51
|
Wang W, Meng D, Li Q, Li Z, You C. Characterization of a hyperthermophilic phosphatase from Archaeoglobus fulgidus and its application in in vitro synthetic enzymatic biosystem. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0257-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
52
|
Marine psychrophile-derived cold-active polygalacturonase: Enhancement of productivity in Thalassospira frigidphilosprofundus S3BA12 by whole cell immobilization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
53
|
Johnston TG, Fellin CR, Carignano A, Nelson A. Poly(alkyl glycidyl ether) hydrogels for harnessing the bioactivity of engineered microbes. Faraday Discuss 2019; 219:58-72. [DOI: 10.1039/c9fd00019d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, we describe a method to produce yeast-laden hydrogel inks for the direct-write 3D printing of cuboidal lattices for immobilized whole-cell catalysis.
Collapse
Affiliation(s)
| | | | - Alberto Carignano
- Department of Electrical Engineering
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
54
|
Petroll K, Kopp D, Care A, Bergquist PL, Sunna A. Tools and strategies for constructing cell-free enzyme pathways. Biotechnol Adv 2018; 37:91-108. [PMID: 30521853 DOI: 10.1016/j.biotechadv.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.
Collapse
Affiliation(s)
- Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia.
| |
Collapse
|
55
|
|
56
|
Schwechheimer SK, Becker J, Wittmann C. Towards better understanding of industrial cell factories: novel approaches for 13C metabolic flux analysis in complex nutrient environments. Curr Opin Biotechnol 2018; 54:128-137. [DOI: 10.1016/j.copbio.2018.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
|
57
|
Wei X, Xie L, Job Zhang YHP, You C. Stoichiometric Regeneration of ATP by A NAD(P)/CoA-free and Phosphate-balanced In Vitro
Synthetic Enzymatic Biosystem. ChemCatChem 2018. [DOI: 10.1002/cctc.201801562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xinlei Wei
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Leipeng Xie
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P. R. China
- College of Life Sciences; Henan Agricultural University; 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
58
|
Wu CH, Haja DK, Adams MWW. Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus. Methods Enzymol 2018; 613:153-168. [PMID: 30509464 DOI: 10.1016/bs.mie.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogenases catalyze the simplest of chemical reactions, the reversible interconversion of protons, electrons, and hydrogen gas. These enzymes have potential to be utilized for several biotechnological applications, such as in vitro hydrogen production from renewable materials and in enzyme-based fuel cells for electricity generation. Based on the metal content of their catalytic sites, hydrogenases are classified as either [NiFe], [FeFe], or mononuclear Fe enzymes, and [NiFe] hydrogenases are further categorized into five groups based on the sequences of the catalytic subunits. This chapter describes recombinant engineering strategies, purification procedures, and catalytic properties of two distinct types of [NiFe] hydrogenase from Pyrococcus furiosus, a microorganism with an optimal growth temperature of 100°C. These enzymes are termed soluble hydrogenase I (SHI, group 3) and membrane-bound hydrogenase (MBH, group 4). The two hydrogenases were affinity-tagged to facilitate their purification and the purified enzymes have been used for biochemical, mechanistic, and structural analyses. The results have provided us with new insights into how catalysis by SHI is achieved, which could also lead to the development of catalysts for economic hydrogen production, and knowledge of how MBH couples hydrogen gas production to conservation of energy in the form of an ion gradient. The methods described in this chapter provide the basis for these studies.
Collapse
Affiliation(s)
- Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
59
|
Zhu Z, You C, Ma Y, Zhang YHPJ. In vitro synthetic enzymatic biosystems at the interface of the food-energy-water nexus: A conceptual framework and recent advances. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
Cheng K, Zheng W, Chen H, Zhang YHPJ. Upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering. Metab Eng 2018; 52:1-8. [PMID: 30389613 DOI: 10.1016/j.ymben.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/09/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
The upgrade of D-xylose, the most abundant pentose, to value-added biochemicals is economically important to next-generation biorefineries. myo-Inositol, as vitamin B8, has a six-carbon carbon-carbon ring. Here we designed an in vitro artificial NAD(P)-free 12-enzyme pathway that can effectively convert the five-carbon xylose to inositol involving xylose phosphorylation, carbon-carbon (C-C) rearrangement, C-C bond circulation, and dephosphorylation. The reaction conditions catalyzed by all thermostable enzymes from hyperthermophilic microorganisms Thermus thermophiles, Thermotoga maritima, and Archaeoglobus fulgidus were optimized in reaction temperature, buffer type and concentration, enzyme composition, Mg2+ concentration, and fed-batch addition of ATP. The 11-enzyme cocktail, whereas a fructose 1,6-bisphosphatase from T. maritima has another function of inositol monophosphatase, converted 20 mM xylose to 16.1 mM inositol with a conversion efficiency of 96.6% at 70 °C. Polyphosphate was found to replace ATP for xylulose phosphorylation due to broad substrate promiscuity of the T. maritima xylulokinase. The Tris-HCl buffer effectively mitigated the Maillard reaction at 70 °C or higher temperature. The co-production of value-added biochemicals, such as inositol, from wood sugar could greatly improve economics of new biorefineries, similar to oil refineries that make value-added plastic precursors to subsidize gasoline/diesel production.
