze the evolution of HCC-MVI research and to systematically evaluate the scientific outputs using bibliometric citation analysis. Methods A systematic search was conducted on the Web of Science Core Collection on 2 May 2022 to retrieve studies on HCC-MVI published between 2013 and 2022. Then, a bibliometric analysis of the publications was performed using CiteSpace, VOSviewer, and other visualization tools. Results A total of 1,208 articles on HCC MVI were identified. Of these, China (n = 518) was the most prolific country, and Fudan University (n = 90) was the most notable institution. Furthermore, we observed that Lau Wan Yee participated in most studies (n = 26), and Frontiers in Oncology (IF2020:6.24) published the highest number of documents (n = 49) on this subject, with 138 publications. The paper "Bray F, 2018, CA-CANCER J CLIN, V68, P394" has the highest number of co-cited references, with 119 citations. In addition, the top three keywords were "survival", "recurrence", and "microvascular invasion". Moreover, the research hot spots and frontiers of HCC-MVI for the last 3 years included imaging characteristics and transarterial chemoembolization (TACE) therapy studies. Conclusions This study comprehensively summarized the most significant HCC-MVI documents from past literature and highlighted key contributions made to the advancement of this subject and the advancement of this field over the past decade. The trend of MVI research will gradually shift from risk factors and prognosis studies to imaging characteristics and TACE therapy studies.
Collapse
Affiliation(s)
- Tao He
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Tao He,
| | - Jieyu Zou
- Depatment of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Sun
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Juan Yang
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Tingting Lei
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lin Xu
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Jinheng Liu
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Sineng Yin
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Guangkuo Li
- Department of Hepatobiliary Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
61
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
62
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
63
|
Cui H, Wang KY, Li WY, Zhu HB, Xiao LS, Liu L. CT images-based 3D convolutional neural network to predict early recurrence of solitary hepatocellular carcinoma after radical hepatectomy. Diagn Interv Radiol 2022; 28:524-531. [PMID: 36287132 PMCID: PMC9885724 DOI: 10.5152/dir.2022.201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The high rate of recurrence of hepatocellular carcinoma (HCC) after radical hepatectomy is an important factor that affects the long-term survival of patients. This study aimed to develop a computed tomography (CT) images-based 3-dimensional (3D) convolutional neural network (CNN) for the preoperative prediction of early recurrence (ER) (≤2 years) after radical hepatectomy in patients with solitary HCC and to compare the effects of segmentation sampling (SS) and non-segmentation sampling (NSS) on the prediction performance of 3D-CNN. METHODS Contrast-enhanced CT images of 220 HCC patients were used in this study (training group=178 and test group=42). We used SS and NSS to select the volume-of-interest to train SS-3D-CNN and NSS-3D-CNN separately. The prediction accuracy was evaluated using the test group. Finally, gradient-weighted class activation mappings (Grad-CAMs) were plotted to analyze the difference of prediction logic between the SS-3D-CNN and NSS-3D-CNN. RESULTS The areas under the receiver operating characteristic curves (AUCs) of the SS-3D-CNN and NSS3D-CNN in the training group were 0.824 (95% CI: 0.764-0.885) and 0.868 (95% CI: 0.815-0.921). The AUC of the SS-3D-CNN and NSS-3D-CNN in the test group were 0.789 (95% CI: 0.637-0.941) and 0.560 (95% CI: 0.378-0.742). The SS-3D-CNN could stratify patients into low- and high-risk groups, with significant differences in recurrence-free survival (RFS) (P < .001). But NSS-3D-CNN could not effectively stratify them in the test group. According to the Grad-CAMs, compared with SS-3D-CNN, NSS-3D-CNN was obviously interfered by the nearby tissues. CONCLUSION SS-3D-CNN may be of clinical use for identifying high-risk patients and formulating individualized treatment and follow-up strategies. SS is better than NSS in improving the performance of 3D-CNN in our study.
Collapse
Affiliation(s)
- Hao Cui
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China; Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kun-Yuan Wang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Yuan Li
- Big data center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Bo Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Lu-Shan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China; Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
TED: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma. Med Image Anal 2022; 82:102575. [DOI: 10.1016/j.media.2022.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
|
65
|
Deng Y, Jia X, Yu G, Hou J, Xu H, Ren A, Wang Z, Yang D, Yang Z. Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples? Front Oncol 2022; 12:1035775. [PMID: 36387069 PMCID: PMC9640917 DOI: 10.3389/fonc.2022.1035775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVES To evaluate the potential improvement of prediction performance of a proposed double branch multimodality-contribution-aware TripNet (MCAT) in microvascular invasion (MVI) of hepatocellular carcinoma (HCC) based on a small sample. METHODS In this retrospective study, 121 HCCs from 103 consecutive patients were included, with 44 MVI positive and 77 MVI negative, respectively. A MCAT model aiming to improve the accuracy of deep neural network and alleviate the negative effect of small sample size was proposed and the improvement of MCAT model was verified among comparisons between MCAT and other used deep neural networks including 2DCNN (two-dimentional convolutional neural network), ResNet (residual neural network) and SENet (squeeze-and-excitation network), respectively. RESULTS Through validation, the AUC value of MCAT is significantly higher than 2DCNN based on CT, MRI, and both imaging (P < 0.001 for all). The AUC value of model with single branch pretraining based on small samples is significantly higher than model with end-to-end training in CT branch and double branch (0.62 vs 0.69, p=0.016, 0.65 vs 0.83, p=0.010, respectively). The AUC value of the double branch MCAT based on both CT and MRI imaging (0.83) was significantly higher than that of the CT branch MCAT (0.69) and MRI branch MCAT (0.73) (P < 0.001, P = 0.03, respectively), which was also significantly higher than common-used ReNet (0.67) and SENet (0.70) model (P < 0.001, P = 0.005, respectively). CONCLUSION A proposed Double branch MCAT model based on a small sample can improve the effectiveness in comparison to other deep neural networks or single branch MCAT model, providing a potential solution for scenarios such as small-sample deep learning and fusion of multiple imaging modalities.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Xibin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Gaoyuan Yu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Jian Hou
- Department of Radiology, The People’s Hospital of Jimo.Qingdao, Qingdao, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ahong Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
66
|
Zheng Z, Xu W, Wang F, Qiu Y, Xue Q. Association between vitamin D3 levels and frailty in the elderly: A large sample cross-sectional study. Front Nutr 2022; 9:980908. [PMID: 36238456 PMCID: PMC9553132 DOI: 10.3389/fnut.2022.980908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background Frailty is recognized as a cornerstone of geriatric medicine. Accurately screening and identifying frailty can promote better quality and personalized medical services for the elderly. Previous studies have shown that the association between vitamin D and frailty in the elderly population is still controversial. More research is needed to explore the association between them. Materials and methods We used three waves of data from the National Health and Nutrition Examination Survey (NHANES). Based on the widely accepted AAH FRAIL Scale, we measured and evaluated the participants’ frailty from five aspects: fatigue, resistance, ambulation, illness, and loss of weight. All possible relevant variables are included. Machine learning XGboost algorithm, the Least Absolute Shrinkage Selection Operator (LASSO) regression and univariate logistic regression were used to screen variables, and multivariate logistic regression and generalized additive model (GAM) were used to build the model. Finally, subgroup analysis and interaction test were performed to further confirm the association. Results In our study, XGboost machine learning algorithm explored the relative importance of all included variables, which confirmed the close association between vitamin D and frailty. After adjusting for all significant covariates, the result indicated that for each additional unit of 25-hydroxyvitamin D3, the risk of frailty was reduced by 1.3% with a statisticaldifference. A smooth curve was constructed based on the GAM. It was found that there was a significant negative correlation between 25-hydroxyvitamin D3 and the risk of frailty. Conclusion There may be a negative correlation between 25-hydroxyvitamin D3 and the risk of frailty. However, more well-designed studies are needed to verify this relationship.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Wennan Xu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudian Qiu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
- *Correspondence: Qingyun Xue,
| |
Collapse
|
67
|
Han K, Tan K, Shen J, Gu Y, Wang Z, He J, Kang L, Sun W, Gao L, Gao Y. Machine learning models including insulin resistance indexes for predicting liver stiffness in United States population: Data from NHANES. Front Public Health 2022; 10:1008794. [PMID: 36211651 PMCID: PMC9537573 DOI: 10.3389/fpubh.2022.1008794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023] Open
Abstract
Background Prevention and treatment of liver fibrosis at an early stage is of great prognostic importance, whereas changes in liver stiffness are often overlooked in patients before the onset of obvious clinical symptoms. Recognition of liver fibrosis at an early stage is therefore essential. Objective An XGBoost machine learning model was constructed to predict participants' liver stiffness measures (LSM) from general characteristic information, blood test metrics and insulin resistance-related indexes, and to compare the fit efficacy of different datasets for LSM. Methods All data were obtained from the National Health and Nutrition Examination Survey (NHANES) for the time interval January 2017 to March 2020. Participants' general characteristics, Liver Ultrasound Transient Elastography (LUTE) information, indicators of blood tests and insulin resistance-related indexes were collected, including homeostasis model assessment of insulin resistance (HOMA-IR) and metabolic score for insulin resistance (METS-IR). Three datasets were generated based on the above information, respectively named dataset A (without the insulin resistance-related indexes as predictor variables), dataset B (with METS-IR as a predictor variable) and dataset C (with HOMA-IR as a predictor variable). XGBoost regression was used in the three datasets to construct machine learning models to predict LSM in participants. A random split was used to divide all participants included in the study into training and validation cohorts in a 3:1 ratio, and models were developed in the training cohort and validated with the validation cohort. Results A total of 3,564 participants were included in this study, 2,376 in the training cohort and 1,188 in the validation cohort, and all information was not statistically significantly different between the two cohorts (p > 0.05). In the training cohort, datasets A and B both had better predictive efficacy than dataset C for participants' LSM, with dataset B having the best fitting efficacy [±1.96 standard error (SD), (-1.49,1.48) kPa], which was similarly validated in the validation cohort [±1.96 SD, (-1.56,1.56) kPa]. Conclusions XGBoost machine learning models built from general characteristic information and clinically accessible blood test indicators are practicable for predicting LSM in participants, and a dataset that included METS-IR as a predictor variable would improve the accuracy and stability of the models.
