51
|
Zhang X, Huang Z, Wang Y, Wang T, Li J, Xi P. Long Non-Coding RNA RMRP Contributes to Sepsis-Induced Acute Kidney Injury. Yonsei Med J 2021; 62:262-273. [PMID: 33635017 PMCID: PMC7934096 DOI: 10.3349/ymj.2021.62.3.262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to explore the role of the long non-coding RNA (lncRNA) RNA component of mitochondrial RNAase P (RMRP) in sepsis-induced acute kidney injury (AKI). MATERIALS AND METHODS Venous blood was collected from septic patients and healthy people. C57BL/6 mice who underwent cecal ligation and puncture (CLP) were used as in vivo models of septic AKI. Lipopolysaccharide (LPS)-induced HK-2 cells were employed as in vitro models of AKI. Flow cytometry analysis was conducted to detect cell apoptosis. Enzyme-linked immunosorbent assay and Western blot assays were used to detect levels of pro-inflammatory cytokines. RESULTS RMRP was upregulated in sera from patients with AKI and in LPS-induced cells. Knockdown of RMRP inhibited cell apoptosis and reduced production of inflammatory factors in LPS-induced cells, as well as alleviated AKI in CLP mice. RMRP facilitated inflammation by activating NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome. We found that microRNA 206 (miR-206) binds with and is negatively regulated by RMRP: miR-206 directly targets the 3' untranslated region of DEAD-box helicase 5 (DDX5) and negatively regulates DDX5 expression. By binding with miR-206, RMRP upregulated DDX5 expression. Rescue assays revealed that overexpression of DDX5 counteracted the effect of RMRP inhibition on cell apoptosis and inflammatory response in LPS-induced cells. CONCLUSION The lncRNA RMRP contributes to sepsis-induced AKI through upregulation of DDX5 in a miR-206 dependent manner and through activation of NLRP3 inflammasome. This novel discovery may provide a potential strategy for treating AKI.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China.
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Ting Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Li
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
52
|
Yang H, Wang J, Zhang Z, Peng R, Lv D, Liu H, Sun Y. Sp1-Induced lncRNA Rmrp Promotes Mesangial Cell Proliferation and Fibrosis in Diabetic Nephropathy by Modulating the miR-1a-3p/JunD Pathway. Front Endocrinol (Lausanne) 2021; 12:690784. [PMID: 34512545 PMCID: PMC8429906 DOI: 10.3389/fendo.2021.690784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus. Long non-coding RNAs (lncRNAs) are regulators in DN progression. However, the regulatory mechanisms of multiple lncRNAs in DN remain to be determined. Our aim was to investigate the function and molecular mechanism of lncRNA RNA component of mitochondrial RNAase P (Rmrp) in DN. Here, we observed that the expression of Rmrp was up-regulated in the kidney of db/db DN mice and high glucose induced glomerular mesangial cells (MC). More importantly, the abnormal transcription of Rmrp was induced by nuclear transcription factor Sp1, which promotes the proliferation and production of fibrotic markers in MC. Subsequently, we screened the miRNAs related to Rmrp and found that Rmrp and miR-1a-3p are co-localized at the subcellular level of MC, and Rmrp could directly binds to miR-1a-3p. Further mechanism research demonstrated that the elevated miR-1a-3p significantly attenuated the proliferation and fibrosis-promoting effects induced by up-regulation of Rmrp. At the same time, we also investigated that miR-1a-3p can directly bind to Jun D proto-oncogene (JunD), thereby regulating the protein level of JunD. Rmrp-induced proliferation and fibrogenesis were reversed by co-transfection with JunD siRNA. In summary, Sp1 induced lncRNA Rmrp could drive the expression of JunD via sponging miR-1a-3p in DN progression.
