51
|
Hinneburg H, Korać P, Schirmeister F, Gasparov S, Seeberger PH, Zoldoš V, Kolarich D. Unlocking Cancer Glycomes from Histopathological Formalin-fixed and Paraffin-embedded (FFPE) Tissue Microdissections. Mol Cell Proteomics 2017; 16:524-536. [PMID: 28122943 DOI: 10.1074/mcp.m116.062414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/22/2017] [Indexed: 12/22/2022] Open
Abstract
N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared with fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide.
Collapse
Affiliation(s)
- Hannes Hinneburg
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Petra Korać
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Falko Schirmeister
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Slavko Gasparov
- ‖Institute for Pathology and Cytology, University Hospital Merkur, Zagreb, Croatia.,**Department of Pathology, Medical School Zagreb, University of Zagreb, Zagreb, Croatia
| | - Peter H Seeberger
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Vlatka Zoldoš
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Daniel Kolarich
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany;
| |
Collapse
|
52
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
53
|
Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine. J Proteomics 2017; 152:236-242. [DOI: 10.1016/j.jprot.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/15/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
|
54
|
Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 2017; 409:395-410. [PMID: 27590322 PMCID: PMC5203967 DOI: 10.1007/s00216-016-9880-6] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Protein glycosylation and other post-translational modifications are involved in potentially all aspects of human growth and development. Defective glycosylation has adverse effects on human physiological conditions and accompanies many chronic and infectious diseases. Altered glycosylation can occur at the onset and/or during tumor progression. Identifying these changes at early disease stages may aid in making decisions regarding treatments, as early intervention can greatly enhance survival. This review highlights some of the efforts being made to identify N- and O-glycosylation profile shifts in cancer using mass spectrometry. The analysis of single or panels of potential glycoprotein cancer markers are covered. Other emerging technologies such as global glycan release and site-specific glycosylation analysis and quantitation are also discussed. Graphical Abstract Steps involved in the biomarker discovery.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
55
|
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 2017; 409:453-466. [PMID: 27796453 PMCID: PMC5444817 DOI: 10.1007/s00216-016-9996-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages. Graphical Abstract LC-MS and tandem MS of terminal galactose isomers.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
56
|
Stavenhagen K, Hinneburg H, Kolarich D, Wuhrer M. Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. Methods Mol Biol 2017; 1503:109-119. [PMID: 27743362 DOI: 10.1007/978-1-4939-6493-2_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast heterogeneity of protein glycosylation, even of a single glycoprotein with only one glycosylation site, can give rise to a set of macromolecules with different physicochemical properties. Thus, the use of orthogonal approaches for comprehensive characterization of glycoproteins is a key requirement. This chapter describes a universal workflow for site-specific N- and O-glycopeptide analysis. In a first step glycoproteins are treated with Pronase to generate glycopeptides containing small peptide sequences for enhanced glycosylation site assignment and characterization. These glycopeptides are then separated and detected using an integrated C18-porous graphitized carbon-liquid chromatography (PGC-LC) setup online coupled to a high-resolution electrospray ionization (ESI)-quadrupole time-of-flight (QTOF)-mass spectrometer operated in a combined higher- and lower-energy CID (stepping-energy CID) mode. The LC-setup allows retention of more hydrophobic glycopeptides on C18 followed by subsequent capturing of C18-unbound (glyco)peptides by a downstream placed PGC stationary phase. Glycopeptides eluted from both columns are then analyzed within a single analysis in a combined data acquisition mode. Stepping-energy CID results in B- and Y-ion fragments originating from the glycan moiety as well as b- and y-ions derived from the peptide part. This allows simultaneous site-specific identification of the glycan and peptide sequence of a glycoprotein.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids andInterfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands. .,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands.