Collapse
|
68
|
Preliminary Evaluation of Artificial Intelligence-Based Anti-Hepatocellular Carcinoma Molecular Target Study in Hepatocellular Carcinoma Diagnosis Research. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8365565. [PMID: 36193305 PMCID: PMC9526586 DOI: 10.1155/2022/8365565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
In this paper, in-depth research analysis of anti-hepatocellular carcinoma molecular targets for hepatocellular carcinoma diagnosis was conducted using artificial intelligence. Because BRD4 plays an important role in gene transcription for cell cycle regulation and apoptosis, tumor-targeted therapy by inhibiting the expression or function of BRD4 has received increasing attention in the field of antitumor research. Study subjects in small samples were used as the validation set for validating each diagnostic model constructed based on the training set. The diagnostic effect of each model in the validation set is evaluated by calculating the sensitivity, specificity, and compliance rate, and the model with the best and most stable diagnostic value is selected by combining the results of model construction, validation, and evaluation. The total sample was divided into a training set and test set by using a stratified sampling method in the ratio of 7 : 3. Logistic regression, weighted k-nearest neighbor, decision tree, and BP artificial neural network were used in the training set to construct diagnostic models for early-stage liver cancer, respectively, and the optimal parameters of the corresponding models were obtained, and then, the constructed models were validated in the test set. To evaluate the diagnostic efficacy, stability, and generalization ability of the four classification methods more robustly, a 10-fold crossover test was performed for each classification method. BRD4 is an epigenetic regulator that is associated with the upregulation of expression of various oncogenic drivers in tumors. Targeting BRD4 with pharmacological inhibitors has emerged as a novel approach for tumor treatment. However, before we implemented this topic, there were no detailed studies on whether BRD4 could be used for the treatment of HCC, the role of BRD4 in HCC cell proliferation and apoptosis, and the ability of small molecule BRD4 inhibitors to induce apoptosis in hepatocellular carcinoma cells.
Collapse
|
69
|
Lu XY, Zhang JY, Zhang T, Zhang XQ, Lu J, Miao XF, Chen WB, Jiang JF, Ding D, Du S. Using pre-operative radiomics to predict microvascular invasion of hepatocellular carcinoma based on Gd-EOB-DTPA enhanced MRI. BMC Med Imaging 2022; 22:157. [PMID: 36057576 PMCID: PMC9440540 DOI: 10.1186/s12880-022-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives We aimed to investigate the value of performing gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance imaging (MRI) radiomics for preoperative prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) based on multiple sequences. Methods We randomly allocated 165 patients with HCC who underwent partial hepatectomy to training and validation sets. Stepwise regression and the least absolute shrinkage and selection operator algorithm were used to select significant variables. A clinicoradiological model, radiomics model, and combined model were constructed using multivariate logistic regression. The performance of the models was evaluated, and a nomogram risk-prediction model was built based on the combined model. A concordance index and calibration curve were used to evaluate the discrimination and calibration of the nomogram model. Results The tumour margin, peritumoural hypointensity, and seven radiomics features were selected to build the combined model. The combined model outperformed the radiomics model and the clinicoradiological model and had the highest sensitivity (90.89%) in the validation set. The areas under the receiver operating characteristic curve were 0.826, 0.755, and 0.708 for the combined, radiomics, and clinicoradiological models, respectively. The nomogram model based on the combined model exhibited good discrimination (concordance index = 0.79) and calibration. Conclusions The combined model based on radiomics features of Gd-EOB-DTPA enhanced MRI, tumour margin, and peritumoural hypointensity was valuable for predicting HCC microvascular invasion. The nomogram based on the combined model can intuitively show the probabilities of MVI. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00855-w.
Collapse
Affiliation(s)
- Xin-Yu Lu
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China.,The First People's Hospital of Taicang, Taicang, Suzhou, Jiangsu, China
| | - Ji-Yun Zhang
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China.
| | - Xue-Qin Zhang
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China.
| | - Jian Lu
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| | - Xiao-Fen Miao
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| | | | - Ji-Feng Jiang
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| | - Ding Ding
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| | - Sheng Du
- Department of Radiology, Nantong Third Hospital Affiliated to Nantong University, #60 Youth Middle Road, Chongchuan District, Nantong, Jiangsu, China
| |
Collapse
|
70
|
Long-Term Survival and Risk Factors in Patients with Hepatitis B-Related Hepatocellular Carcinoma: A Real-World Study. Can J Gastroenterol Hepatol 2022; 2022:7750140. [PMID: 36051249 PMCID: PMC9427325 DOI: 10.1155/2022/7750140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
A retrospective cohort study was conducted to collect 465 patients with hepatitis B-related hepatocellular carcinoma who had undergone radical hepatectomy from January 1, 2012, to August 31, 2018, at the First Affiliated Hospital of the University of Science and Technology of China. The clinical, pathological, and follow-up information was collected to compare the basic characteristics of death and nondeath after radical resection. Kaplan-Meier curves were used for survival analysis and male and female subgroup analysis. The multivariate Cox proportional-hazards regression model was used to analyze independent risk factors related to postoperative death. Of the 465 patients with radical resection of hepatitis B-related hepatocellular carcinoma, 132 died, and 1-, 3-, and 5-year cumulative survival rates after operation were 92.1%, 78%, and 64%, respectively. In the male and female subgroup, 115 and 17 patients died, respectively. The 1-, 3-, and 5-year cumulative survival rates were 92.6%, 77.0%, and 62.6%, respectively, in men, and 89.6%, 78.8%, and 70.2%, respectively, in women. Multivariate Cox proportional-hazards regression analysis showed that microvascular invasion (MVI), Edmondson III/IV, BCLC stage B, and total bilirubin (TB) > 20.5 μmol/L were independent risk factors in patients with hepatitis B-related hepatocellular carcinoma after radical hepatectomy.
