51
|
Mosquito larvicidal properties of Ficus benghalensis L. (Family: Moraceae) against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). ASIAN PAC J TROP MED 2011; 4:505-9. [DOI: 10.1016/s1995-7645(11)60135-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/11/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022] Open
|
52
|
Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors. Parasitol Res 2011; 109:1373-86. [PMID: 21537987 DOI: 10.1007/s00436-011-2384-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Owing to the fact that the application of synthetic larvicide has envenomed the surroundings as well as non-target organisms, natural products of plant origin with insecticidal properties have been tried as an indigenous method for the control of a variety of insect pests and vectors in the recent past. Insecticides of plant origin have been extensively used on agricultural pests and, to a very limited extent, against insect vectors of public health importance, which deserve careful and thorough screening. The use of plant extracts for insect control has several appealing features as these are generally more biodegradable, less hazardous and a rich storehouse of chemicals of diverse biological activities. Moreover, herbal sources give a lead for discovering new insecticides. Therefore, biologically active plant materials have attracted considerable interest in mosquito control study in recent times. The crude leaf extracts of Gymnema sylvestre (Retz) Schult (Asclepiadaceae) and purified gymnemagenol compound were studied against the early fourth-instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). In the present study, bioassay-guided fractionation of petroleum ether leaf extract of G. sylvestre led to the separation and identification of gymnemagenol as a potential new antiparasitic compound. Phytochemical analysis of G. sylvestre leaves revealed the presence of active constituents such as carbohydrates, saponins, phytosterols, phenols, flavonoids and tannins. However, cardiac glycosides and phlobatannins are absent in the plant extracts. Quantitative analysis results suggested that saponin (5%) was present in a high concentration followed by tannins (1.0%). The 50 g powder was loaded on silica gel column and eluted with chloroform-methanol-water as eluents. From that, 16 mg pure saponin compound was isolated and analysed by thin layer chromatography using chloroform and methanol as the solvent systems. The structure of the purified triterpenoid fraction was established from infrared (IR), ultraviolet (UV), (1)H nuclear magnetic resonance (NMR), (13)C NMR and mass spectral data. The carbon skeleton of the compound was obtained by (13)C NMR spectroscopy. The chemical shift assignments obtained for gymnemagenol from (1)H NMR correspond to the molecular formula C(30)H(50)O(4). The compound was identified as 3β, 16β, 28, 29-tetrahydroxyolean-12-ene (gymnemagenol sapogenin). Parasite larvae were exposed to varying concentrations of purified compound gymnemagenol for 24 h. The results suggested that the larval mortality effects of the compound were 28%, 69%, 100% and 31%, 63%, 100% at 6, 12 and 24 h against A. subpictus and C. quinquefasciatus, respectively. In the present study, the per cent mortality were 100, 86, 67, 36, 21 and 100, 78, 59, 38 and 19 observed in the concentrations of 1,000, 500, 250, 125 and 62.75 ppm against the fourth-instar larvae of A. subpitcus and C. quinquefasciatus, respectively. The purified compound gymnemagenol was tested in concentrations of 80, 40, 20, 10 and 5 ppm, and the per cent mortality were 100, 72, 53, 30 and 15 against A. subpitcus and 100, 89, 61, 42 and 30 against C. quinquefasciatus, respectively. The larvicidal crude leaf extract of G. sylvestre showed the highest mortality in the concentration of 1,000 ppm against the larvae of A. subpictus (LC(50) = 166.28 ppm, r (2) = 0.807) and against the larvae of C. quinquefasciatus (LC(50) = 186.55 ppm, r (2) = 0.884), respectively. The maximum efficacy was observed in gymnemagenol compound with LC(50) and r (2) values against the larvae of A. subpictus (22.99 ppm, 0.922) and against C. quinquefasciatus (15.92 ppm, 0.854), respectively. The control (distilled water) showed nil mortality in the concurrent assay.
