51
|
Pejerrey SM, Dustin D, Kim JA, Gu G, Rechoum Y, Fuqua SAW. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer. Discov Oncol 2018; 9:215-228. [PMID: 29736566 DOI: 10.1007/s12672-017-0306-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.
Collapse
Affiliation(s)
- Sasha M Pejerrey
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Derek Dustin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Jin-Ah Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Guowei Gu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Yassine Rechoum
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA.
| |
Collapse
|
52
|
Estrogen receptor (ESR1) mutation in bone metastases from breast cancer. Mod Pathol 2018; 31:56-61. [PMID: 28799536 DOI: 10.1038/modpathol.2017.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/07/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022]
Abstract
Activating mutations of estrogen receptor α gene (ESR1) in breast cancer can cause endocrine resistance of metastatic tumor cells. The skeleton belongs to the metastatic sides frequently affected by breast cancer. The prevalence of ESR1 mutation in bone metastasis and the corresponding phenotype are not known. In this study bone metastases from breast cancer (n=231) were analyzed for ESR1 mutation. In 27 patients (12%) (median age 73 years, range: 55-82 years) activating mutations of ESR1 were detected. The most frequent mutation was p.D538G (53%), no mutations in exon 4 (K303) or 7 (S463) were found. Lobular breast cancer was present in 52% of mutated cases (n=14) and in 49% of all samples (n=231), respectively. Mutated cancers constantly displayed strong estrogen receptor expression. Progesterone receptor was positive in 78% of the mutated cases (n=21). From 194 estrogen receptor-positive samples, 14% had ESR1 mutated. Except for one mutated case, no concurrent HER2 overexpression was noted. Metastatic breast cancer with activating mutations of ESR1 had a higher Ki67 labeling index than primary luminal cancers (median 30%, ranging from 5 to 60% with 85% of cases revealing ≥20% Ki67-positive cells). From those patients from whom information on endocrine therapy was available (n=7), two had received tamoxifen only, 4 tamoxifen followed by aromatase inhibitors and one patient had been treated with aromatase inhibitors only. We conclude that ESR1 mutation is associated with estrogen receptor expression and high proliferative activity and affects about 14% of estrogen receptor-positive bone metastases from breast cancer.
Collapse
|
53
|
Li Z, Levine KM, Bahreini A, Wang P, Chu D, Park BH, Oesterreich S, Lee AV. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells. Endocrinology 2018; 159:285-296. [PMID: 29029116 PMCID: PMC5761602 DOI: 10.1210/en.2017-00693] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
Abstract
Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
| | - Kevin M. Levine
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Medical Scientist Training Program, Pittsburgh, Pennsylvania 15213
| | - Amir Bahreini
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Peilu Wang
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Women’s Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
54
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
55
|
Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N, Cao L, Weir HM, Puhalla SL, Davidson NE, Stern AM, Chu D, Park BH, Lee AV, Oesterreich S. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res 2017; 19:60. [PMID: 28535794 PMCID: PMC5442865 DOI: 10.1186/s13058-017-0851-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023] Open
Abstract
Background Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Methods Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Results Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Conclusions Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0851-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir Bahreini
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA
| | - Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA
| | - Peilu Wang
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Kevin M Levine
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, and MSTP Program, Pittsburgh, PA, USA
| | - Nilgun Tasdemir
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lan Cao
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.,Central South University Xiangya School of Medicine, Changsha, China
| | - Hazel M Weir
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Shannon L Puhalla
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy E Davidson
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Andrew M Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian V Lee
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
56
|
Jeselsohn R, De Angelis C, Brown M, Schiff R. The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Curr Oncol Rep 2017; 19:35. [PMID: 28374222 DOI: 10.1007/s11912-017-0591-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recurrent ligand-binding domain ESR1 mutations have recently been detected in a substantial number of patients with metastatic ER+ breast cancer and evolve under the selective pressure of endocrine treatments. In this review, we evaluate the current understanding of the biological and clinical significance of these mutations. The preclinical studies revealed that these mutations lead to constitutive ligand-independent activity, indicating resistance to aromatase inhibitors and decreased sensitivity to tamoxifen and fulvestrant. Retrospective analyses of ESR1 mutations in baseline plasma circulating tumor DNA from completed clinical trials suggest that these mutations are prognostic and predictive of resistance to aromatase inhibitors in metastatic disease. Currently, we are lacking prospective studies to confirm these results and to determine the optimal treatment combinations for patients with the ESR1 mutations. In addition, the clinical development of novel agents to overcome resistance engendered by these mutations is also needed.