Collapse
|
71
|
Wang L, Zhang L, Jiang B, Zhao K, Zhang Y, Xie X. Clinical application of deep learning and radiomics in hepatic disease imaging: a systematic scoping review. Br J Radiol 2022; 95:20211136. [PMID: 35816550 PMCID: PMC10162062 DOI: 10.1259/bjr.20211136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Artificial intelligence (AI) has begun to play a pivotal role in hepatic imaging. This systematic scoping review summarizes the latest progress of AI in evaluating hepatic diseases based on computed tomography (CT) and magnetic resonance (MR) imaging. METHODS We searched PubMed and Web of Science for publications, using terms related to deep learning, radiomics, imaging methods (CT or MR), and the liver. Two reviewers independently selected articles and extracted data from each eligible article. The Quality Assessment of Diagnostic Accuracy Studies-AI (QUADAS-AI) tool was used to assess the risk of bias and concerns regarding applicability. RESULTS The screening identified 45 high-quality publications from 235 candidates, including 8 on diffuse liver diseases and 37 on focal liver lesions. Nine studies used deep learning and 36 studies used radiomics. All 45 studies were rated as low risk of bias in patient selection and workflow, but 36 (80%) were rated as high risk of bias in the index test because they lacked external validation. In terms of concerns regarding applicability, all 45 studies were rated as low concerns. These studies demonstrated that deep learning and radiomics can evaluate liver fibrosis, cirrhosis, portal hypertension, and a series of complications caused by cirrhosis, predict the prognosis of malignant hepatic tumors, and differentiate focal hepatic lesions. CONCLUSIONS The latest studies have shown that deep learning and radiomics based on hepatic CT and MR imaging have potential application value in the diagnosis, treatment evaluation, and prognosis prediction of common liver diseases. The AI methods may become useful tools to support clinical decision-making in the future. ADVANCES IN KNOWLEDGE Deep learning and radiomics have shown their potential in the diagnosis, treatment evaluation, and prognosis prediction of a series of common diffuse liver diseases and focal liver lesions.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keke Zhao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
72
|
Feng T, Wu T, Zhang Y, Zhou L, Liu S, Li L, Li M, Hu E, Wang Q, Fu X, Zhan L, Xie Z, Xie W, Huang X, Shang X, Yu G. Stemness Analysis Uncovers That The Peroxisome Proliferator-Activated Receptor Signaling Pathway Can Mediate Fatty Acid Homeostasis In Sorafenib-Resistant Hepatocellular Carcinoma Cells. Front Oncol 2022; 12:912694. [PMID: 35957896 PMCID: PMC9361019 DOI: 10.3389/fonc.2022.912694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) stem cells are regarded as an important part of individualized HCC treatment and sorafenib resistance. However, there is lacking systematic assessment of stem-like indices and associations with a response of sorafenib in HCC. Our study thus aimed to evaluate the status of tumor dedifferentiation for HCC and further identify the regulatory mechanisms under the condition of resistance to sorafenib. Datasets of HCC, including messenger RNAs (mRNAs) expression, somatic mutation, and clinical information were collected. The mRNA expression-based stemness index (mRNAsi), which can represent degrees of dedifferentiation of HCC samples, was calculated to predict drug response of sorafenib therapy and prognosis. Next, unsupervised cluster analysis was conducted to distinguish mRNAsi-based subgroups, and gene/geneset functional enrichment analysis was employed to identify key sorafenib resistance-related pathways. In addition, we analyzed and confirmed the regulation of key genes discovered in this study by combining other omics data. Finally, Luciferase reporter assays were performed to validate their regulation. Our study demonstrated that the stemness index obtained from transcriptomic is a promising biomarker to predict the response of sorafenib therapy and the prognosis in HCC. We revealed the peroxisome proliferator-activated receptor signaling pathway (the PPAR signaling pathway), related to fatty acid biosynthesis, that was a potential sorafenib resistance pathway that had not been reported before. By analyzing the core regulatory genes of the PPAR signaling pathway, we identified four candidate target genes, retinoid X receptor beta (RXRB), nuclear receptor subfamily 1 group H member 3 (NR1H3), cytochrome P450 family 8 subfamily B member 1 (CYP8B1) and stearoyl-CoA desaturase (SCD), as a signature to distinguish the response of sorafenib. We proposed and validated that the RXRB and NR1H3 could directly regulate NR1H3 and SCD, respectively. Our results suggest that the combined use of SCD inhibitors and sorafenib may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Tingze Feng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lang Zhou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erqiang Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaocong Fu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xianying Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xianying Huang, ; Xuan Shang, ; Guangchuang Yu,
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Xianying Huang, ; Xuan Shang, ; Guangchuang Yu,
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xianying Huang, ; Xuan Shang, ; Guangchuang Yu,
| |
Collapse
|
73
|
Chu T, Zhao C, Zhang J, Duan K, Li M, Zhang T, Lv S, Liu H, Wei F. Application of a Convolutional Neural Network for Multitask Learning to Simultaneously Predict Microvascular Invasion and Vessels that Encapsulate Tumor Clusters in Hepatocellular Carcinoma. Ann Surg Oncol 2022; 29:6774-6783. [PMID: 35754067 PMCID: PMC9492610 DOI: 10.1245/s10434-022-12000-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer death worldwide, and the prognosis remains dismal. In this study, two pivotal factors, microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC) were preoperatively predicted simultaneously to assess prognosis. Methods A total of 133 HCC patients who underwent surgical resection and preoperative gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) were included. The statuses of MVI and VETC were obtained from the pathological report and CD34 immunohistochemistry, respectively. A three-dimensional convolutional neural network (3D CNN) for single-task learning aimed at MVI prediction and for multitask learning aimed at simultaneous prediction of MVI and VETC was established by using multiphase Gd-EOB-DTPA-enhanced MRI. Results The 3D CNN for single-task learning achieved an area under receiver operating characteristics curve (AUC) of 0.896 (95% CI: 0.797–0.994). Multitask learning with simultaneous extraction of MVI and VETC features improved the performance of MVI prediction, with an AUC value of 0.917 (95% CI: 0.825–1.000), and achieved an AUC value of 0.860 (95% CI: 0.728–0.993) for the VETC prediction. The multitask learning framework could stratify high- and low-risk groups regarding overall survival (p < 0.0001) and recurrence-free survival (p < 0.0001), revealing that patients with MVI+/VETC+ were associated with poor prognosis. Conclusions A deep learning framework based on 3D CNN for multitask learning to predict MVI and VETC simultaneously could improve the performance of MVI prediction while assessing the VETC status. This combined prediction can stratify prognosis and enable individualized prognostication in HCC patients before curative resection. Supplementary Information The online version contains supplementary material available at 10.1245/s10434-022-12000-6.
Collapse
Affiliation(s)
- Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Zhao
- College of Computer Science and Technology, Jilin University, Changchun, People's Republic of China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tianqi Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shengnan Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
74
|
MVI-Mind: A Novel Deep-Learning Strategy Using Computed Tomography (CT)-Based Radiomics for End-to-End High Efficiency Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14122956. [PMID: 35740620 PMCID: PMC9221272 DOI: 10.3390/cancers14122956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Microvascular invasion is an important indicator for reflecting the prognosis of hepatocellular carcinoma, but the traditional diagnosis requires a postoperative pathological examination. This study is the first to propose an end-to-end deep learning architecture for predicting microvascular invasion in hepatocellular carcinoma by collecting retrospective data. This method can achieve noninvasive, accurate and efficient preoperative prediction only through the patient’s radiomic data, which is very beneficial to doctors for clinical decision making in HCC patients. Abstract Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) directly affects a patient’s prognosis. The development of preoperative noninvasive diagnostic methods is significant for guiding optimal treatment plans. In this study, we investigated 138 patients with HCC and presented a novel end-to-end deep learning strategy based on computed tomography (CT) radiomics (MVI-Mind), which integrates data preprocessing, automatic segmentation of lesions and other regions, automatic feature extraction, and MVI prediction. A lightweight transformer and a convolutional neural network (CNN) were proposed for the segmentation and prediction modules, respectively. To demonstrate the superiority of MVI-Mind, we compared the framework’s performance with that of current, mainstream segmentation, and classification models. The test results showed that MVI-Mind returned the best performance in both segmentation and prediction. The mean intersection over union (mIoU) of the segmentation module was 0.9006, and the area under the receiver operating characteristic curve (AUC) of the prediction module reached 0.9223. Additionally, it only took approximately 1 min to output a prediction for each patient, end-to-end using our computing device, which indicated that MVI-Mind could noninvasively, efficiently, and accurately predict the presence of MVI in HCC patients before surgery. This result will be helpful for doctors to make rational clinical decisions.