Collapse
|
53
|
Govindarajan M. Evaluation of Andrographis paniculata Burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). ASIAN PAC J TROP MED 2011; 4:176-81. [DOI: 10.1016/s1995-7645(11)60064-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/27/2010] [Accepted: 02/15/2011] [Indexed: 11/29/2022] Open
|
54
|
Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 2011; 109:353-67. [DOI: 10.1007/s00436-011-2263-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/18/2011] [Indexed: 11/25/2022]
|
55
|
Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res 2011; 109:339-43. [DOI: 10.1007/s00436-011-2261-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|
56
|
Bagavan A, Rahuman AA. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors. ASIAN PAC J TROP MED 2011; 4:29-34. [PMID: 21771411 DOI: 10.1016/s1995-7645(11)60027-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 10/27/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To evaluate the mosquito larvicidal activity of plant extracts. METHODS The hexane, chloroform, ethyl acetate, acetone, and methanol leaf, flower and seed extracts of Abrus precatorius (A. precatorius), Croton bonplandianum (C. bonplandianum), Cynodon dactylon (C. dactylon), Musa paradisiaca (M. paradisiaca) and Syzygium aromaticum (S. aromaticum) were tested against fourth instar larvae of Anopheles vagus (An. vagus), Armigeres subalbatus (Ar. subalbatus) and Culex vishnui (Cx. vishnui). RESULTS The highest larval mortality was found in seed ethyl acetate extracts of A. precatorius and leaf extracts of C. bonplandianum, flower chloroform and methanol extracts of M. paradisiaca, and flower bud hexane extract of S. aromaticum against An. vagus with LC(50) values of 19.31, 39.96, 35.18, 79.90 and 85.90 μg/mL; leaf ethyl acetate and methanol extracts of C. dactylon, flower methanol extract of M. paradisiaca, flower bud methanol extract of S. aromaticum against Ar. subalbatus with LC(50) values of 21.67, 32.62, 48.90 and 78.28 μg/mL, and seed methanol of A. precatorius, flower methanol extract of M. paradisiaca, flower bud hexane extract of S. aromaticum against Cx. vishnui with LC(50) values of 136.84, 103.36 and 149.56 μg/mL, respectively. CONCLUSIONS These results suggest that the effective plant crude extracts have the potential to be used as an ideal ecofriendly approach for the control of disease vectors. This study provides the first report on the larvicidal activity of crude solvent extracts of different mosquitoes.
Collapse
Affiliation(s)
- A Bagavan
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Vellore District, Tamil Nadu, India
| | | |
Collapse
|
57
|
Govindarajan M, Karuppannan P. Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae). ASIAN PAC J TROP MED 2011; 4:24-8. [PMID: 21771410 DOI: 10.1016/s1995-7645(11)60026-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/27/2010] [Accepted: 12/15/2010] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The present study deals with the investigation of larvicidal and ovicidal activities of benzene, hexane, ethyl acetate, methanol and chloroform leaf extract of Eclipta alba (E. alba) against dengue vector, Aedes aegypti (Ae. Aegypti). METHODS Twenty five early III instar larvae of Ae. aegypti was exposed to various concentrations (50-300 ppm) and was assayed in the laboratory by using the protocol of WHO 2005; the 24 h LC(50) values of the E. alba leaf extract was determined by Probit analysis. For ovicidal activity, slightly modified method of Su and Mulla was performed. The ovicidal activity was determined against Ae. aegypti to various concentrations ranging from 100-350 ppm under the laboratory conditions. The egg hatch rates were assessed 48 h post treatment. RESULTS The LC(50) values of benzene, hexane, ethyl acetate, methanol and chloroform extract of E. alba against early third instar larvae of Ae. aegypti were 151.38, 165.10, 154.88, 127.64 and 146.28 ppm, respectively. Maximum larvicidal activity was observed in the methanol extract followed by chloroform, benzene, ethyl acetate and hexane extract. No mortality was observed in control. Among five solvent tested the methanol extract was found to be most effective for ovicidal activity against Ae. aegypti. The methanol extracts exerted 100% mortality (zero hatchability) at 300 ppm. CONCLUSIONS From the results it can be concluded the crude extract of E. alba was an excellent potential for controlling Ae. aegypti mosquito.