Collapse
Affiliation(s)
- Hansen Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Dan Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yan Sun,
| |
Collapse
|
53
|
Manetti AC, Maiese A, Paolo MD, De Matteis A, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int J Mol Sci 2020; 22:ijms22010321. [PMID: 33396834 PMCID: PMC7794809 DOI: 10.3390/ijms22010321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a severe condition characterized by systemic inflammation. One of the most involved organs in sepsis is the heart. On the other hand, heart failure and dysfunction are some of the most leading causes of death in septic patients. miRNAs are short single-strand non-coding ribonucleic acids involved in the regulation of gene expression on a post-transcriptional phase, which means they are a part of the epigenetic process. Recently, researchers have found that miRNA expression in tissues and blood differs depending on different conditions. Because of this property, their use as serum sepsis biomarkers has also been explored. A narrative review is carried out to gather and summarize what is known about miRNAs' influence on cardiac dysfunction during sepsis. When reviewing the literature, we found at least 77 miRNAs involved in cardiac inflammation and dysfunction during sepsis. In the future, miRNAs may be used as early sepsis-induced cardiac dysfunction biomarkers or as new drug targets. This could help clinicians to early detect, prevent, and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and therapeutic strategies worth deepening the complex network between non-coding RNA and biological pathways. Additional studies are needed to further investigate their role in sepsis-induced myocardium injury.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Raffaele La Russa
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
- Correspondence: ; Tel.: +39-0649912722
| |
Collapse
|
54
|
Shi Y, Zheng X, Zheng M, Wang L, Chen Y, Shen Y. Identification of mitochondrial function-associated lncRNAs in septic mice myocardium. J Cell Biochem 2020; 122:53-68. [PMID: 32786114 DOI: 10.1002/jcb.29831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real-time polymerase chain reaction technique. LncRNA-mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria-related differentially expressed mRNA. Among all lncRNAs and their cis-acting mRNAs, 41 lncRNAs-mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.
Collapse
Affiliation(s)
- Yingzhou Shi
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohe Zheng
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueliang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Han M, Chen XC, Sun MH, Gai MT, Yang YN, Gao XM, Ma X, Chen BD, Ma YT. Overexpression of IκBα in cardiomyocytes alleviates hydrogen peroxide-induced apoptosis and autophagy by inhibiting NF-κB activation. Lipids Health Dis 2020; 19:150. [PMID: 32580730 PMCID: PMC7315514 DOI: 10.1186/s12944-020-01327-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Inflammation and oxidative stress play predominant roles in the initiation and progression of ischaemia/reperfusion (I/R) injury, with nuclear factor kappa B (NF-κB) serving as a crucial mediator. Overexpression of the inhibitor of κB alpha (IκBα) gene is hypothesized to have protective effects against apoptosis and autophagy in cardiomyocytes subjected to hydrogen peroxide (H2O2) by inhibiting the NF-κB pathway. Methods The IκBαS32A, S36A gene was transfected via adeno-associated virus serotype 9 (AAV9) delivery into neonatal rat ventricular cardiomyocytes (NRVMs) prior to H2O2 treatment. NRVMs were divided into control, H2O2, GFP + H2O2, IκBα+H2O2, and pyrrolidine dithiocarbamate (PDTC) + H2O2 groups. Nuclear translocation of the NF-κB p65 subunit was evaluated by immunofluorescence and Western blotting. Cell viability was assessed by Cell Counting Kit-8 assay. Supernatant lactate dehydrogenase (LDH) and intracellular malondialdehyde (MDA) were measured to identify H2O2-stimulated cytotoxicity. Apoptosis was determined by Annexin V-PE/7-AAD staining, and the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining. Western blotting was used to detect apoptosis- and autophagy-related proteins. Results IκBα transfection significantly increased cell viability and ΔΨm but decreased the supernatant LDH and cellular MDA levels in cardiomyocytes exposed to H2O2. Meanwhile, IκBα overexpression decreased H2O2-induced apoptosis by upregulating the Bcl-2/Bax ratio and reduced autophagy by downregulating the expression of Beclin-1 and the LC3-II/LC3-I ratio. These effects partly accounted for the ability of IκBα to inhibit the NF-κB signalling pathway, as evidenced by decreases in p65 phosphorylation and nuclear translocation. Indeed, the effects of inactivation of NF-κB signalling with the specific inhibitor PDTC resembled the cardioprotective effects of IκBα during H2O2 stimulation. Conclusion IκBα overexpression can ameliorate H2O2-induced apoptosis, autophagy, oxidative injury, and ΔΨm loss through inhibition of the NF-κB signalling pathway. These findings suggest that IκBα transfection can result in successful resistance to oxidative stress-induced damage by inhibiting NF-κB activation, which may provide a potential therapeutic target for the prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Min Han
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.,Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Xiao-Cui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Ming-Hui Sun
- Department of Nephrology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, PR China
| | - Min-Tao Gai
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Yi-Ning Yang
- Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Xiao-Ming Gao
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Xiang Ma
- Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.
| | - Yi-Tong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China. .,Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.
| |
Collapse
|
56
|
付 洪. Multifunction of LncRNA RMRP RNA. Biophysics (Nagoya-shi) 2020. [DOI: 10.12677/biphy.2020.82002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|