Collapse
|
75
|
Sun BY, Gu PY, Guan RY, Zhou C, Lu JW, Yang ZF, Pan C, Zhou PY, Zhu YP, Li JR, Wang ZT, Gao SS, Gan W, Yi Y, Luo Y, Qiu SJ. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma. World J Surg Oncol 2022; 20:189. [PMID: 35676669 PMCID: PMC9178852 DOI: 10.1186/s12957-022-02645-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background Preoperative prediction of microvascular invasion (MVI) is critical for treatment strategy making in patients with hepatocellular carcinoma (HCC). We aimed to develop a deep learning (DL) model based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status and clinical outcomes in patients with HCC. Methods We retrospectively included a total of 321 HCC patients with pathologically confirmed MVI status. Preoperative DCE-MRI of these patients were collected, annotated, and further analyzed by DL in this study. A predictive model for MVI integrating DL-predicted MVI status (DL-MVI) and clinical parameters was constructed with multivariate logistic regression. Results Of 321 HCC patients, 136 patients were pathologically MVI absent and 185 patients were MVI present. Recurrence-free survival (RFS) and overall survival (OS) were significantly different between the DL-predicted MVI-absent and MVI-present. Among all clinical variables, only DL-predicted MVI status and a-fetoprotein (AFP) were independently associated with MVI: DL-MVI (odds ratio [OR] = 35.738; 95% confidence interval [CI] 14.027–91.056; p < 0.001), AFP (OR = 4.634, 95% CI 2.576–8.336; p < 0.001). To predict the presence of MVI, DL-MVI combined with AFP achieved an area under the curve (AUC) of 0.824. Conclusions Our predictive model combining DL-MVI and AFP achieved good performance for predicting MVI and clinical outcomes in patients with HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02645-8.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Pei-Yi Gu
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China
| | - Ruo-Yu Guan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Cheng Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Jian-Wei Lu
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Chao Pan
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Ya-Ping Zhu
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China
| | - Jia-Rui Li
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Shan-Shan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Wei Gan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Yong Yi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China.
| | - Ye Luo
- School of Software Engineering, Tongji University, Shanghai, People's Republic of China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
76
|
Zhong X, Long H, Su L, Zheng R, Wang W, Duan Y, Hu H, Lin M, Xie X. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2022; 47:2071-2088. [PMID: 35364684 DOI: 10.1007/s00261-022-03496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the methodological quality and to evaluate the predictive performance of radiomics studies for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS Publications between 2017 and 2021 on radiomic MVI prediction in HCC based on CT, MR, ultrasound, and PET/CT were included. The risk of bias was assessed using the prediction model risk of bias assessment tool (PROBAST). Methodological quality was assessed through the radiomics quality score (RQS). Fourteen studies classified as TRIPOD Type 2a or above were used for meta-analysis using random-effects model. Further analyses were performed to investigate the technical factors influencing the predictive performance of radiomics models. RESULTS Twenty-three studies including 4947 patients were included. The risk of bias was mainly related to analysis domain. The RQS reached an average of (37.7 ± 11.4)% with main methodological insufficiencies of scientific study design, external validation, and open science. The pooled areas under the receiver operating curve (AUC) were 0.85 (95% CI 0.82-0.89), 0.87 (95% CI 0.83-0.92), and 0.74 (95% CI 0.67-0.80), respectively, for CT, MR, and ultrasound radiomics models. The pooled AUC of ultrasound radiomics model was significantly lower than that of CT (p = 0.002) and MR (p < 0.001). Portal venous phase for CT and hepatobiliary phase for MR were superior to other imaging sequences for radiomic MVI prediction. Segmentation of both tumor and peritumor regions showed better performance than tumor region. CONCLUSION Radiomics models show promising prediction performance for predicting MVI in HCC. However, improvements in standardization of methodology are required for feasibility confirmation and clinical translation.
Collapse
Affiliation(s)
- Xian Zhong
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haiyi Long
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liya Su
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruiying Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Duan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hangtong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Manxia Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
77
|
Xiao H, Guo Y, Zhou Q, Chen Q, Du Q, Chen S, Fu S, Lin J, Li D, Song X, Peng S, Huang Y, Shen J, Kuang M. Prediction of microvascular invasion in hepatocellular carcinoma with expert-inspiration and skeleton sharing deep learning. Liver Int 2022; 42:1423-1431. [PMID: 35319151 DOI: 10.1111/liv.15254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Radiological prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) is essential but few models were clinically implemented because of limited interpretability and generalizability. METHODS Based on 2096 patients in three independent HCC cohorts, we established and validated an MVI predicting model. First, we used data from the primary cohort to train a 3D-ResNet network for MVI prediction and then optimised the model with "expert-inspired training" for model construction. Second, we implemented the model to the other two cohorts using three implementation strategies, the original model implementation, data sharing model implementation and skeleton sharing model implementation, the latter two of which used part of the cohorts' data for fine-tuning. The areas under the receiver operating characteristic curve (AUCs) were calculated to compare the performances of different models. RESULTS For the MVI predicting model, the AUC of the expert-inspired model was 0.83 (95% CI: 0.77-0.88) compared to 0.54 (95% CI: 0.46-0.62) of model before expert-inspiring. Taking this model as an original model, AUC on the second cohort was 0.76 (95% CI: 0.67-0.84). The AUC was improved to 0.83 (95% CI: 0.77-0.90) with the data-sharing model, and further improved to 0.85 (95% CI: 0.79-0.92) with the skeleton sharing model. The trend that the skeleton sharing model had an advantage in performance was similar in the third cohort. CONCLUSIONS We established an expert-inspired model with better predictive performance and interpretability than the traditional constructed model. Skeleton sharing process is superior to data sharing and direct model implementation in model implementation.
Collapse
Affiliation(s)
- Han Xiao
- Department of Medical Ultrasonics, Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuchen Guo
- Institute for Brain and Cognitive Sciences, BRNist, Tsinghua University, Beijing, China
| | - Qian Zhou
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Shuling Chen
- Department of Medical Ultrasonics, Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunjun Fu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Lin
- Department of Liver and Pancreatobiliary Surgery, Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | | | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhua Huang
- Department of Pathology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jingxian Shen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol 2022; 76:1348-1361. [PMID: 35589255 PMCID: PMC9126418 DOI: 10.1016/j.jhep.2022.01.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and the third-leading cause of cancer-related death worldwide, with incidence and mortality rates that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and prognostication. AI approaches include computational search algorithms, machine learning (ML) and deep learning (DL) models. ML consists of a computer running repeated iterations of models, in order to progressively improve performance of a specific task, such as classifying an outcome. DL models are a subtype of ML, based on neural network structures that are inspired by the neuroanatomy of the human brain. A growing body of recent data now apply DL models to diverse data sources - including electronic health record data, imaging modalities, histopathology and molecular biomarkers - to improve the accuracy of HCC risk prediction, detection and prediction of treatment response. Despite the promise of these early results, future research is still needed to standardise AI data, and to improve both the generalisability and interpretability of results. If such challenges can be overcome, AI has the potential to profoundly change the way in which care is provided to patients with or at risk of HCC.
