51
|
Fustero S, Cuñat AC, Flores S, Báez C, Oliver J, Cynamon M, Gütschow M, Mertens MD, Delgado O, Tresadern G, Trabanco AA. Design, Synthesis, and Biological Evaluation of Novel Fluorinated Ethanolamines. Chemistry 2011; 17:14772-84. [DOI: 10.1002/chem.201102078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Indexed: 01/11/2023]
|
52
|
|
53
|
Abstract
Mounting evidence accumulated over the past few years indicates that the neurotransmitter serotonin plays a significant role in cognition. As a drug target, serotonin receptors have received notable attention due in particular to the role of several serotonin-receptor subclasses in cognition and memory. The intimate anatomical and neurochemical association of the serotonergic system with brain areas that regulate memory and learning has directed current drug discovery programmes to focus on this system as a major therapeutic drug target. Thus far, none of these programmes has yielded unambiguous data that suggest that any of the new drug entities possesses disease-modifying properties, and significantly more research in this promising area of investigation is required. Compounds are currently being investigated for activity against serotonin 5-HT(1), 5-HT(4) and 5-HT(6) receptors. This review concludes that most work done in the development of selective serotonin receptor ligands is in the pre-clinical or early clinical phase. Also, while many of these compounds will likely find application as adjuvant therapy in the symptomatic treatment of Alzheimer's disease, there are currently only a few drug entities with activity against serotonin receptors that may offer the potential to alter the progression of the disease.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, USA
| | | |
Collapse
|
54
|
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res 2011; 347:291-301. [PMID: 21879289 DOI: 10.1007/s00441-011-1230-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Lübbers T, Flohr A, Jolidon S, David-Pierson P, Jacobsen H, Ozmen L, Baumann K. Aminothiazoles as γ-secretase modulators. Bioorg Med Chem Lett 2011; 21:6554-8. [PMID: 21924610 DOI: 10.1016/j.bmcl.2011.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/28/2022]
Abstract
We herein report the discovery of a new γ-secretase modulator class with an aminothiazole core starting from a HTS hit (3). Synthesis and SAR of this series are discussed. These novel compounds demonstrate moderate to good in vitro potency in inhibiting amyloid beta (Aβ) peptide production. Overall γ-secretase is not inhibited but the formation of the aggregating, toxic Aβ42 peptide is shifted to smaller non-aggregating Aβ peptides. Compound 15 reduced brain Aβ42 in vivo in APPSwe transgenic mice at 30mg/kg p.o.
Collapse
Affiliation(s)
- Thomas Lübbers
- Discovery Chemistry, F. Hoffmann-La Roche Ltd, Grenzacher Strasse 124, 4070 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
56
|
Mathew A, Yoshida Y, Maekawa T, Sakthi Kumar D. Alzheimer's disease: Cholesterol a menace? Brain Res Bull 2011; 86:1-12. [DOI: 10.1016/j.brainresbull.2011.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/20/2022]
|
57
|
León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med Res Rev 2011; 33:139-89. [PMID: 21793014 DOI: 10.1002/med.20248] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With 27 million cases worldwide documented in 2006, Alzheimer's disease (AD) constitutes an overwhelming health, social, economic, and political problem to nations. Unless a new medicine capable to delay disease progression is found, the number of cases will reach 107 million in 2050. So far, the therapeutic paradigm one-compound-one-target has failed. This could be due to the multiple pathogenic mechanisms involved in AD including amyloid β (Aβ) aggregation to form plaques, τ hyperphosphorylation to disrupt microtubule to form neurofibrillary tangles, calcium imbalance, enhanced oxidative stress, impaired mitochondrial function, apoptotic neuronal death, and deterioration of synaptic transmission, particularly at cholinergic neurons. Approximately 100 compounds are presently been investigated directed to single targets, namely inhibitors of β and γ secretase, vaccines or antibodies that clear Aβ, metal chelators to inhibit Aβ aggregation, blockers of glycogen synthase kinase 3β, enhancers of mitochondrial function, antioxidants, modulators of calcium-permeable channels such as voltage-dependent calcium channels, N-methyl-D-aspartate receptors for glutamate, or enhancers of cholinergic neurotransmission such as inhibitors of acetylcholinesterase or butyrylcholinesterase. In view of this complex pathogenic mechanisms, and the successful treatment of chronic diseases such as HIV or cancer, with multiple drugs having complementary mechanisms of action, the concern is growing that AD could better be treated with a single compound targeting two or more of the pathogenic mechanisms leading to neuronal death. This review summarizes the current therapeutic strategies based on the paradigm one-compound-various targets to treat AD. A treatment that delays disease onset and/or progression by 5 years could halve the number of people requiring institutionalization and/or dying from AD.