Collapse
Affiliation(s)
- Kun Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hongge Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
61
|
Meng D, Wei X, Zhang YHPJ, Zhu Z, You C, Ma Y. Stoichiometric Conversion of Cellulosic Biomass by in Vitro Synthetic Enzymatic Biosystems for Biomanufacturing. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02473] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| |
Collapse
|
62
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
63
|
Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnol Adv 2018; 36:1328-1340. [DOI: 10.1016/j.biotechadv.2018.04.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
|
64
|
Katz L, Chen YY, Gonzalez R, Peterson TC, Zhao H, Baltz RH. Synthetic biology advances and applications in the biotechnology industry: a perspective. ACTA ACUST UNITED AC 2018; 45:449-461. [DOI: 10.1007/s10295-018-2056-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Synthetic biology is a logical extension of what has been called recombinant DNA (rDNA) technology or genetic engineering since the 1970s. As rDNA technology has been the driver for the development of a thriving biotechnology industry today, starting with the commercialization of biosynthetic human insulin in the early 1980s, synthetic biology has the potential to take the industry to new heights in the coming years. Synthetic biology advances have been driven by dramatic cost reductions in DNA sequencing and DNA synthesis; by the development of sophisticated tools for genome editing, such as CRISPR/Cas9; and by advances in informatics, computational tools, and infrastructure to facilitate and scale analysis and design. Synthetic biology approaches have already been applied to the metabolic engineering of microorganisms for the production of industrially important chemicals and for the engineering of human cells to treat medical disorders. It also shows great promise to accelerate the discovery and development of novel secondary metabolites from microorganisms through traditional, engineered, and combinatorial biosynthesis. We anticipate that synthetic biology will continue to have broadening impacts on the biotechnology industry to address ongoing issues of human health, world food supply, renewable energy, and industrial chemicals and enzymes.
Collapse
Affiliation(s)
- Leonard Katz
- 0000 0001 2181 7878 grid.47840.3f QB3 Institute University of California-Berkeley 5885 Hollis St., 4th Floor 94608 Emeryville CA USA
| | - Yvonne Y Chen
- 0000 0000 9632 6718 grid.19006.3e Department of Chemical and Biomolecular Engineering University of California-Los Angeles 420 Westwood Plaza, Boelter Hall 5531 90095 Los Angeles CA USA
| | - Ramon Gonzalez
- 0000 0004 1936 8278 grid.21940.3e Departments of Chemical and Biomolecular Engineering and Bioengineering Rice University 6100 Main Street 77005 Houston TX USA
| | - Todd C Peterson
- grid.427368.c Synthetic Genomics, Inc. 11149 North Torrey Pines Road 92037 La Jolla CA USA
| | - Huimin Zhao
- 0000 0004 1936 9991 grid.35403.31 Department of Chemical and Biomolecular Engineering University of Illinois 600 South Mathews Avenue 61801 Urbana IL USA
| | - Richard H Baltz
- CognoGen Biotechnology Consulting 7636 Andora Drive 34238 Sarasota FL USA
| |
Collapse
|
65
|
Saha A, Johnston TG, Shafranek RT, Goodman CJ, Zalatan JG, Storti DW, Ganter MA, Nelson A. Additive Manufacturing of Catalytically Active Living Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13373-13380. [PMID: 29608267 DOI: 10.1021/acsami.8b02719] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Trevor G Johnston
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Ryan T Shafranek
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Cassandra J Goodman
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jesse G Zalatan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Duane W Storti
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Mark A Ganter
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Alshakim Nelson
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|
66
|
Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, Groll J, Li Q, Malda J, Mironov VA, Mota C, Nakamura M, Shu W, Takeuchi S, Woodfield TB, Xu T, Yoo JJ, Vozzi G. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol 2018; 36:384-402. [DOI: 10.1016/j.tibtech.2017.10.015] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
|
67
|
|
68
|
Hartley CJ, French NG, Scoble JA, Williams CC, Churches QI, Frazer AR, Taylor MC, Coia G, Simpson G, Turner NJ, Scott C. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis. PLoS One 2017; 12:e0184183. [PMID: 29112947 PMCID: PMC5675407 DOI: 10.1371/journal.pone.0184183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.
Collapse
Affiliation(s)
- Carol J. Hartley
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Nigel G. French
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | | | | | - Andrew R. Frazer
- School of Chemistry, CoEBio3, University of Manchester, Manchester, United Kingdom
| | - Matthew C. Taylor
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Greg Coia
- CSIRO Manufacturing, Parkville, Melbourne, Australia
| | | | - Nicholas J. Turner
- School of Chemistry, CoEBio3, University of Manchester, Manchester, United Kingdom
| | - Colin Scott
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| |
Collapse
|
69
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
70
|
Sevillano L, Díaz M, Santamaría RI. Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces. Microb Cell Fact 2017; 16:164. [PMID: 28950904 PMCID: PMC5615484 DOI: 10.1186/s12934-017-0781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. RESULTS In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. CONCLUSIONS The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces. The antitoxin gene present in the expression plasmid counteracts the effect of the toxin gene in the genome. In absence of the expression plasmid, the toxin causes cell death ensuring that only plasmid-containing cells persist.
Collapse
Affiliation(s)
- Laura Sevillano
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, C/Zacarías González no 2, 37007, Salamanca, Spain
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, C/Zacarías González no 2, 37007, Salamanca, Spain.
| | - Ramón I Santamaría
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, C/Zacarías González no 2, 37007, Salamanca, Spain.
| |
Collapse
|
71
|
An In Vitro Enzyme System for the Production of myo-Inositol from Starch. Appl Environ Microbiol 2017; 83:AEM.00550-17. [PMID: 28600316 DOI: 10.1128/aem.00550-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 02/02/2023] Open
Abstract
We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively.IMPORTANCEmyo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.
Collapse
|
72
|
ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering. Metab Eng 2017. [DOI: 10.1016/j.ymben.2017.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|