Collapse
Affiliation(s)
- M Govindarajan
- Division of Phytochemistry and Vector Biology, Department of Zoology, Annamalai University, Annamalai Nagar-608 002, India.
| | | |
Collapse
|
58
|
Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res 2011; 109:221-9. [PMID: 21212981 DOI: 10.1007/s00436-010-2228-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
Citrus limonoids, nomilin and limonin, were used for larvicidal assay against Aedes albopictus utilizing WHO methodology. LC(50s) were 305.83, 176.08, and 136.07 μM for nomilin and 850.09, 600.72, and 407.09 μM for limonin after 24, 48, and 72 h, respectively. LT(50) assays exhibited that Savage citrange oil was the best at all concentrations (400, 500, 600, and 700 ppm) while Fairchild and Cassa grande were the weakest oils at 400 ppm, but at 500, 600, and 700 ppm, Carrizo citrange remained at the bottom with highest LT(50) values. Results exhibited that nomilin was more toxic than limonin and therefore provided a clear indication that limonoids in sample oils influenced the potential of respective oil. Out of the 10 tested citrus seed oils, Savage citrange (Citrus sinensis) comprised the maximum amount of limonin (2823.59 μg/ml) followed by grapefruit, Sacaton citrumelo, and Jaffa. When this oil (Savage citrange) was evaluated for bioassay against larvae of Ae. albopictus, it reflected complete dominance (LC(50) and LT(50)) as compared to rest of the oils. Although Jaffa (Citrus paradisi) was found to contain nomilin and limonin, it was found less effective as compared to Savage citrange. The oils from Minneola and Chinese lime did not contain limonin and nomilin, and were therefore weak in terms of LC(50) values. Presence of limonin and nomilin in plant products is therefore a significant indicator of the pest control that needs to be exploited in other plants as well.
Collapse
|
59
|
Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(11)60006-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
60
|
Patil CD, Patil SV, Salunke BK, Salunkhe RB. Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res 2010; 108:1253-63. [DOI: 10.1007/s00436-010-2174-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/12/2010] [Indexed: 11/29/2022]
|
61
|
Govindarajan M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60210-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
62
|
In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 2010; 108:15-22. [DOI: 10.1007/s00436-010-2034-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
63
|
Subbarayan PR, Sarkar M, Impellizzeri S, Raymo F, Lokeshwar BL, Kumar P, Agarwal RP, Ardalan B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: specific inhibitory activity against pancreatic cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:78-82. [PMID: 20541002 DOI: 10.1016/j.jep.2010.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 05/14/2010] [Accepted: 06/02/2010] [Indexed: 05/29/2023]
Abstract
AIMS OF THE STUDY Achyranthes aspera (Family: Amaranthacea) is a medicinal plant used as an anti-cancer agent in ayurveda, a traditional system of medicine practiced in subcontinental India. The aim of the study was to systematically investigate the anti-proliferative properties of Achyranthes aspera leaves extracted in methanol (LE) on human cancer cells in vitro. MATERIALS AND METHODS We tested time, dose dependent and specific anti-proliferative activity of LE by clonogenic cell survival assay on human cancer and normal epithelial cell lines in vitro. We further investigated its effect on the expression of metastatic and angiogenic genes by real time polymerase chain reaction. On silica gel column, we carried out initial fractionation analysis. RESULTS LE exhibited time and dose dependent cytotoxicity on several tumor cells. Compared to cancer cells of colon, breast, lung and prostate origin, pancreatic cancer cells were significantly more sensitive to LE. Preliminary mechanistic studies suggested that LE selectively suppressed the transcription of metalloproteases (MMP-1 and -2), inhibitors of MMPs (TIMP-2) and angiogenic factors (VEGF-A and VEGF-B). Fractionation of LE on methanol equilibrated silica gel column resolved into three fractions of which fraction (F 3) was found to be enriched with anti-proliferative activity. CONCLUSION Methanolic extract of Achyranthes aspera contains potent anti-proliferative compound with specific activity against pancreatic cancer. Further studies are needed to confirm the in vivo anti-tumorigenicity and subsequent chemical characterization of the active molecule(s).