Collapse
Affiliation(s)
- Rafael León
- Department of Chemistry, University of Cambridge, Cambridge, Lensfield road, Cambridge CB2 1EW, United Kingdom.
| | | | | |
Collapse
|
58
|
Lassmann H. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer's disease. J Neural Transm (Vienna) 2011; 118:747-52. [PMID: 21373761 DOI: 10.1007/s00702-011-0607-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/15/2011] [Indexed: 01/25/2023]
Abstract
Multiple sclerosis and Alzheimer's disease are fundamentally different diseases. However, recent data suggest that certain mechanisms of neurodegeneration may be shared between the two diseases. Inflammation drives the disease in multiple sclerosis. It is also present in Alzheimer's disease lesions, where it may have dual functions in amyloid clearance as well as in the propagation of neurodegeneration. In both diseases, degeneration of neurons, axons, and synapses occur on the background of profound mitochondrial injury. Reactive oxygen and nitric oxide intermediates are major candidates for the induction of mitochondrial injury. Radicals are produced through the induction of the respiratory burst in activated microglia, which are present in the lesions of both diseases. In addition, liberation of toxic iron from intracellular stores may augment radical formation. Finally reactive oxygen species are also produced in the course of mitochondrial injury itself. Anti-oxidant and mitochondria protective therapeutic strategies may be beneficial both in multiple sclerosis and Alzheimer's disease in particular in early stages of the disease.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria.
| |
Collapse
|
59
|
Riederer BM, Leuba G, Vernay A, Riederer IM. The role of the ubiquitin proteasome system in Alzheimer's disease. Exp Biol Med (Maywood) 2011; 236:268-76. [DOI: 10.1258/ebm.2010.010327] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Today, Alzheimer's disease (AD) is one of the most important age-related neurodegenerative diseases, but its etiology remains still unknown. Since the discovery that the hallmark structures of this disease i.e. the formation of amyloid fibers could be the product of ubiquitin-mediated protein degradation defects, it has become clear that the ubiquitin–proteasome system (UPS), usually essential for protein repair, turnover and degradation, is perturbed in this disease. Different aspects of normal and pathological aging are discussed with respect to protein repair and degradation via the UPS, as well as consequences of a deficit in the UPS in AD. Selective protein oxidation may cause protein damage, or protein mutations may induce a dysfunction of the proteasome. Such events eventually lead to activation of cell death pathways and to an aberrant aggregation or incorporation of ubiquitinated proteins into hallmark structures. Aggresome formation is also observed in other neurodegenerative diseases, suggesting that an activation of similar mechanisms must occur in neurodegeneration as a basic phenomenon. It is essential to discuss therapeutic ways to investigate the UPS dysfunction in the human brain and to identify specific targets to hold or stop cell decay.