| |
Collapse
|
57
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
58
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
59
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
60
|
Ashline DJ, Zhang H, Reinhold VN. Isomeric complexity of glycosylation documented by MS n. Anal Bioanal Chem 2016; 409:439-451. [PMID: 27826629 DOI: 10.1007/s00216-016-0018-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Re-analysis of two breast cancer cell lines, MCF-7 and MDA-MB-231, has shown multiple isomeric structures exposed by sequential mass spectrometry, MS n . Several released glycan compositions were re-evaluated, which indicated variations in polylactosamine and fucosylation structures. Probable isomer numbers, when considering both stereo and structural entities, are significant and the varying types are mentioned. The structural isomers of linkage position are most frequently considered, while stereo isomers are usually assumed from biosynthetic data. Evaluation of any new sample should be cautious and merits careful attention to empirical data. While isomers are usually considered a chromatographic problem (e.g., LCMS, IMMS) and most frequently considered a separations problem, such results will always be challenged by identification and documentation. MSn data provide a direct spatial solution that includes spectral data for characterization (mass and abundance) supported by a universal library match feature.
Collapse
Affiliation(s)
- David J Ashline
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Hailong Zhang
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Vernon N Reinhold
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| |
Collapse
|
61
|
Sethi MK, Hancock WS, Fanayan S. Identifying N-Glycan Biomarkers in Colorectal Cancer by Mass Spectrometry. Acc Chem Res 2016; 49:2099-2106. [PMID: 27653471 DOI: 10.1021/acs.accounts.6b00193] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Delineating biological markers (biomarkers) for early detection, when treatment is most effective, is key to prevention and long-term survival of patients. Development of reliable biomarkers requires an increased understanding of the CRC biology and the underlying molecular and cellular mechanisms of the disease. With recent advances in new technologies and approaches, tremendous efforts have been put in proteomics and genomics fields to deliver detailed analysis of the two major biomolecules, genes and proteins, to gain a more complete understanding of cellular systems at both genomic and proteomic levels, allowing a mechanistic understanding of the human diseases, including cancer, and opening avenues for identification of novel gene and protein based prognostic and therapeutic markers. Although the importance of glycosylation in modulating protein function has long been appreciated, glycan analysis has been complicated by the diversity of the glycan structures and the large number of potential glycosylation combinations. Driven by recent technological advances, LC-MS/MS based glycomics is gaining momentum in cancer research and holds considerable potential to deliver new glycan-based markers. In our laboratory, we investigated alterations in N-glycosylation associated with CRC malignancy in a panel of CRC cell lines and CRC patient tissues. In an initial study, LC-MS/MS-based N-glycomics were utilized to map the N-glycome landscape associated with a panel of CRC cell lines (LIM1215, LIM1899, and LIM2405). These studies were subsequently extended to paired tumor and nontumorigenic CRC tissues to validate the findings in the cell line. Our studies in both CRC cell lines and tissues identified a strong representation of high mannose and α2,6-linked sialylated complex N-glycans, which corroborate findings from previous studies in CRC and other cancers. In addition, certain unique glycan determinants such as bisecting β1,4-GlcNAcylation and α2,3-sialylation, identified in the metastatic (LIM1215) and aggressive (LIM2405) CRC cell lines, respectively, were shown to be associated with epidermal growth factor receptor (EGFR) expression status. In this Account, we will describe the mass spectrometry based N-glycomics approach utilized in our laboratory to accurately profile the cell- and tissue-specific N-glycomes associated with CRC. We will highlight altered N-glycosylation observed by our studies, consistent with findings from other cancer studies, and discuss how the observed alterations can provide insights into CRC pathogenesis, opening new avenues to identify novel disease-associated glycan markers.
Collapse
Affiliation(s)
- Manveen K. Sethi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - William S. Hancock
- Barnett
Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Susan Fanayan
- Department
of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
62
|
Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta 2016; 943:8-16. [PMID: 27769380 DOI: 10.1016/j.aca.2016.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Comprehensive carbohydrate analysis of glycoproteins from human biological samples and biotherapeutics are important from diagnostic and therapeutic points of view. This review summarizes the current state-of-the-art liquid phase separation techniques used in N-glycosylation analysis. The different liquid chromatographic techniques and capillary electrophoresis methods are critically discussed in detail. Miniaturization of these methods is also important to increase throughput and decrease analysis time. The sample preparation and labeling methods for asparagine linked oligosaccharides are also addressed.