Collapse
Affiliation(s)
- Pochi R Subbarayan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Bagavan A, Kamaraj C, Elango G, Abduz Zahir A, Abdul Rahuman A. Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 2009; 166:286-92. [PMID: 19819626 DOI: 10.1016/j.vetpar.2009.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/06/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
The adulticidal and larvicidal effect of indigenous plant extracts were investigated against the adult cattle tick Haemaphysalis bispinosa Neumann, 1897 (Acarina: Ixodidae), sheep fluke Paramphistomum cervi Zeder, 1790 (Digenea: Paramphistomatidae), fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). The aim of this study was to evaluate the toxic effect of leaf hexane, chloroform, ethyl acetate, acetone and methanol extracts of Annona squamosa L., Centella asiatica (L.) Urban, Gloriosa superba L., Mukia maderaspatensis (L.) M.Roem, Pergularia daemia (Forsk.) Chiov. and Phyllanthus emblica L. were exposed to different concentrations. All plant extracts showed moderate toxic effect on parasites after 24h of exposure; however, the highest mortality was found in leaf hexane extract of A. squamosa, methanol extracts of G. superba and P. emblica against H. bispinosa (LC(50)=145.39, 225.57 and 256.08ppm); methanol extracts of C. asiatica, G. superba, P. daemia and P. emblica against P. cervi (LC(50)=77.61, 60.16, 59.61, and 60.60ppm); acetone, ethyl acetate extracts of A. squamosa, methanol extract of C. asiatica, acetone extracts of G. superba, ethyl acetate, hexane and methanol extracts of P. daemia against A. subpictus (LC(50)=17.48, 18.60, 26.62, 18.43, 34.06, 13.63, and 50.39ppm); and chloroform, ethyl acetate extracts of A. squamosa, ethyl acetate extract of P. daemia, ethyl acetate and methanol extracts of P. emblica against C. tritaeniorhynchus (LC(50)=63.81, 60.01, 31.94, 69.09, and 54.82ppm), respectively. These results demonstrate that methanol extracts of C. asiatica, G. superba, P. daemia and P. emblica extracts may serve as parasites control even in their crude form.
Collapse
Affiliation(s)
- A Bagavan
- Unit of Bioactive Natural Products, P.G. & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
65
|
Pandey SK, Upadhyay S, Tripathi AK. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 2009; 105:507-12. [DOI: 10.1007/s00436-009-1429-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
|
66
|
Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS. Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 2009; 105:453-61. [DOI: 10.1007/s00436-009-1405-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 11/29/2022]
|
67
|
Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 2009; 104:1365-72. [PMID: 19198882 DOI: 10.1007/s00436-009-1337-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
The present study explored the effects of crude leaf acetone, chloroform, hot water, methanol, petroleum ether (60-80 degrees C), and water extracts of Calotropis procera (Ait) R. Br., Canna indica L., Hibiscus rosa-sinensis Linn., Ipomoea carnea Jacq. spp. fistulosa Choisy, and Sarcostemma brevistigma Wight that were selected for investigating larvicidal potential against second and fourth instar larvae of the laboratory-reared mosquito species, Culex quinquefasciatus Say, in which the major lymphatic filariasis was used. All plant extracts showed moderate larvicidal effects after 24 h of exposure at 1,000 ppm; however, the highest larval mortality was found in leaf acetone, chloroform, methanol, and petroleum ether of C. indica (LC(50) = 29.62, 59.18, 40.77, and 44.38 ppm; LC(90) = 148.55, 267.87, 165.00, and 171.91 ppm) against second instar larvae (LC(50) = 121.88, 118.25, 69.76, and 56.31 ppm; LC(90) = 624.35, 573.93, 304.27, and 248.24 ppm) and against fourth instar larvae and acetone, hot water, methanol, and petroleum ether extracts of I. carnea (LC(50) = 61.17, 41.07, 41.82, and 39.32 ppm; LC(90) = 252.91, 142.67, 423.76, and 176.39 ppm) against second instar larvae (LC(50) = 145.37, 58.00, 163.81, and 41.75 ppm; LC(90) = 573.30, 181.10, 627.38, and 162.63 ppm) and against fourth instar larvae of C. quinquefasciatus, respectively. These results suggest that the acetone, methanol extracts of C. indica and hot water, petroleum ether extracts of I. carnea have the potential to be used as an ideal eco-friendly approach for the control of the major lymphatic filariasis vector, C. quinquefasciatus.