Collapse
Affiliation(s)
| | - Geneviève Leuba
- Laboratory of Neurobiology of Aging
- Service of Old Age Psychiatry, Department of Psychiatry, Centre for Psychiatric Neuroscience, CHUV, CERY, 1008 Prilly-Lausanne, Switzerland
| | - André Vernay
- Laboratory of Neurobiology of Aging
- Service of Old Age Psychiatry, Department of Psychiatry, Centre for Psychiatric Neuroscience, CHUV, CERY, 1008 Prilly-Lausanne, Switzerland
| | | |
Collapse
|
60
|
Wang X, Gill RL, Zhu Q, Tian F. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies. Protein Expr Purif 2011; 77:224-30. [PMID: 21320603 DOI: 10.1016/j.pep.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains.
Collapse
Affiliation(s)
- Xingsheng Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
61
|
Serem WK, Bett CK, Ngunjiri JN, Garno JC. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy. Microsc Res Tech 2010; 74:699-708. [PMID: 21698718 DOI: 10.1002/jemt.20940] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/22/2010] [Indexed: 11/08/2022]
Abstract
Amyloid peptide (Aβ) is the major protein component of plaques found in Alzheimer's disease, and the aggregation of Aβ into oligomeric and fibrillic assemblies has been shown to be an early event of the disease pathway. Visualization of the progressive evolution of nanoscale changes in the morphology of Aβ oligomeric assemblies and amyloid fibrils has been accomplished ex situ using atomic force microscopy (AFM) in ambient conditions. In this report, the size and the shape of amyloid β(1-40) fibrils, as well as the secondary organization into aggregate structures were monitored at different intervals over a period of 5 months. Characterizations with tapping-mode AFM serve to minimize the strong adhesive forces between the probe and the sample to prevent damage or displacement of fragile fibrils. The early stages of Aβ growth showed a predominance of spherical seed structures, oligomeric assemblies, and protofibrils; however the size and density of fibrils progressively increased with time. Within a few days of incubation, linear assemblies and fibrils became apparent. Over extended time scales of up to 5 months, the fibrils formed dense ensembles spanning lengths of several microns, which exhibit interesting changes due to self-organization of the fibrils into bundles or tangles. Detailed characterization of the Aβ assembly process at the nanoscale will help elucidate the role of Aβ in the pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- Wilson K Serem
- Chemistry Department, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
62
|
Mehan S, Meena H, Sharma D, Sankhla R. JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities. J Mol Neurosci 2010; 43:376-90. [DOI: 10.1007/s12031-010-9454-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/16/2010] [Indexed: 01/26/2023]
|
63
|
Designed Short Peptides that Form Amyloid-Like Fibrils in Coassembly with Amyloid β-Peptide (Aβ) Decrease the Toxicity of Aβ to Neuronal PC12 Cells. Chembiochem 2010; 11:1525-30. [DOI: 10.1002/cbic.201000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Hua X, Lee S, Hibar DP, Yanovsky I, Leow AD, Toga AW, Jack CR, Bernstein MA, Reiman EM, Harvey DJ, Kornak J, Schuff N, Alexander GE, Weiner MW, Thompson PM. Mapping Alzheimer's disease progression in 1309 MRI scans: power estimates for different inter-scan intervals. Neuroimage 2010; 51:63-75. [PMID: 20139010 PMCID: PMC2846999 DOI: 10.1016/j.neuroimage.2010.01.104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/31/2022] Open
Abstract
Neuroimaging centers and pharmaceutical companies are working together to evaluate treatments that might slow the progression of Alzheimer's disease (AD), a common but devastating late-life neuropathology. Recently, automated brain mapping methods, such as tensor-based morphometry (TBM) of structural MRI, have outperformed cognitive measures in their precision and power to track disease progression, greatly reducing sample size estimates for drug trials. In the largest TBM study to date, we studied how sample size estimates for tracking structural brain changes depend on the time interval between the scans (6-24 months). We analyzed 1309 brain scans from 91 probable AD patients (age at baseline: 75.4+/-7.5 years) and 189 individuals with mild cognitive impairment (MCI; 74.6+/-7.1 years), scanned at baseline, 6, 12, 18, and 24 months. Statistical maps revealed 3D patterns of brain atrophy at each follow-up scan relative to the baseline; numerical summaries were used to quantify temporal lobe atrophy within a statistically-defined region-of-interest. Power analyses revealed superior sample size estimates over traditional clinical measures. Only 80, 46, and 39 AD patients were required for a hypothetical clinical trial, at 6, 12, and 24 months respectively, to detect a 25% reduction in average change using a two-sided test (alpha=0.05, power=80%). Correspondingly, 106, 79, and 67 subjects were needed for an equivalent MCI trial aiming for earlier intervention. A 24-month trial provides most power, except when patient attrition exceeds 15-16%/year, in which case a 12-month trial is optimal. These statistics may facilitate clinical trial design using voxel-based brain mapping methods such as TBM.