Collapse
Affiliation(s)
- Laszlo Hajba
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | | | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary; Horvath Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
63
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
64
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
65
|
Zaslavsky BY, Uversky VN, Chait A. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:622-44. [DOI: 10.1016/j.bbapap.2016.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
|
66
|
Sethi MK, Fanayan S. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer. Int J Mol Sci 2015; 16:29278-304. [PMID: 26690136 PMCID: PMC4691109 DOI: 10.3390/ijms161226165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS)-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.
Collapse
Affiliation(s)
- Manveen K Sethi
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Susan Fanayan
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
67
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 2015; 37:987-97. [DOI: 10.1002/elps.201500255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Albert Barroso
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Estela Giménez
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|
68
|
Loke I, Packer NH, Thaysen-Andersen M. Complementary LC-MS/MS-Based N-Glycan, N-Glycopeptide, and Intact N-Glycoprotein Profiling Reveals Unconventional Asn71-Glycosylation of Human Neutrophil Cathepsin G. Biomolecules 2015; 5:1832-54. [PMID: 26274980 PMCID: PMC4598777 DOI: 10.3390/biom5031832] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Neutrophil cathepsin G (nCG) is a central serine protease in the human innate immune system, but the importance of its N-glycosylation remains largely undescribed. To facilitate such investigations, we here use complementary LC-MS/MS-based N-glycan, N-glycopeptide, and intact glycoprotein profiling to accurately establish the micro- and macro-heterogeneity of nCG from healthy individuals. The fully occupied Asn71 carried unconventional N-glycosylation consisting of truncated chitobiose core (GlcNAcβ: 55.2%; Fucα1,6GlcNAcβ: 22.7%), paucimannosidic N-glycans (Manβ1,4GlcNAcβ1,4GlcNAcβ: 10.6%; Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ: 7.9%; Manα1,6Manβ1,4GlcNAcβ1,4GlcNAcβ: 3.7%, trace level of Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ), and trace levels of monoantennary α2,6- and α2,3-sialylated complex N-glycans. High-resolution/mass accuracy LC-MS profiling of intact nCG confirmed the Asn71-glycoprofile and identified two C-terminal truncation variants at Arg243 (57.8%) and Ser244 (42.2%), both displaying oxidation of solvent-accessible Met152. Asn71 appeared proximal (~19 Å) to the active site of nCG, but due to the truncated nature of Asn71-glycans (~5-17 Å) we questioned their direct modulation of the proteolytic activity of the protein. This work highlights the continued requirement of using complementary technologies to accurately profile even relatively simple glycoproteins and illustrates important challenges associated with the analysis of unconventional protein N-glycosylation. Importantly, this study now facilitates investigation of the functional role of nCG Asn71-glycosylation.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| |
Collapse
|
69
|
Robu AC, Popescu L, Munteanu CVA, Seidler DG, Zamfir AD. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain. Anal Biochem 2015; 485:122-31. [PMID: 26123275 DOI: 10.1016/j.ab.2015.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 01/03/2023]
Abstract
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, RO-060031 Bucharest, Romania
| | - Daniela G Seidler
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, D-49149 Münster, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, RO-310130 Arad, Romania.
| |
Collapse
|
70
|
Abrahams JL, Packer NH, Campbell MP. Relative quantitation of multi-antennary N-glycan classes: combining PGC-LC-ESI-MS with exoglycosidase digestion. Analyst 2015; 140:5444-9. [DOI: 10.1039/c5an00691k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the search for N-glycan disease biomarkers current glycoanalytical methods may not be revealing a complete picture of precious samples, and we may be missing valuable structural information that fall outside analysis windows.
Collapse
Affiliation(s)
- J. L. Abrahams
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - N. H. Packer
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - M. P. Campbell
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|