51
|
Zhang MX, Gan W, Jing CY, Zheng SS, Yi Y, Zhang J, Xu X, Lin JJ, Zhang BH, Qiu SJ. High expression of Oct4 and Nanog predict poor prognosis in intrahepatic cholangiocarcinoma patients after curative resection. J Cancer 2019; 10:1313-1324. [PMID: 30854141 PMCID: PMC6400680 DOI: 10.7150/jca.28349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
Oct4 and Nanog are reported to promote tumor progression in several cancers, but the effect on intrahepatic cholangiocarcinoma (ICC) is unknown. The aim of our present study was to explore the prognostic role of Oct4 and Nanog on patients with ICC. Immunohistochemistry was used to detect the expression of Oct4 and Nanog in a random cohort of 116 ICC patients, and validated in another independent cohort of 103 patients. Prognostic nomograms were formulated for OS and RFS prediction of ICC patients. Our results showed Oct4 and Nanog highly expressed in ICC tumor tissues and were identified as independent prognostic factors for patients' OS and RFS. Significant positive correlation was found between Oct4 and Nanog expression. Co-expression of Oct4 and Nanog implied the poorest OS and RFS in ICC patients. Our nomograms comprising Oct4 and Nanog achieved better predictive accuracy in training and validation cohorts compared with AJCC 7th edition and LCSGJ stage for OS and RFS prediction. Our study support the high expression of Oct4 and Nanog in ICC implies aggressive tumor behaviors and suggest a poor clinical prognosis, which emerges as valuable biomarkers for identifying patients at high risk after curative resection.
Collapse
Affiliation(s)
- Mei-Xia Zhang
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Wei Gan
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Chu-Yu Jing
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Su-Su Zheng
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Yong Yi
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Juan Zhang
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Xin Xu
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Jia-Jia Lin
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| | - Bo-Heng Zhang
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China.,Center for evidence-based medicine, Fudan University, Shanghai 200032, P. R. China
| | - Shuang-Jian Qiu
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, 200032, P.R. China
| |
Collapse
|
52
|
Arumugam A, Subramani R, Nandy SB, Terreros D, Dwivedi AK, Saltzstein E, Lakshmanaswamy R. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp Mol Med 2019; 51:1-13. [PMID: 30617282 PMCID: PMC6323053 DOI: 10.1038/s12276-018-0197-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Growth hormone receptor (GHR) plays a vital role in breast cancer chemoresistance and metastasis but the mechanism is not fully understood. We determined if GHR could be a potential therapeutic target for estrogen receptor negative (ER-ve) breast cancer, which are highly chemoresistant and metastatic. GHR was stably knocked down in ER-ve breast cancer cells and its effect on cell proliferation, metastatic behavior, and chemosensitivity to docetaxel (DT) was assessed. Microarray analysis was performed to identify potential GHR downstream targets involved in chemoresistance. GHR and ATP-binding cassette sub-family G member 2 (ABCG2) overexpression and knockdown studies were performed to investigate the mechanism of GHR-induced chemoresistance. Patient-derived xenografts was used to study the effect of GHR and ABCG2. Immunohistochemical data was used to determine the correlation between GHR, pAKT, pmTOR, and ABCG2 expressions. GHR silencing drastically reduced the chemoresistant and metastatic behavior of ER-ve breast cancer cells and also inhibited AKT/mTOR pathway. In contrast, activation, or overexpression of GHR increased chemoresistance and metastasis by increasing the expression and promoter activity, of ABCG2. Inhibition of JAK2/STAT5 signaling repressed GHR-induced ABCG2 promoter activity and expression. Further, ABCG2 knockdown significantly increased the chemosensitivity. Finally, patient-derived xenograft studies revealed the role of GHR in chemoresistance. Overall, these findings demonstrate that targeting GHR could be a novel therapeutic approach to overcome chemoresistance and associated metastasis in aggressive ER-ve breast cancers.
Collapse
Affiliation(s)
- Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Sushmita Bose Nandy
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Daniel Terreros
- Research Core Laboratory, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Edward Saltzstein
- University Breast Care Center, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
53
|
Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, O'Connor K, Lane AN, Xu R. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun 2018; 9:4456. [PMID: 30367042 PMCID: PMC6203834 DOI: 10.1038/s41467-018-06893-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Collagen prolyl 4-hydroxylase (P4H) expression and collagen hydroxylation in cancer cells are necessary for breast cancer progression. Here, we show that P4H alpha 1 subunit (P4HA1) protein expression is induced in triple-negative breast cancer (TNBC) and HER2 positive breast cancer. By modulating alpha ketoglutarate (α-KG) and succinate levels P4HA1 expression reduces proline hydroxylation on hypoxia-inducible factor (HIF) 1α, enhancing its stability in cancer cells. Activation of the P4HA/HIF-1 axis enhances cancer cell stemness, accompanied by decreased oxidative phosphorylation and reactive oxygen species (ROS) levels. Inhibition of P4HA1 sensitizes TNBC to the chemotherapeutic agent docetaxel and doxorubicin in xenografts and patient-derived models. We also show that increased P4HA1 expression correlates with short relapse-free survival in TNBC patients who received chemotherapy. These results suggest that P4HA1 promotes chemoresistance by modulating HIF-1-dependent cancer cell stemness. Targeting collagen P4H is a promising strategy to inhibit tumor progression and sensitize TNBC to chemotherapeutic agents. Hyperactivation of HIF-1α is crucial in progression of triple-negative breast cancer, but how HIF-1α stability is maintained in a hypoxia-independent manner is unclear. Here, the authors show collagen prolyl-4-hydroylase 1 stabilises HIF-1α and is involved in chemoresistance in TNBC.