Collapse
|
68
|
Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G. Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 2008; 104:1163-71. [DOI: 10.1007/s00436-008-1306-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
69
|
Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G. Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res 2008; 104:1109-17. [PMID: 19050919 DOI: 10.1007/s00436-008-1295-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/19/2008] [Indexed: 11/30/2022]
Abstract
The acetone, chloroform, ethyl acetate, hexane and methanol extracts of peel and leaf extracts of Citrus sinensis, Ocimum canum, Ocimum sanctum and Rhinacanthus nasutus were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) and feeding deterrence to nymphs of cotton pest, Aphis gossypii Glover (Homoptera: Aphididae). The larval and nymph mortality were observed after 24 h of exposure. All extracts showed moderate larvicidal and nymphicidal effects; however, the highest mortality was found in peel chloroform extract of C. sinensis, leaf ethyl acetate extracts of O. canum and O. sanctum and leaf chloroform extract of R. nasutus against the larvae of A. subpictus (LC(50) = 58.25, 88.15, 21.67 and 40.46 ppm; LC(90) = 298.31, 528.70, 98.34 and 267.20 ppm), peel methanol extract of C. sinensis, leaf methanol extract of O. canum, ethyl acetate extracts of O. sanctum and R. nasutus against the larvae of C. tritaeniorhynchus (LC(50) = 38.15, 72.40, 109.12 and 39.32 ppm; LC(90) = 184.67, 268.93, 646.62 and 176.39 ppm), peel hexane extract of C. sinensis, leaf methanol extracts of O. canum and R. nasutus and leaf ethyl acetate extract of O. sanctum against the nymph of A. gossypii (LC(50) = 162.89, 80.99, 73.27 and 130.19 ppm; LC(90) = 595.40, 293.33, 338.74 and 450.90 ppm), respectively. These results suggest that the peel methanol extracts of C. sinensis and O. canum, ethyl acetate leaf extract of O. sanctum and leaf chloroform and ethyl acetate extract of R. nasutus have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus, C. tritaeniorhynchus and A. gossypii.
Collapse
Affiliation(s)
- A Bagavan
- Unit of Bioactive Natural Products, P.G & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam 632 509, Vellore District, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
70
|
Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 2008; 104:1017-25. [DOI: 10.1007/s00436-008-1284-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
|
71
|
Senthilkumar N, Varma P, Gurusubramanian G. Larvicidal and adulticidal activities of some medicinal plants against the Malarial Vector, Anopheles stephensi (Liston). Parasitol Res 2008; 104:237-44. [DOI: 10.1007/s00436-008-1180-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 08/27/2008] [Indexed: 12/01/2022]
|
72
|
Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 2008; 103:1383-90. [DOI: 10.1007/s00436-008-1146-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 07/22/2008] [Indexed: 11/24/2022]
|
73
|
Kamaraj C, Rahuman AA, Bagavan A. Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 2008; 103:1361-8. [PMID: 18679716 DOI: 10.1007/s00436-008-1142-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
Plant extracts, especially botanical insecticides, are currently studied more and more because of the possibility of their use in plant protection. Biological activity of five solvent plant extracts were studied using fourth instar larvae of gram pod borer Helicoverpa armigera (Lepidoptera: Noctuidae), cotton leaf roller Sylepta derogata (Lepidoptera: Pyralidae) and malaria vector Anopheles stephensi (Diptera: Culicidae). Antifeedant and larvicidal activity of acetone, chloroform, ethyl acetate, hexane and methanol peel, leaf and flower extracts of Citrus sinensis, Ocimum canum, Ocimum sanctum and Rhinacanthus nasutus were used in this study. During preliminary screening, the extracts were tested at 1,000 ppm concentration. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in peel chloroform extract of C. sinensis, flower methanol extract of O. canum against the larvae of H. armigera (LC50 = 65.10,51.78, LC90 = 277.39 and 218.18 ppm), peel methanol extract of C. sinensis, flower ethyl acetate extract of O. canum and leaf acetone extract of O. sanctum against the larvae of S. derogata (LC50 = 20.27,58.21,36.66, LC90 =113.15,285.70 and 668.02 ppm), peel methanol extract of C. sinensis, leaf and flower ethyl acetate extracts of O. canum against the larvae of A. stephensi (LC50 = 95.74,101.53,28.96, LC90 = 303.20,492.43 and 168.05 ppm), respectively. These results suggest that the chloroform and methanol extract of C. sinensis, ethyl acetate flower extracts of O. canum and acetone extract of O. sanctum have the potential to be used as an ideal eco-friendly approach for the control of the agricultural pests H. armigera, S. derogata and medically important vector A. stephensi.
Collapse
Affiliation(s)
- C Kamaraj
- Unit of Bioactive Natural Products, P.G. & Research, Department of Zoology, C. Abdul Hakeem College, Melvisharam 632 509, Vellore District, Tamil Nadu, India
| | | | | |
Collapse
|