Collapse
Affiliation(s)
- Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Henri Mondor University Hospital, Department of Pathology, Créteil, France; Inserm U955 and Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Tobias Paul Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tracey G. Simon
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
79
|
Alpha-Fetoprotein+Alkaline Phosphatase (A-A) Score Can Predict the Prognosis of Patients with Ruptured Hepatocellular Carcinoma Underwent Hepatectomy. DISEASE MARKERS 2022; 2022:9934189. [PMID: 35493302 PMCID: PMC9050275 DOI: 10.1155/2022/9934189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
Abstract
Background This research is aimed at establishing a scoring system alpha-fetoprotein+alkaline phosphatase (A-A score) based on preoperative serum alpha-fetoprotein (AFP) and alkaline phosphatase (ALP) levels and to investigate its clinical significance in patients with ruptured hepatocellular carcinoma (rHCC) after hepatectomy. Methods 175 ruptured hepatocellular carcinoma (HCC) patients treated with hepatectomy were included. Survival analysis was assessed by the Kaplan-Meier method. Prognostic factors were analyzed in a multivariate model. Preoperative serum AFP and ALP values are assigned a score of 1 if they exceed the threshold value and 0 if they are below the threshold value, A-A score is obtained by summing the scores of two variables (AFP, ALP), and the predictive values of AFP, ALP, and A-A score were compared by receiver operating characteristic curve (ROC) analysis, and subgroup analyses were performed to further evaluate the power of A-A scores. Results Of the 175 patients, 67 (38.3%) had an A-A score of 0, 72 (41.1%) had an A-A score of 1, and 36 (20.6%) had an A-A score of 2. In multivariate analysis, the A-A score, the BCLC stage, and the extent of resection were independent predictors of OS in patients with rHCC. The 1-, 3-, and 5-year OS and RFS in patients with an A-A score of 1 were better than those with an A-A score of 0 and worse than those with an A-A score of 1 (all p < 0.05). Based on the results of ROC analysis, the A-A score is superior to AFP or ALP alone in predicting the prognosis of patients with ruptured HCC. In subgroup analysis, A-A score could accurately predict the prognosis of patients with or without microvascular invasion (MVI) and with different Child-Pugh grades or gender. Conclusions The A-A score can effectively predict the prognosis of patients after hepatectomy of ruptured hepatocellular carcinoma. At the same time, it also has good evaluation ability in different subgroups.
Collapse
|
80
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
81
|
Hu F, Zhang Y, Li M, Liu C, Zhang H, Li X, Liu S, Hu X, Wang J. Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures. Front Oncol 2022; 12:853336. [PMID: 35392229 PMCID: PMC8981726 DOI: 10.3389/fonc.2022.853336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2022] Open
Abstract
Objective To predict preoperative microvascular invasion (MVI) risk grade by analyzing the radiomics signatures of tumors and peritumors on enhanced magnetic resonance imaging (MRI) images of hepatocellular carcinoma (HCC). Methods A total of 501 HCC patients (training cohort n = 402, testing cohort n = 99) who underwent preoperative Gd-EOB-DTPA-enhanced MRI and curative liver resection within a month were studied retrospectively. Radiomics signatures were selected using the least absolute shrinkage and selection operator (Lasso) algorithm. Unimodal radiomics models based on tumors and peritumors (10mm or 20mm) were established using the Logistic algorithm, using plain T1WI, arterial phase (AP), portal venous phase (PVP), and hepatobiliary phase (HBP) images. Multimodal radiomics models based on different regions of interest (ROIs) were established using a combinatorial modeling approach. Moreover, we merged radiomics signatures and clinico-radiological features to build unimodal and multimodal clinical radiomics models. Results In the testing cohort, the AUC of the dual-region (tumor & peritumor 20 mm)radiomics model and single-region (tumor) radiomics model were 0.741 vs 0.694, 0.733 vs 0.725, 0.667 vs 0.710, and 0.559 vs 0.677, respectively, according to AP, PVP, T1WI, and HBP images. The AUC of the final clinical radiomics model based on tumor and peritumoral 20mm incorporating radiomics features in AP&PVP&T1WI images for predicting MVI classification in the training and testing cohorts were 0.962 and 0.852, respectively. Conclusion The radiomics signatures of the dual regions for tumor and peritumor on AP and PVP images are of significance to predict MVI.
Collapse
Affiliation(s)
- Fang Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Radiology, Tongliang District People's Hospital, Chongqing, China
| | - Yuhan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Handan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sanyuan Liu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
82
|
Li L, Wu C, Huang Y, Chen J, Ye D, Su Z. Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis. Front Oncol 2022; 12:831996. [PMID: 35463303 PMCID: PMC9021380 DOI: 10.3389/fonc.2022.831996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). To perform a meta-analysis to investigate the diagnostic performance of radiomics for the preoperative evaluation of MVI in HCC and the effect of potential factors. Materials and Methods A systematic literature search was performed in PubMed, Embase, and the Cochrane Library for studies focusing on the preoperative evaluation of MVI in HCC with radiomics methods. Data extraction and quality assessment of the retrieved studies were performed. Statistical analysis included data pooling, heterogeneity testing and forest plot construction. Meta-regression and subgroup analyses were performed to reveal the effect of potential explanatory factors [design, combination of clinical factors, imaging modality, number of participants, and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) applicability risk] on the diagnostic performance. Results Twenty-two studies with 4,129 patients focusing on radiomics for the preoperative prediction of MVI in HCC were included. The pooled sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were 84% (95% CI: 81, 87), 83% (95% CI: 78, 87) and 0.90 (95% CI: 0.87, 0.92). Substantial heterogeneity was observed among the studies (I²=94%, 95% CI: 88, 99). Meta-regression showed that all investigative covariates contributed to the heterogeneity in the sensitivity analysis (P < 0.05). Combined clinical factors, MRI, CT and number of participants contributed to the heterogeneity in the specificity analysis (P < 0.05). Subgroup analysis showed that the pooled sensitivity, specificity and AUC estimates were similar among studies with CT or MRI. Conclusion Radiomics is a promising noninvasive method that has high preoperative diagnostic performance for MVI status. Radiomics based on CT and MRI had a comparable predictive performance for MVI in HCC. Prospective, large-scale and multicenter studies with radiomics methods will improve the diagnostic power for MVI in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=259363, identifier CRD42021259363.