Collapse
Affiliation(s)
- Gaofeng Xiong
- UK Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Rachel L Stewart
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Jie Chen
- UK Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- UK Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Timothy L Scott
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Luis M Samayoa
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathleen O'Connor
- UK Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Ren Xu
- UK Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA. .,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
54
|
Glackin CA. Nanoparticle Delivery of TWIST Small Interfering RNA and Anticancer Drugs: A Therapeutic Approach for Combating Cancer. Enzymes 2018; 44:83-101. [PMID: 30360816 DOI: 10.1016/bs.enz.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast and ovarian cancer are the leading cause of cancer-related deaths in women in the United States with over 232,000 new Breast Cancer (BC) diagnoses expected in 2018 and almost 40,000 deaths and an estimated 239,000 new ovarian cancer (OC) cases and 152,000 deaths worldwide annually. OC is the most lethal gynecologic malignancy. This high mortality rate is due to tumor recurrence and metastasis, primarily caused by chemoresistant cancer stem-like cells (CSCs). Triple Negative Breast Cancer (TNBC) patients also become resistant to chemotherapy due to recurrence of CSCs. Currently, no ovarian or breast cancer therapies target CSC specifically. TWIST is overexpressed in the majority of chemoresistant cancers resulting in a low survival rate. Our long-term goal is to develop novel treatments for women with ovarian and breast cancer, specifically treatments that sensitize chemoresistant tumors. Despite successful initial surgery and chemotherapy, over 70% of advanced EOC will recur, and only 15-30% of recurrent disease will respond to chemotherapy (Cortez et al., 2017; Berezhnaya, 2010; Jackson et al., 2015). Moreover, drug resistance causes treatment failure in over 90% of patients with metastatic disease (Solmaz et al., 2015). Thus, recurrent metastatic disease is a major clinical challenge without effective therapy. One of the major challenges in the treatment of breast cancer is the presence of a subpopulation of cancer cells that are chemoresistant (CRC) and metastatic. Given that metastasis is the driving force behind mortality for breast and ovarian cancer patients, it is essential to identify the characteristics of these aberrant cancer cells that allow them to spread to distant sites in the body and develop into metastatic tumors. Understanding the metastatic mechanisms driving cancer cell dispersal will open the door to developing novel therapies that prevent metastasis and improve long-term outcomes for patients. In this chapter we assess the feasibility of targeting the Twist and EMT signaling pathways in breast and ovarian cancer. Additional discussions of the pathways that mediate epithelial-mesenchymal transition (EMT), a process that can give rise to chemoresistance. We review potential treatment strategies for targeting EMT and drug resistance as well as the problems that may arise with these targeted delivery therapeutic approaches. Finally, we examine recent advances in the field, including cancer stem cell targeted nanoparticle delivery and small interference RNA (siRNA) technology, and discuss the impact that these approaches may have on translating much needed therapeutic approaches into the clinic, for the benefit of patients battling this devastating disease.
Collapse
Affiliation(s)
- Carlotta A Glackin
- Developmental and Stem Cell Biology, City of Hope Medical Center, Duarte, CA, United States.
| |
Collapse
|
55
|
Dermani FK, Amini R, Saidijam M, Pourjafar M, Saki S, Najafi R. Zerumbone inhibits epithelial-mesenchymal transition and cancer stem cells properties by inhibiting the β-catenin pathway through miR-200c. J Cell Physiol 2018; 233:9538-9547. [PMID: 29943808 DOI: 10.1002/jcp.26874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal and rampant human malignancies in the world. Zerumbone, a sesquiterpene isolated from subtropical ginger, has been found to exhibit an antitumor effect in various cancer types. However, the effect of Zerumbone on the biological properties of CRC, including epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) has not been fully elucidated. Here, we investigated the inhibitory action of Zerumbone on the EMT process, CSC markers, and the β-catenin signaling pathway in the presence or absence of miR-200c. The effect of Zerumbone on HCT-116 and SW-48 cells viability was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The effects of Zerumbone on EMT-related genes, CSCs markers, cell migration, invasion, sphere-forming, and β-catenin signaling pathway were explored. To evaluate the role of miR-200c in anticancer effects by Zerumbone, miR-200c was downregulated by LNA-anti-miR-200c. Zerumbone significantly inhibited cell viability, migration, invasion, and sphere-forming potential in HCT-116 and SW-48 cell lines. Zerumbone significantly suppressed the EMT and CSC properties as well as downregulated the β-catenin. Silencing of miR200c reduced the inhibitory effects of Zerumbone on EMT and CSCs in CRC cells. These data indicated that Zerumbone may be a promising candidate for reducing the risk of CRC progression by suppressing the β-catenin pathway via miR-200c.