Collapse
Affiliation(s)
- Xue Hua
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Suh Lee
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Derrek P. Hibar
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Igor Yanovsky
- Department of Mathematics, UCLA, Los Angeles, CA, USA
| | - Alex D. Leow
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
- Resnick Neuropsychiatric Hospital at UCLA, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | | | | | - Eric M. Reiman
- Banner Alzheimer’s Institute, Department Psychiatry, University of Arizona, Phoenix, AZ, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, UCD School of Medicine, Davis, CA, USA
| | - John Kornak
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Norbert Schuff
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Gene E. Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Michael W. Weiner
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Psychiatry, UCSF, San Francisco, CA, USA
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|
65
|
Veloso AJ, Hung VWS, Sindhu G, Constantinof A, Kerman K. Electrochemical oxidation of benzothiazole dyes for monitoring amyloid formation related to the Alzheimer's disease. Anal Chem 2010; 81:9410-5. [PMID: 19831357 DOI: 10.1021/ac901940a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is associated with the formation and deposition of amyloid fibrils. A better understanding of the oligomeric intermediates on the pathway to fibrilization is highly desired, but efficient methods for their detection are lacking. We have studied the interfacial properties of amyloid peptides (Abeta-40 and Abeta-42) and the course of their aggregation in vitro in the presence of the benzothiazole dyes Thioflavin T (4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-dimethylaniline) chloride, ThT) and BTA-1 ([2-(4'-(methylamino)phenyl) benzothiazole]) using electrochemical techniques. The intercalative properties of these dyes between the beta-sheets of amyloids have been well-documented using fluorescence-based systems, but their electrochemistry is reported here for the first time. ThT is positively charged and water-soluble, whereas BTA-1 is neutral and hydrophobic. Immediate and significantly different electrochemical characteristics of these dyes were observed in the presence of amyloid peptides. A decrease of the BTA-1 oxidation signal was observed upon incubation with Abeta-40. Incubation of BTA-1 with Abeta-42 results in an increased rate of exponential decay, which was in agreement with the known rapid aggregation properties of Abeta-42. The aggregation of amyloid peptides with ThT resulted in an unexpected increase in signal after 24 h of incubation, consistent for both peptides. The results of the electrochemical trials were confirmed using simultaneous fluorescence analysis of the same incubated amyloid samples. The very early changes in the interfacial behavior of the amyloid peptides after the first few minutes of incubation were attributed to the fast oligomerization of the peptides with the disruption of the intercalative properties of the benzothiazole dyes between the beta-sheets. The subsequent changes in the electrochemical signals can be related to the onset of intercalation between the fibrils. Our results demonstrate the utility of electrochemical oxidation signals of the benzothiazole dyes as a new and simple tool for the investigation of amyloid formation related to the AD.