Collapse
Affiliation(s)
- Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Chaoqun Wu
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxin Chen
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dalin Ye
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhongzhen Su
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
83
|
Tang Y, Xu L, Ren Y, Li Y, Yuan F, Cao M, Zhang Y, Deng M, Yao Z. Identification and Validation of a Prognostic Model Based on Three MVI-Related Genes in Hepatocellular Carcinoma. Int J Biol Sci 2022; 18:261-275. [PMID: 34975331 PMCID: PMC8692135 DOI: 10.7150/ijbs.66536] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohistochemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immunohistochemistry showed that all three genes had higher expression levels in HCC samples than in normal controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable for guiding clinical treatment selection and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Yongchang Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xu
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
84
|
Zhang J, Huang S, Xu Y, Wu J. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:763842. [PMID: 35280776 PMCID: PMC8907853 DOI: 10.3389/fonc.2022.763842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging. Aim To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data. Methods Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity. Results Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75–0.90], 0.84 [0.77–0.89], 5.14 [3.53–7.48], 0.2 [0.12–0.31], and 0.90 [0.87–0.93]; and for non-deep learning models, they were 0.77 [0.71–0.82], 0.77 [0.73–0.80], 3.30 [2.83–3.84], 0.30 [0.24–0.38], and 0.82 [0.79–0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC. Conclusion This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
85
|
Multi-phase contrast-enhanced magnetic resonance image-based radiomics-combined machine learning reveals microscopic ultra-early hepatocellular carcinoma lesions. Eur J Nucl Med Mol Imaging 2022; 49:2917-2928. [PMID: 35230493 PMCID: PMC9206604 DOI: 10.1007/s00259-022-05742-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
Purpose
This study aimed to investigate whether models built from radiomics features based on multiphase contrast-enhanced MRI can identify microscopic pre-hepatocellular carcinoma lesions. Methods We retrospectively studied 54 small hepatocellular carcinoma (SHCC, diameter < 2 cm) patients and 70 patients with hepatocellular cysts or haemangiomas from September 2018 to June 2021. For the former, two MRI scans were collected within 12 months of each other; the 2nd scan was used to confirm the diagnosis. The volumes of interest (VOIs), including SHCCs and normal liver tissues, were delineated on the 2nd scans, mapped to the 1st scans via image registration, and enrolled into the SHCC and internal-control cohorts, respectively, while those of normal liver tissues from patients with hepatocellular cysts or haemangioma were enrolled in the external-control cohort. We extracted 1132 radiomics features from each VOI and analysed their discriminability between the SHCC and internal-control cohorts for intra-group classification and the SHCC and external-control cohorts for inter-group classification. Five radial basis-function, kernel-based support vector machine (SVM) models (four corresponding single-phase models and one integrated from the four-phase MR images) were established. Results Among the 124 subjects, the multiphase models yielded better performance on the testing set for intra-group and inter-group classification, with areas under the receiver operating characteristic curves of 0.93 (95% CI, 0.85–1.00) and 0.97 (95% CI, 0.92–1.00), accuracies of 86.67% and 94.12%, sensitivities of 87.50% and 94.12%, and specificities of 85.71% and 94.12%, respectively. Conclusion The combined multiphase MRI-based radiomics feature model revealed microscopic pre-hepatocellular carcinoma lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05742-8.
Collapse
|
86
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
87
|
Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100443. [PMID: 35243281 PMCID: PMC8867112 DOI: 10.1016/j.jhepr.2022.100443] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of metabolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quantitative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hepatology and outline critical obstacles which need to be overcome.
Collapse
|
88
|
Gong X, Zheng B, Xu G, Chen H, Chen C. Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer. J Thorac Dis 2022; 13:6240-6251. [PMID: 34992804 PMCID: PMC8662490 DOI: 10.21037/jtd-21-1107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
Background Accurate prognostic estimation for esophageal cancer (EC) patients plays an important role in the process of clinical decision-making. The objective of this study was to develop an effective model to predict the 5-year survival status of EC patients using machine learning (ML) algorithms. Methods We retrieved the information of patients diagnosed with EC between 2010 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) Program, including 24 features. A total of 8 ML models were applied to the selected dataset to classify the EC patients in terms of 5-year survival status, including 3 newly developed gradient boosting models (GBM), XGBoost, CatBoost, and LightGBM, 2 commonly used tree-based models, gradient boosting decision trees (GBDT) and random forest (RF), and 3 other ML models, artificial neural networks (ANN), naive Bayes (NB), and support vector machines (SVM). A 5-fold cross-validation was used in model performance measurement. Results After excluding records with missing data, the final study population comprised 10,588 patients. Feature selection was conducted based on the χ2 test, however, the experiment results showed that the complete dataset provided better prediction of outcomes than the dataset with removal of non-significant features. Among the 8 models, XGBoost had the best performance [area under the receiver operating characteristic (ROC) curve (AUC): 0.852 for XGBoost, 0.849 for CatBoost, 0.850 for LightGBM, 0.846 for GBDT, 0.838 for RF, 0.844 for ANN, 0.833 for NB, and 0.789 for SVM]. The accuracy and logistic loss of XGBoost were 0.875 and 0.301, respectively, which were also the best performances. In the XGBoost model, the SHapley Additive exPlanations (SHAP) value was calculated and the result indicated that the four features: reason no cancer-directed surgery, Surg Prim Site, age, and stage group had the greatest impact on predicting the outcomes. Conclusions The XGBoost model and the complete dataset can be used to construct an accurate prognostic model for patients diagnosed with EC which may be applicable in clinical practice in the future.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Hao Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| |
Collapse
|
89
|
Vamvakas A, Tsivaka D, Logothetis A, Vassiou K, Tsougos I. Breast Cancer Classification on Multiparametric MRI - Increased Performance of Boosting Ensemble Methods. Technol Cancer Res Treat 2022; 21:15330338221087828. [PMID: 35341421 PMCID: PMC8966070 DOI: 10.1177/15330338221087828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: This study aims to assess the utility of Boosting ensemble classification methods for increasing the diagnostic performance of multiparametric Magnetic Resonance Imaging (mpMRI) radiomic models, in differentiating benign and malignant breast lesions. Methods: The dataset includes mpMR images of 140 female patients with mass-like breast lesions (70 benign and 70 malignant), consisting of Dynamic Contrast Enhanced (DCE) and T2-weighted sequences, and the Apparent Diffusion Coefficient (ADC) calculated from the Diffusion Weighted Imaging (DWI) sequence. Tumor masks were manually defined in all consecutive slices of the respective MRI volumes and 3D radiomic features were extracted with the Pyradiomics package. Feature dimensionality reduction was based on statistical tests and the Boruta wrapper. Hierarchical Clustering on Spearman's rank correlation coefficients between features and Random Forest classification for obtaining feature importance, were implemented for selecting the final feature subset. Adaptive Boosting (AdaBoost), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) classifiers, were trained and tested with bootstrap validation in differentiating breast lesions. A Support Vector Machine (SVM) classifier was also exploited for comparison. The Receiver Operator Characteristic (ROC) curves and DeLong's test were utilized to evaluate the classification performances. Results: The final feature subset consisted of 5 features derived from the lesion shape and the first order histogram of DCE and ADC images volumes. XGboost and LGBM achieved statistically significantly higher average classification performances [AUC = 0.95 and 0.94 respectively], followed by Adaboost [AUC = 0.90], GB [AUC = 0.89] and SVM [AUC = 0.88]. Conclusion: Overall, the integration of Ensemble Learning methods within mpMRI radiomic analysis can improve the performance of computer-assisted diagnosis of breast cancer lesions.
Collapse
Affiliation(s)
- Alexandros Vamvakas
- Medical Physics Department, Medical School, 37786University of Thessaly, Larissa, Greece
| | - Dimitra Tsivaka
- Medical Physics Department, Medical School, 37786University of Thessaly, Larissa, Greece
| | - Andreas Logothetis
- Medical Physics Laboratory, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Vassiou
- Department of Anatomy and Radiology, Medical School, 37786University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Medical Physics Department, Medical School, 37786University of Thessaly, Larissa, Greece
| |
Collapse
|
90
|
Ahn JC, Qureshi TA, Singal AG, Li D, Yang JD. Deep learning in hepatocellular carcinoma: Current status and future perspectives. World J Hepatol 2021; 13:2039-2051. [PMID: 35070007 PMCID: PMC8727204 DOI: 10.4254/wjh.v13.i12.2039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence and death. Despite decades of research and development of new treatment options, the overall outcomes of patients with HCC continue to remain poor. There are areas of unmet need in risk prediction, early diagnosis, accurate prognostication, and individualized treatments for patients with HCC. Recent years have seen an explosive growth in the application of artificial intelligence (AI) technology in medical research, with the field of HCC being no exception. Among the various AI-based machine learning algorithms, deep learning algorithms are considered state-of-the-art techniques for handling and processing complex multimodal data ranging from routine clinical variables to high-resolution medical images. This article will provide a comprehensive review of the recently published studies that have applied deep learning for risk prediction, diagnosis, prognostication, and treatment planning for patients with HCC.
