51
|
Zeng X, Deng G, Liu L, Li Y, Shi J, Chen P, Feng H, Liu J, Guo X, Mao S, Yang F, Chen Z, Tian G, Chen H. Protective Efficacy of the Inactivated H5N1 Influenza Vaccine Re-6 Against Different Clades of H5N1 Viruses Isolated in China and the Democratic People's Republic of Korea. Avian Dis 2017; 60:238-40. [PMID: 27309061 DOI: 10.1637/11178-051915-resnote] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An inactivated H5N1 avian influenza (AI) vaccine (Re-6) that bears the HA and NA genes from a clade 2.3.2.1 H5N1 virus, A/duck/Guangdong/S1322/10 (DK/GD/S1322/10), has been used in domestic poultry in China and other Southeast Asian countries to control clade 2.3.2.1 H5N1viruses since 2012. The efficacy of this vaccine against H5N1 viruses isolated in recent years has not been reported. In this study, we evaluated the protection efficacy of the Re-6 vaccine in chickens against challenge with four clade 2.3.2.1 H5N1 viruses, one clade 2.3.4.4 H5N1 virus, and one clade 7.2 H5N1 virus; these viruses were isolated in mainland China, Hong Kong, and the Democratic People's Republic of Korea between 2011 and 2015. The vaccinated chickens were completely protected (no disease signs, virus shedding, or death) from the challenge with the four clade 2.3.2.1 H5N1 viruses. In the clade 7.2 virus-challenged group, all of the vaccinated chickens remained healthy and survived for the entire 2-wk observation period; virus shedding was only detected from 1 of 10 chickens on day 3 postchallenge. In the clade 2.3.4.4 virus-challenged group, 8 of the 10 vaccinated chickens remained healthy and survived the 2-wk observation period; however, virus shedding was detected from 8 of 10 chickens on day 5 postchallenge. These results indicate that the Re-6 vaccine provides solid protection against clade 2.3.2.1, good protection against clade 7.2, and poor protection against clade 2.3.4.4.
Collapse
Affiliation(s)
- Xianying Zeng
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Guohua Deng
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Liling Liu
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Yanbing Li
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Jianzhong Shi
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Pucheng Chen
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Huapeng Feng
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Jingli Liu
- B Harbin Weike Biotechnology Development Company, 680 Haping Road Xiangfang District, Harbin 150069, The People's Republic of China
| | - Xingfu Guo
- B Harbin Weike Biotechnology Development Company, 680 Haping Road Xiangfang District, Harbin 150069, The People's Republic of China
| | - Shenggang Mao
- B Harbin Weike Biotechnology Development Company, 680 Haping Road Xiangfang District, Harbin 150069, The People's Republic of China
| | - Fan Yang
- B Harbin Weike Biotechnology Development Company, 680 Haping Road Xiangfang District, Harbin 150069, The People's Republic of China
| | - Zhiyu Chen
- B Harbin Weike Biotechnology Development Company, 680 Haping Road Xiangfang District, Harbin 150069, The People's Republic of China
| | - Guobin Tian
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| | - Hualan Chen
- A Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, The People's Republic of China
| |
Collapse
|
52
|
Choi KS. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines. Clin Exp Vaccine Res 2017; 6:72-82. [PMID: 28775971 PMCID: PMC5540967 DOI: 10.7774/cevr.2017.6.2.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use.
Collapse
Affiliation(s)
- Kang-Seuk Choi
- OIE Reference Laboratory for Newcastle Disease, Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
53
|
Bertran K, Balzli C, Lee DH, Suarez DL, Kapczynski DR, Swayne DE. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus. Vaccine 2017; 35:6336-6344. [PMID: 28554502 DOI: 10.1016/j.vaccine.2017.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Charles Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| |
Collapse
|
54
|
Swine and Avian Influenza Outbreaks in Recent Times. EMERGING ZOONOSES 2017. [PMCID: PMC7119929 DOI: 10.1007/978-3-319-50890-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza A is a zoonotic virus and wild waterfowls are the main reservoir of avian influenza viruses, which are precursors of human influenza A viruses. Through mutations and gene reassortment, some strains of avian influenza viruses establish stable lineages in poultry species, pigs, horses, and humans. The first zoonotic influenza pandemic of the twenty-first century, the swine H1N1 pandemic of 2009, originated from Mexico, and fortunately the virus was only of modest virulence. However, lessons have been learned on the shortcomings of the global preparedness for influenza pandemic, and this should be considered as a valuable experience for the preparation of the next major outbreak. Of more concern is the emergence of the highly pathogenic avian influenza A [H5N1], ongoing since 1996, and the low pathogenic avian influenza A [H7N9], since 2013, which have crossed the species barrier to humans in China. Risks of a H5N1 pandemic appear to be receding with declining human cases, and the H7N9 influenza virus is now the leading candidate as the next pandemic influenza virus. However, influenza pandemics are unpredictable in their timing, specific strain of virus, and origin. Most experts predict that the next influenza pandemic will arise from Asia, especially China, and will be directly of avian origin. Continued influenza surveillance in animals and humans globally with prompt reporting to the WHO and the World Animal Health Organization with sharing of data promptly between countries is essential. Long-term solutions to prevent cross-species transmission of zoonotic influenza viruses to humans and development of more effective, longer-lasting vaccines against emerging avian influenza viruses are needed. Currently there is no evidence of an impending zoonotic or avian influenza pandemic, and the viruses of interest, H5N1 and H7N9 avian influenza A viruses, have not mutated to allow for easy transmission to humans nor human to human.