Collapse
Affiliation(s)
- Anthony Joseph Veloso
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto M1C 1A4, ON, Canada
| | | | | | | | | |
Collapse
|
66
|
Takahashi T, Ohta K, Mihara H. Rational design of amyloid β peptideâbinding proteins: Pseudo-Aβ β-sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Aβ. Proteins 2010; 78:336-47. [DOI: 10.1002/prot.22546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
67
|
Alfonso I, Bolte M, Bru M, Burguete MI, Luis SV, Vicent C. Molecular recognition of N-protected dipeptides by pseudopeptidic macrocycles: a comparative study of the supramolecular complexes by ESI-MS and NMR. Org Biomol Chem 2010; 8:1329-39. [DOI: 10.1039/b924981h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
Hua X, Lee S, Yanovsky I, Leow AD, Chou YY, Ho AJ, Gutman B, Toga AW, Jack CR, Bernstein MA, Reiman EM, Harvey DJ, Kornak J, Schuff N, Alexander GE, Weiner MW, Thompson PM. Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage 2009; 48:668-81. [PMID: 19615450 PMCID: PMC2971697 DOI: 10.1016/j.neuroimage.2009.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/01/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022] Open
Abstract
Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030 longitudinal brain MRI scans (1-year follow-up) of 104 AD patients (age: 75.7+/-7.2 years; MMSE: 23.3+/-1.8, at baseline), 254 amnestic MCI subjects (75.0+/-7.2 years; 27.0+/-1.8), and 157 healthy elderly subjects (75.9+/-5.1 years; 29.1+/-1.0), as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). To determine which TBM designs gave greatest statistical power, we compared different linear and nonlinear registration parameters (including different regularization functions), and different numerical summary measures derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25% reduction in the mean annual change using a two-sided test (at alpha=0.05). This is a drastic sample size reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408 AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track brain changes in large, multi-site neuroimaging studies and clinical trials of AD.
Collapse
Affiliation(s)
- Xue Hua
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Suh Lee
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Igor Yanovsky
- Department of Mathematics, UCLA, Los Angeles, CA, USA
| | - Alex D. Leow
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
- Resnick Neuropsychiatric Hospital at UCLA, Los Angeles, CA, USA
| | - Yi-Yu Chou
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - April J. Ho
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Boris Gutman
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | | | | | - Eric M. Reiman
- Banner Alzheimer’s Institute, Department of Psychiatry, University of Arizona, Phoenix, AZ, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, UCD School of Medicine, Davis, CA, USA
| | - John Kornak
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Norbert Schuff
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | | | - Michael W. Weiner
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Psychiatry, UCSF, San Francisco, CA, USA
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|
69
|
Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Res Bull 2009; 80:274-81. [PMID: 19616077 DOI: 10.1016/j.brainresbull.2009.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/09/2023]
Abstract
Numerous epidemiological studies and some pharmacological clinical trials show the close connection between Alzheimer disease (AD) and type 2 diabetes (T2D) and thereby, shed more light into the existence of possible similar pathogenic mechanisms between these two diseases. Diabetes increases the risk of developing AD and sensitizers of insulin currently used as diabetes drugs can efficiently slow cognitive decline of the neurological disorder. Deposits of amyloid aggregate and hyperphosphorylation of tau, which are hallmarks of AD, have been also found in degenerating pancreatic islets beta-cells of patients with T2D. These events may have a causal role in the pathogenesis of the two diseases. Increased c-Jun NH(2)-terminal kinase (JNK) activity is found in neurofibrillary tangles (NFT) of AD and promotes programmed cell death of beta-cells exposed to a diabetic environment. The JNK-interacting protein 1 (JIP-1), also called islet brain 1 (IB1) because it is mostly expressed in the brain and islets, is a key regulator of the JNK pathway in neuronal and beta-cells. JNK, hyperphosphorylated tau and IB1/JIP-1 all co-localize with amyloids deposits in NFT and islets of AD and patients with T2D. This review discusses the role of the IB1/JIP-1 and the JNK pathway in the molecular pathogenesis of AD and T2D.