Collapse
Affiliation(s)
- Joseph C Ahn
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55904, United States
| | - Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ju-Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
91
|
Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021. [DOI: 10.3390/cancers13225864
expr 925508420 + 988274397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
|
92
|
Wang Q, Li C, Zhang J, Hu X, Fan Y, Ma K, Sparrelid E, Brismar TB. Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021; 13:5864. [PMID: 34831018 PMCID: PMC8616379 DOI: 10.3390/cancers13225864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Xiaojun Hu
- Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China;
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yingfang Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
- Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| |
Collapse
|
93
|
Xu L, Jian X, Liu Z, Zhao J, Zhang S, Lin Y, Xie L. Construction and Validation of an Immune Cell Signature Score to Evaluate Prognosis and Therapeutic Efficacy in Hepatocellular Carcinoma. Front Genet 2021; 12:741226. [PMID: 34646307 PMCID: PMC8503558 DOI: 10.3389/fgene.2021.741226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with high morbidity and mortality worldwide. Tumor immune microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC. However, the effect of immune cell signatures (ICSs) representing the characteristics of TIME on the prognosis and therapeutic benefit of HCC patients remains to be further studied. Materials and methods: In total, the gene expression profiles of 1,447 HCC patients from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, and Gene Expression Omnibus, were obtained and applied. Based on a comprehensive collection of marker genes, 182 ICSs were evaluated by single sample gene set enrichment analysis. Then, by performing univariate and multivariate Cox analysis and random forest modeling, four significant signatures were selected to fit an immune cell signature score (ICSscore). Results: In this study, an ICSscore-based prognostic model was constructed to stratify HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was successfully validated in two independent cohorts. Moreover, the ICSscore values were found to positively correlate with the current American Joint Committee on Cancer staging system, indicating that ICSscore could act as a comparable biomarker for HCC risk stratification. In addition, when setting the four ICSs and ICSscores as features, the classifiers can significantly distinguish treatment-responding and non-responding samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify samples with therapeutic benefits. Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can be applied successfully for prognostic stratification and therapeutic evaluation in HCC. This study provides an insight into the therapeutic predictive efficacy of prognostic ICS, and a novel ICSscore was constructed to allow future expanded application.
Collapse
Affiliation(s)
- Linfeng Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhao Liu
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Zhao
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Siwen Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
94
|
Liu SC, Lai J, Huang JY, Cho CF, Lee PH, Lu MH, Yeh CC, Yu J, Lin WC. Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals. Cancer Imaging 2021; 21:56. [PMID: 34627393 PMCID: PMC8501676 DOI: 10.1186/s40644-021-00425-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The accuracy of estimating microvascular invasion (MVI) preoperatively in hepatocellular carcinoma (HCC) by clinical observers is low. Most recent studies constructed MVI predictive models utilizing radiological and/or radiomics features extracted from computed tomography (CT) images. These methods, however, rely heavily on human experiences and require manual tumor contouring. We developed a deep learning-based framework for preoperative MVI prediction by using CT images of arterial phase (AP) with simple tumor labeling and without the need of manual feature extraction. The model was further validated on CT images that were originally scanned at multiple different hospitals. METHODS CT images of AP were acquired for 309 patients from China Medical University Hospital (CMUH). Images of 164 patients, who took their CT scanning at 54 different hospitals but were referred to CMUH, were also collected. Deep learning (ResNet-18) and machine learning (support vector machine) models were constructed with AP images and/or patients' clinical factors (CFs), and their performance was compared systematically. All models were independently evaluated on two patient cohorts: validation set (within CMUH) and external set (other hospitals). Subsequently, explainability of the best model was visualized using gradient-weighted class activation map (Grad-CAM). RESULTS The ResNet-18 model built with AP images and patients' clinical factors was superior than other models achieving a highest AUC of 0.845. When evaluating on the external set, the model produced an AUC of 0.777, approaching its performance on the validation set. Model interpretation with Grad-CAM revealed that MVI relevant imaging features on CT images were captured and learned by the ResNet-18 model. CONCLUSIONS This framework provide evidence showing the generalizability and robustness of ResNet-18 in predicting MVI using CT images of AP scanned at multiple different hospitals. Attention heatmaps obtained from model explainability further confirmed that ResNet-18 focused on imaging features on CT overlapping with the conditions used by radiologists to estimate MVI clinically.
Collapse
Affiliation(s)
- Shu-Cheng Liu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Jesyin Lai
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Jhao-Yu Huang
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Fong Cho
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Pei Hua Lee
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Min-Hsuan Lu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chieh Yeh
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Surgery, Asia University Hospital, Taichung, Taiwan, 41354
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Wei-Ching Lin
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan. .,Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan. .,Department of Biomedical Imaging and Radiological Science, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
95
|
Feng B, Ma XH, Wang S, Cai W, Liu XB, Zhao XM. Application of artificial intelligence in preoperative imaging of hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2021; 27:5341-5350. [PMID: 34539136 PMCID: PMC8409162 DOI: 10.3748/wjg.v27.i32.5341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor in China. Preoperative diagnosis of HCC is challenging because of atypical imaging manifestations and the diversity of focal liver lesions. Artificial intelligence (AI), such as machine learning (ML) and deep learning, has recently gained attention for its capability to reveal quantitative information on images. Currently, AI is used throughout the entire radiomics process and plays a critical role in multiple fields of medicine. This review summarizes the applications of AI in various aspects of preoperative imaging of HCC, including segmentation, differential diagnosis, prediction of histopathology, early detection of recurrence after curative treatment, and evaluation of treatment response. We also review the limitations of previous studies and discuss future directions for diagnostic imaging of HCC.
Collapse
Affiliation(s)
- Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Hong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xia-Bi Liu
- Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xin-Ming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
96
|
Zhang W, Liu Z, Chen J, Dong S, Cen B, Zheng S, Xu X. A preoperative model for predicting microvascular invasion and assisting in prognostic stratification in liver transplantation for HCC regarding empirical criteria. Transl Oncol 2021; 14:101200. [PMID: 34399173 PMCID: PMC8367829 DOI: 10.1016/j.tranon.2021.101200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The predictive model used preoperatively accessible clinical parameters and radiographic features developed and validated by us to predict micro vascular invasion (MVI), based on a large sample, two Liver Transplantation (LT) centers observed 5 years among Hepatocellular Carcinoma (HCC) patients who underwent LT. This is the first study to report preoperative clinical variables and radiographic features for preoperative prediction of MVI among HCC patients undergoing LT. Prediction of the presence of MVI can help surgical decision-making and improve surgical management for HCC to further distinguish clinical outcomes.