Collapse
|
55
|
Rauff D, Strydom C, Abolnik C. Evolutionary consequences of a decade of vaccination against subtype H6N2 influenza. Virology 2016; 498:226-239. [DOI: 10.1016/j.virol.2016.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023]
|
56
|
Ayala AJ, Dimitrov KM, Becker CR, Goraichuk IV, Arns CW, Bolotin VI, Ferreira HL, Gerilovych AP, Goujgoulova GV, Martini MC, Muzyka DV, Orsi MA, Scagion GP, Silva RK, Solodiankin OS, Stegniy BT, Miller PJ, Afonso CL. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds. PLoS One 2016; 11:e0162484. [PMID: 27626272 PMCID: PMC5023329 DOI: 10.1371/journal.pone.0162484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.
Collapse
Affiliation(s)
- Andrea J. Ayala
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
- National Diagnostic Research Veterinary Medical Institute, Sofia, Bulgaria
| | - Cassidy R. Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Clarice W. Arns
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Vitaly I. Bolotin
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Helena L. Ferreira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering and Graduate Program in Experimental Epidemiology of Zoonosis, University of São Paulo, São Paulo, Brazil
- Post-Graduate Program in the Experimental Epidemiology of Zoonoses, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Anton P. Gerilovych
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | | | - Matheus C. Martini
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Denys V. Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Maria A. Orsi
- National Agricultural Laboratory of São Paulo, Lanagro/SP, Campinas, Brazil
| | - Guilherme P. Scagion
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Renata K. Silva
- Post-Graduate Program in the Experimental Epidemiology of Zoonoses, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Olexii S. Solodiankin
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Boris T. Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Patti J. Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| |
Collapse
|
57
|
Devlin JM, Vaz PK, Coppo MJ, Browning GF. Impacts of poultry vaccination on viruses of wild bird. Curr Opin Virol 2016; 19:23-9. [PMID: 27359320 DOI: 10.1016/j.coviro.2016.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Spillover of viruses from farmed poultry into wild birds is a relatively new area of study at the livestock-wildlife interface. These transmission events can threaten the health of wild birds. There is growing evidence of transmission of vaccine viruses from poultry to wild birds, including attenuated vaccine strains of Newcastle disease virus and infectious bronchitis virus, and also spread of virulent viruses that may have evolved under the pressure of vaccine use, such as Marek's disease virus. Viral contaminants of poultry vaccines, including reticuloendotheliosis virus, may also be transmitted to wild birds and result in disease. New, vectored vaccines are less likely to directly spread to wild birds but this risk may rise as a result of recombination.
Collapse
Affiliation(s)
- Joanne M Devlin
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Paola K Vaz
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio Jc Coppo
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
58
|
Wibowo N, Wu Y, Fan Y, Meers J, Lua LH, Middelberg AP. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine 2015; 33:5960-5. [DOI: 10.1016/j.vaccine.2015.08.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022]
|
59
|
Fan X, Hu Y, Zhang G, Wang M. Veterinary influenza vaccines against avian influenza in China. Future Virol 2015. [DOI: 10.2217/fvl.15.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Avian influenza (AI) is an infectious viral illness that affects numerous species of birds, including chickens, ducks, turkeys and geese. Poultry vaccination plays an important role for control of the AI virus and effectively prevents the infection in domestic chickens. However, new, increasingly virulent strains are constantly emerging, for which no vaccines are available. Avian influenza is also responsible for sporadically infecting humans and causing a wide range of clinical outcomes. Here, we review the recent emergence of diverse strains of the AI virus and the use of veterinary vaccines for poultry in China.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Key Laboratory of Animal Epidemiology & Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology & Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology & Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology & Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Veterinary Bioproduction & Veterinary Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, No. 156 Beiqing Road, Haidian District, Beijing 100095, China
| |
Collapse
|
60
|
Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 2015; 33:2414-24. [PMID: 25835575 DOI: 10.1016/j.vaccine.2015.03.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.
Collapse
Affiliation(s)
- J Rahn
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - T C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
61
|
Simms L, Jeggo M. Avian influenza from an ecohealth perspective. ECOHEALTH 2014; 11:4-14. [PMID: 24763945 DOI: 10.1007/s10393-014-0927-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
To understand and better control AI outbreaks, not only is it necessary to understand the biology of influenza viruses but also the natural history of the hosts in which these viruses multiply and the different environments in which the hosts and viruses interact. This includes the anthropogenic factors that have influenced where, whether and how avian influenza (AI) viruses can replicate and transmit between wild birds and poultry, and between poultry and mammals, including factors influencing uptake and application of appropriate control and preventive measures for AI. This disease represents one of the best examples of the need for a 'One Health' approach to understand and tackle disease with an increasing need to comprehend and unravel the environmental and ecology drivers that affect the virus host interactions. This forum piece seeks to bring together these aspects through a review of recent outbreaks and how a deeper understanding of all three aspects, the virus, the host and the environment, can help us better manage future outbreaks.
Collapse
Affiliation(s)
- Les Simms
- , PMB 24, Geelong, VIC, 3220, Australia
| | | |
Collapse
|
62
|
Abstract
UNLABELLED Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable.
Collapse
|