Collapse
|
70
|
Jellinger KA. Alzheimer's disease: a challenge for modern neuropathobiology. Acta Neuropathol 2009; 118:1-3. [PMID: 19360427 DOI: 10.1007/s00401-009-0529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 03/27/2009] [Indexed: 12/25/2022]
|
71
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 486] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
72
|
A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 2009; 10:377-413. [DOI: 10.1007/s10522-009-9226-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
|
73
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Goedert M. Oskar Fischer and the study of dementia. Brain 2009; 132:1102-11. [PMID: 18952676 PMCID: PMC2668940 DOI: 10.1093/brain/awn256] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 11/18/2022] Open
Abstract
The centenary of Alois Alzheimer's description of the case of Auguste Deter has renewed interest in the early history of dementia research. In his 1907 paper Alzheimer described the presence of plaques and tangles in one case of presenile dementia. In the same year, Oskar Fischer reported neuritic plaques in 12 cases of senile dementia. These were landmark findings in the history of research in dementia because they delineated the clinicopathological entity that is now known as Alzheimer's disease. Although much has been written about Alzheimer, only little is known about Fischer. The present article discusses Fischer's work on dementia in the context of his life and time.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
75
|
Reser JE. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2009; 5:13. [PMID: 19250550 PMCID: PMC2653533 DOI: 10.1186/1744-9081-5-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/28/2009] [Indexed: 12/17/2022]
Abstract
The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent.Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition.AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype.
Collapse
Affiliation(s)
- Jared Edward Reser
- Department of Psychology, University of Southern California, 16380 Meadow Ridge Road, Encino CA 91436, USA.
| |
Collapse
|
76
|
Lu Y, Ansar S, Michaelis ML, Blagg BSJ. Neuroprotective activity and evaluation of Hsp90 inhibitors in an immortalized neuronal cell line. Bioorg Med Chem 2009; 17:1709-15. [PMID: 19138859 PMCID: PMC2729088 DOI: 10.1016/j.bmc.2008.12.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) neuropathology is characterized by loss of synapses and neurons, neuritic plaques consisting of beta-amyloid (Abeta) peptides, and neurofibrillary tangles consisting of intracellular aggregates of hyperphosphorylated tau protein in susceptible brain regions. Abeta oligomers trigger a cascade of pathogenic events including tau hyperphosphorylation and aggregation, inflammatory reactions, and excitotoxicity that contribute to the progression of AD. The molecular chaperone Hsp90 facilitates the folding of newly synthesized and denatured proteins and is believed to play a role in neurodegenerative disorders in which the defining pathology results in misfolded proteins and the accumulation of protein aggregates. Some agents that inhibit Hsp90 protect neurons against Abeta toxicity and tau aggregation, and assays for rapidly screening potential Hsp90 inhibitors are of interest. We used the release of the soluble cytosolic enzyme lactate dehydrogenase (LDH) as an indicator of the loss of cell membrane integrity and cytotoxicity resulting from exposure to Abeta peptides to evaluate the neuroprotective properties of novel novobiocin analogues and established Hsp90 inhibitors. Compounds were assessed for potency in protecting proliferating and differentiated SH-SY5Y neuronal cells against Abeta-induced cell death; the potential toxicity of each agent alone was also determined. The data indicated that several of the compounds decreased Abeta toxicity even at low nanomolar concentrations and, unexpectedly, were more potent in protecting the undifferentiated cells against Abeta. The novobiocin analogues alone were not toxic even up to 10 microM concentrations whereas GDA and the parent compound, novobiocin, were toxic at 1 and 10 microM, respectively. The results suggest that novobiocin analogues may provide novel leads for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Yuanming Lu
- The Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045-7563 USA
| | - Sabah Ansar
- Department of Pharmacology and Toxicology, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Mary L. Michaelis
- Department of Pharmacology and Toxicology, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Brian S. J. Blagg
- The Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045-7563 USA
| |
Collapse
|
77
|