Purpose The prediction of microvascular invasion (MVI) has increasingly been recognized to reflect prognosis involving local invasion and distant metastasis of hepatocellular carcinoma (HCC). The aim of this study was to assess a predictive model using preoperatively accessible clinical parameters and radiographic features developed and validated to predict MVI. This predictive model can distinguish clinical outcomes after liver transplantation (LT) for HCC patients. Methods In total, 455 HCC patients who underwent LT between January 1, 2015, and December 31, 2019, were retrospectively enrolled in two centers in China as a training cohort (ZFA center; n = 244) and a test cohort (SLA center; n = 211). Univariate and multivariate backward logistic regression analysis were used to select the significant clinical variables which were incorporated into the predictive nomogram associated with MVI. Receiver operating characteristic (ROC) curves based on clinical parameters were plotted to predict MVI in the training and test sets. Results Univariate and multivariate backward logistic regression analysis identified four independent preoperative risk factors for MVI: α-fetoprotein (AFP) level (p < 0.001), tumor size ((p < 0.001), peritumoral star node (p = 0.003), and tumor margin (p = 0.016). The predictive nomogram using these predictors achieved an area under curve (AUC) of 0.85 and 0.80 in the training and test sets. Furthermore, MVI could discriminate different clinical outcomes within the Milan criteria (MC) and beyond the MC. Conclusions The nomogram based on preoperatively clinical variables demonstrated good performance for predicting MVI. MVI may serve as a supplement to the MC.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Zhejiang University Cancer center, Hangzhou, 310058, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junli Chen
- National Center for healthcare quality management in liver transplant, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Siyi Dong
- National Center for healthcare quality management in liver transplant, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou,310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310000, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Zhejiang University Cancer center, Hangzhou, 310058, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
97
|
Chong H, Gong Y, Pan X, Liu A, Chen L, Yang C, Zeng M. Peritumoral Dilation Radiomics of Gadoxetate Disodium-Enhanced MRI Excellently Predicts Early Recurrence of Hepatocellular Carcinoma without Macrovascular Invasion After Hepatectomy. J Hepatocell Carcinoma 2021; 8:545-563. [PMID: 34136422 PMCID: PMC8200148 DOI: 10.2147/jhc.s309570] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
Background Whether peritumoral dilation radiomics can excellently predict early recrudescence (≤2 years) in hepatocellular carcinoma (HCC) remains unclear. Methods Between March 2012 and June 2018, 323 pathologically confirmed HCC patients without macrovascular invasion, who underwent liver resection and preoperative gadoxetate disodium (Gd-EOB-DTPA) MRI, were consecutively recruited into this study. Multivariate logistic regression identified independent clinicoradiologic predictors of 2-year recrudescence. Peritumoral dilation (tumor and peritumoral zones within 1cm) radiomics extracted features from 7-sequence images for modeling and achieved average but robust predictive performance through 5-fold cross validation. Independent clinicoradiologic predictors were then incorporated with the radiomics model for constructing a comprehensive nomogram. The predictive discrimination was quantified with the area under the receiver operating characteristic curve (AUC) and net reclassification improvement (NRI). Results With the median recurrence-free survival (RFS) reaching 60.43 months, 28.2% (91/323) and 16.4% (53/323) patients suffered from early and delay relapse, respectively. Microvascular invasion, tumor size >5 cm, alanine aminotransferase >50 U/L, γ-glutamyltransferase >60 U/L, prealbumin ≤250 mg/L, and peritumoral enhancement independently impaired 2-year RFS in the clinicoradiologic model with AUC of 0.694 (95% CI 0.628–0.760). Nevertheless, these indexes were paucity of robustness (P >0.05) when integrating with 38 most recurrence-related radiomics signatures for developing the comprehensive nomogram. The peritumoral dilation radiomics—the ultimate prediction model yielded satisfactory mean AUCs (training cohort: 0.939, 95% CI 0.908–0.973; validation cohort: 0.842, 95% CI 0.736–0.951) after 5-fold cross validation and fitted well with the actual relapse status in the calibration curve. Besides, our radiomics model obtained the best clinical net benefits, with significant improvements of NRI (35.9%-66.1%, P <0.001) versus five clinical algorithms: the clinicoradiologic model, the tumor-node-metastasis classification, the Barcelona Clinic Liver Cancer stage, the preoperative and postoperative risks of Early Recurrence After Surgery for Liver tumor. Conclusion Gd-EOB-DTPA MRI-based peritumoral dilation radiomics is a potential preoperative biomarker for early recurrence of HCC patients without macrovascular invasion.
Collapse
Affiliation(s)
- Huanhuan Chong
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Yuda Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, 200232, People's Republic of China
| | - Aie Liu
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, 200232, People's Republic of China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, 200232, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
98
|
Liu X, Gao K, Liu B, Pan C, Liang K, Yan L, Ma J, He F, Zhang S, Pan S, Yu Y. Advances in Deep Learning-Based Medical Image Analysis. HEALTH DATA SCIENCE 2021; 2021:8786793. [PMID: 38487506 PMCID: PMC10880179 DOI: 10.34133/2021/8786793] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/04/2021] [Indexed: 03/17/2024]
Abstract
Importance. With the booming growth of artificial intelligence (AI), especially the recent advancements of deep learning, utilizing advanced deep learning-based methods for medical image analysis has become an active research area both in medical industry and academia. This paper reviewed the recent progress of deep learning research in medical image analysis and clinical applications. It also discussed the existing problems in the field and provided possible solutions and future directions.Highlights. This paper reviewed the advancement of convolutional neural network-based techniques in clinical applications. More specifically, state-of-the-art clinical applications include four major human body systems: the nervous system, the cardiovascular system, the digestive system, and the skeletal system. Overall, according to the best available evidence, deep learning models performed well in medical image analysis, but what cannot be ignored are the algorithms derived from small-scale medical datasets impeding the clinical applicability. Future direction could include federated learning, benchmark dataset collection, and utilizing domain subject knowledge as priors.Conclusion. Recent advanced deep learning technologies have achieved great success in medical image analysis with high accuracy, efficiency, stability, and scalability. Technological advancements that can alleviate the high demands on high-quality large-scale datasets could be one of the future developments in this area.
Collapse
Affiliation(s)
| | | | - Bo Liu
- DeepWise AI Lab, BeijingChina
| | | | | | | | | | | | | | - Siyuan Pan
- Shanghai Jiaotong University, Shanghai, China
| | - Yizhou Yu
- DeepWise AI Lab, BeijingChina
- The University of Hong Kong, Hong Kong
| |
Collapse
|
99
|
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters. J Cancer Res Clin Oncol 2021; 147:3757-3767. [PMID: 33839938 DOI: 10.1007/s00432-021-03617-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Microvascular invasion (MVI) is a critical determinant of the early recurrence and poor prognosis of patients with hepatocellular carcinoma (HCC). Prediction of MVI status is clinically significant for the decision of treatment strategies and the assessment of patient's prognosis. A deep learning (DL) model was developed to predict the MVI status and grade in HCC patients based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical parameters. METHODS HCC patients with pathologically confirmed MVI status from January to December 2016 were enrolled and preoperative DCE-MRI of these patients were collected in this study. Then they were randomly divided into the training and testing cohorts. A DL model with eight conventional neural network (CNN) branches for eight MRI sequences was built to predict the presence of MVI, and further combined with clinical parameters for better prediction. RESULTS Among 601 HCC patients, 376 patients were pathologically MVI absent, and 225 patients were MVI present. To predict the presence of MVI, the DL model based only on images achieved an area under curve (AUC) of 0.915 in the testing cohort as compared to the radiomics model with an AUC of 0.731. The DL combined with clinical parameters (DLC) model yielded the best predictive performance with an AUC of 0.931. For the MVI-grade stratification, the DLC models achieved an overall accuracy of 0.793. Survival analysis demonstrated that the patients with DLC-predicted MVI status were associated with the poor overall survival (OS) and recurrence-free survival (RFS). Further investigation showed that hepatectomy with the wide resection margin contributes to better OS and RFS in the DLC-predicted MVI present patients. CONCLUSION The proposed DLC model can provide a non-invasive approach to evaluate MVI before surgery, which can help surgeons make decisions of surgical strategies and assess patient's prognosis.
Collapse
|
100
|
Maruyama H, Yamaguchi T, Nagamatsu H, Shiina S. AI-Based Radiological Imaging for HCC: Current Status and Future of Ultrasound. Diagnostics (Basel) 2021; 11:diagnostics11020292. [PMID: 33673229 PMCID: PMC7918339 DOI: 10.3390/diagnostics11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Recent international guidelines request an identification of the stage and patient background/condition for an appropriate decision for the management direction. Radiomics is a technology based on the quantitative extraction of image characteristics from radiological imaging modalities. Artificial intelligence (AI) algorithms are the principal axis of the radiomics procedure and may provide various results from large data sets beyond conventional techniques. This review article focused on the application of the radiomics-related diagnosis of HCC using radiological imaging (computed tomography, magnetic resonance imaging, and ultrasound (B-mode, contrast-enhanced ultrasound, and elastography)), and discussed the current role, limitation and future of ultrasound. Although the evidence has shown the positive effect of AI-based ultrasound in the prediction of tumor characteristics and malignant potential, posttreatment response and prognosis, there are still a number of issues in the practical management of patients with HCC. It is highly expected that the wide range of applications of AI for ultrasound will support the further improvement of the diagnostic ability of HCC and provide a great benefit to the patients.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
- Correspondence: ; Tel.: +81-3-38133111; Fax: +81-3-56845960
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan;
| | - Hiroaki Nagamatsu
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| |
Collapse
|