Collapse
Affiliation(s)
- Rinath Jeselsohn
- Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| | - Carmine De Angelis
- Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Myles Brown
- Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Rachel Schiff
- Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
57
|
Detection of ESR1 mutations in plasma and tumors from metastatic breast cancer patients using next-generation sequencing. Breast Cancer Res Treat 2017; 163:231-240. [PMID: 28283903 DOI: 10.1007/s10549-017-4190-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Liquid biopsy using digital PCR (dPCR) has been widely used for the screening of ESR1 mutations, since they are frequently identified in the hotspot. However, dPCR is limited to the known mutations. Therefore, we aimed to analyze the utility of next-generation sequencing (NGS) to discover novel ESR1 mutations. METHODS Whole exon sequencing of the ESR1 gene using NGS was performed in 16 primary and 47 recurrent tumor samples and 38 plasma samples from hormone receptor-positive metastatic breast cancer patients. Functional analyses were then performed for the novel mutations we detected. RESULTS We identified no mutations in primary tumors and six mutations in five recurrent tumors, including three types of known mutations (Y537C, Y537N, and D538G) and two novel mutations (E279V and G557R). We also identified seven mutations in five plasma samples, including three types of known mutations (S463P, Y537S, and D538G) and one mutation not reported in COSMIC database (L536H). All nine patients with ESR1 mutations were treated with aromatase inhibitors (AIs) prior to sampling, and the mutations were frequently detected in patients who received AI treatments in the metastatic setting. Among the three novel mutations (E279V, L536H, and G557R), L536H, but not E279V and G557R, showed ligand-independent activity. All three mutant proteins showed nuclear localization and had no relation with non-genomic ER pathways. CONCLUSIONS Although the molecular mechanisms of the E279V and G557R mutations remain unclear, our data suggest the utility of NGS as a liquid biopsy for metastatic breast cancer patients and the potential to identify novel ESR1 mutations.
Collapse
|
58
|
Yu X, Guo S, Song W, Xiang T, Yang C, Tao K, Zhou L, Cao Y, Liu S. Estrogen receptor α (ERα) status evaluation using RNAscope in situ hybridization: a reliable and complementary method for IHC in breast cancer tissues. Hum Pathol 2016; 61:121-129. [PMID: 27993577 DOI: 10.1016/j.humpath.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Estrogen receptor α (ERα) plays a significant role in the development of breast cancer and has been used clinically as an endocrine therapeutic target. Currently, clinical laboratories use immunohistochemistry (IHC) to determine the ERα status of patients in order to distinguish those who would benefit from endocrine therapy. This method is highly subjective, requires a large amount of tumor tissue, and may generate false-negative results. To improve the detection of ERα, we used a new RNA in situ hybridization technique (RNAscope) and compared its use with IHC in 72 breast cancer tissues (47 ERα positive and 25 ERα negative). Then we evaluated ERα mRNA by RT-qPCR with RNAscope. An unobvious difference was found between reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and IHC, but a positive correlation was found between RNAscope and IHC. In addition, breast cancer is a highly heterogeneous cancer, and RNAscope could easily reveal the heterogeneity in breast cancer. Moreover, we found that some ERα IHC-based negative and RNAscope-based positive test results were detected as positive after testing with IHC again. Our findings suggest that RNAscope may be a complementary method for improving the detection of patient ERα status and has potential clinical utility.
Collapse
Affiliation(s)
- Xiuwei Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengcheng Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Tao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zhou
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijia Cao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|