Takahashi T, Mihara H. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation. Acc Chem Res 2008; 41:1309-18. [PMID: 18937396 DOI: 10.1021/ar8000475] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein misfolding is related to some fatal diseases including Alzheimer's disease (AD). Amyloid beta-peptide (Abeta) generated from amyloid precursor protein can aggregate into amyloid fibrils, which are known to be a major component of Abeta deposits (senile plaques). The fibril formation of Abeta is typical of a nucleation-dependent process through self-recognition. Moreover, during fibrillization, several metastable intermediates such as soluble oligomers, including Abeta-derived diffusible ligands (ADDLs) and Abeta*56, are produced, which are thought to be the most toxic species to neuronal cells. Therefore, construction of molecules that decrease the Abeta aggregates, including soluble oligomers, protofibrils, and amyloid fibrils, might further our understanding of the mechanism(s) behind fibril formation and enable targeted drug discovery against AD. To this aim, various peptides and peptide derivatives have been constructed using the "Abeta binding element" based on the structural models of Abeta amyloid fibrils and the mechanisms of self-assembly. The central hydrophobic amino acid sequence, LVFF, of Abeta is a key sequence to self-assemble into amyloid fibrils. By combination of this core sequence with a hydrophobic or hydrophilic moiety, such as cholic acid or aminoethoxy ethoxy acetic acid units, respectively, good inhibitors of Abeta aggregation can be designed and synthesized. A peptide, LF, consisting of the sequence Ac-KQKLLLFLEE-NH 2, was designed based on the core sequence of Abeta but with a simplified amino acid sequence. The LF peptide can form amyloid-like fibrils that efficiently coassemble with mature Abeta1-42 fibrils. The LF peptide was also observed to immediately transform the soluble oligomers of Abeta1-42, which are thought to pose toxicity in AD, into amyloid-like fibrils. On the other hand, two Abeta-like beta-strands with a parallel orientation were embedded in green fluorescent protein (GFP), comprised of a beta-barrel structure, to make pseudo-Abeta beta-sheets on its surface. The GFP variant P13H binds to Abeta1-42 and inhibits Abeta1-42 oligomerization effectively in a substoichiometric condition. Thus, molecules capable of binding to Abeta can be designed based on structural similarities with the Abeta molecule. The peptide and protein mimetics based on the structural features of Abeta might lead to the development of drug candidates against AD.
Collapse
Affiliation(s)
- Tsuyoshi Takahashi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta,Yokohama 226-8501, Japan
| | - Hisakazu Mihara
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta,Yokohama 226-8501, Japan
| |
Collapse
|
78
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
79
|
Arimura H, Yoshiura T, Kumazawa S, Tanaka K, Koga H, Mihara F, Honda H, Sakai S, Toyofuku F, Higashida Y. Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images. Acad Radiol 2008; 15:274-84. [PMID: 18280925 DOI: 10.1016/j.acra.2007.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES An automated method for identification of patients with cerebral atrophy due to Alzheimer's disease (AD) was developed based on three-dimensional (3D) T1-weighted magnetic resonance (MR) images. MATERIALS AND METHODS Our proposed method consisted of determination of atrophic image features and identification of AD patients. The atrophic image features included white matter and gray matter volumes, cerebrospinal fluid (CSF) volume, and cerebral cortical thickness determined based on a level set method. The cortical thickness was measured with normal vectors on a voxel-by-voxel basis, which were determined by differentiating a level set function. The CSF spaces within cerebral sulci and lateral ventricles (LVs) were extracted by wrapping the brain tightly in a propagating surface determined with a level set method. Identification of AD cases was performed using a support vector machine (SVM) classifier, which was trained by the atrophic image features of AD and non-AD cases, and then an unknown case was classified into either AD or non-AD group based on an SVM model. We applied our proposed method to MR images of the whole brains obtained from 54 cases, including 29 clinically diagnosed AD cases (age range, 52-82 years; mean age, 70 years) and 25 non-AD cases (age range, 49-78 years; mean age, 62 years). RESULTS As a result, the area under a receiver operating characteristic (ROC) curve (Az value) obtained by our computerized method was 0.909 based on a leave-one-out test in identification of AD cases among 54 cases. CONCLUSION This preliminary result showed that our method may be promising for detecting AD patients.
Collapse
Affiliation(s)
- Hidetaka Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Common pathological processes in Alzheimer disease and type 2 diabetes: a review. ACTA ACUST UNITED AC 2007; 56:384-402. [PMID: 17920690 DOI: 10.1016/j.brainresrev.2007.09.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) are conditions that affect a large number of people in the industrialized countries. Both conditions are on the increase, and finding novel treatments to cure or prevent them are a major aim in research. Somewhat surprisingly, AD and T2DM share several molecular processes that underlie the respective degenerative developments. This review describes and discusses several of these shared biochemical and physiological pathways. Disturbances in insulin signalling appears to be the main common impairment that affects cell growth and differentiation, cellular repair mechanisms, energy metabolism, and glucose utilization. Insulin not only regulates blood sugar levels but also acts as a growth factor on all cells including neurons in the CNS. Impairment of insulin signalling therefore not only affects blood glucose levels but also causes numerous degenerative processes. Other growth factor signalling systems such as insulin growth factors (IGFs) and transforming growth factors (TGFs) also are affected in both conditions. Also, the misfolding of proteins plays an important role in both diseases, as does the aggregation of amyloid peptides and of hyperphosphorylated proteins. Furthermore, more general physiological processes such as angiopathic and cytotoxic developments, the induction of apoptosis, or of non-apoptotic cell death via production of free radicals greatly influence the progression of AD and T2DM. The increase of detailed knowledge of these common physiological processes open up the opportunities for treatments that can prevent or reduce the onset of AD as well as T2DM.
Collapse
|
81
|
Mandel S, Amit T, Bar-Am O, Youdim MBH. Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 2007; 82:348-60. [PMID: 17659826 DOI: 10.1016/j.pneurobio.2007.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/11/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
Considering the multi-etiological character of Alzheimer's disease (AD), the current pharmacological approaches using drugs oriented towards a single molecular target possess limited ability to modify the course of the disease and thus, offer a partial benefit to the patient. In line with this concept, novel strategies include the use of a cocktail of several drugs and/or the development of a single molecule, possessing two or more active neuroprotective-neurorescue moieties that simultaneously manipulate multiple targets involved in AD pathology. A consistent observation in AD is a dysregulation of metal ions (Fe(2+), Cu(2+) and Zn(2+)) homeostasis and consequential induction of oxidative stress, associated with beta-amyloid aggregation and neurite plaque formation. In particular, iron has been demonstrated to modulate the Alzheimer's amyloid precursor holo-protein expression by a pathway similar to that of ferritin L-and H-mRNA translation through iron-responsive elements in their 5'UTRs. This review will discuss two separate scenarios concerning multiple therapy targets in AD, sharing in common the implementation of iron chelation activity: (i) novel multimodal brain-permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities; (ii) natural plant polyphenols (flavonoids), such as green tea epigallocatechin gallate (EGCG) and curcumin, reported to have access to the brain and to possess multifunctional activities, such as metal chelation-radical scavenging, anti-inflammation and neuroprotection.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and USA NPF Centers of Excellence, Technion-Faculty of Medicine, Department of Pharmacology, Israel
| | | | | | | |
Collapse
|
82
|
Garai K, Sureka R, Maiti S. Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy. Biophys J 2007; 92:L55-7. [PMID: 17237197 PMCID: PMC1864843 DOI: 10.1529/biophysj.106.101485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble aggregates critically influence the chemical and biological aspects of amyloid protein aggregation, but their population is difficult to measure, especially in vivo. We take an optical fiber-based fluorescence correlation spectroscopy (FCS) approach to characterize a solution of aggregating amyloid-beta molecules. We find that this technique can easily resolve aggregate particles of size 100 nm or greater in vitro, and the size distribution of these particles agrees well with that obtained by conventional FCS techniques. We propose fiber FCS as a tool for studying aggregation in vivo.
Collapse
|