Collapse
Affiliation(s)
- Fatemeh Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Saki
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
56
|
Karimi Dermani F, Amini R, Saidijam M, Najafi R. miR‐200c, a tumor suppressor that modulate the expression of cancer stem cells markers and epithelial‐mesenchymal transition in colorectal cancer. J Cell Biochem 2018; 119:6288-6295. [DOI: 10.1002/jcb.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadanIran
| | - Razieh Amini
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadanIran
| | - Massoud Saidijam
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadanIran
| | - Rezvan Najafi
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
57
|
Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget 2018; 7:78206-78218. [PMID: 27661009 PMCID: PMC5363655 DOI: 10.18632/oncotarget.12151] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in embryonic and postnatal development by regulating cell differentiation, proliferation, motility, and survival, thus maintaining homeostasis during organ and tissue development. BMPs can lead to tumorigenesis and regulate cancer progression in different stages. Therefore, we summarized studies on BMP expression, the clinical significance of BMP dysfunction in various cancer types, and the molecular regulation of various BMP-related signaling pathways. We emphasized on the paradoxical effects of BMPs on various aspects of carcinogenesis, including epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs), and angiogenesis. We also reviewed the molecular mechanisms by which BMPs regulate tumor generation and progression as well as potential therapeutic targets against BMPs that might be valuable in preventing tumor growth and invasion.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pei Xiao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| |
Collapse
|
58
|
Zanjani LS, Madjd Z, Abolhasani M, Rasti A, Fodstad O, Andersson Y, Asgari M. Increased expression of CD44 is associated with more aggressive behavior in clear cell renal cell carcinoma. Biomark Med 2017; 12:45-61. [PMID: 29243496 DOI: 10.2217/bmm-2017-0142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. DISCUSSION & CONCLUSION Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.
Collapse
Affiliation(s)
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rasti
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Oystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci Rep 2017; 7:15174. [PMID: 29123181 PMCID: PMC5680298 DOI: 10.1038/s41598-017-15360-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
A high cell proliferation rate, invasiveness and resistance to chemotherapy are the main features of glioblastoma (GBM). GBM aggressiveness has been widely associated both with a minor population of cells presenting stem-like properties (cancer stem-like cells, CSCs) and with the ability of tumor cells to acquire a mesenchymal phenotype (epithelial-mesenchymal transition, EMT). Carnosol (CAR), a natural inhibitor of MDM2/p53 complex, has been attracted attention for its anti-cancer effects on several tumor types, including GBM. Herein, the effects of CAR on U87MG-derived CSC viability and stemness features were evaluated. CAR decreased the rate of CSC formation and promoted the CSC apoptotic cell death through p53 functional reactivation. Moreover, CAR was able to control the TNF-α/TGF-β-induced EMT, counteracting the effects of the cytokine on EMT master regulator genes (Slug, Snail, Twist and ZEB1) and modulating the activation of miR-200c, a key player in the EMT process. Finally, CAR was able to increase the temozolomide (TMZ) anti-proliferative effects. These findings demonstrate that CAR affected the different intracellular mechanism of the complex machinery that regulates GBM stemness. For the first time, the diterpene was highlighted as a promising lead for the development of agents able to decrease the stemness features, thus controlling GBM aggressiveness.
Collapse
|
60
|
Lei H, Shan H, Wu Y. Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 2017; 17:101. [PMID: 29142505 PMCID: PMC5670729 DOI: 10.1186/s12935-017-0472-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitination. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in the CSC-targeted therapy.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
61
|
Wang J, Cao L, Wu J, Wang Q. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol 2017; 52:77-88. [PMID: 29115574 PMCID: PMC5743365 DOI: 10.3892/ijo.2017.4187] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/08/2017] [Indexed: 01/17/2023] Open
Abstract
The long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to participate in the deterioration of many types of cancer. However, the underlying mechanisms of SNHG1-mediating functions in osteosarcoma (OS) have yet to be elucidated. In the present study, our results showed that SNHG1 was upregulated in OS tissues and cell lines, and high SNHG1 expression predicts poor overall survival of OS patients. Knockdown of SNHG1 inhibited cell growth and metastasis of OS in vitro and in vivo. Furthermore, our data demonstrated that there was reciprocal repression between SNHG1 and miR-326 which act as a tumor suppressor in OS cells, and exhibiting a strong negative relationship between SNHG1 and miR-326 expression in OS tissues. Additionally, we identified that SNHG1 increased human nin one binding protein (NOB1), an oncogene, through sponging miR-326 as competing endogenous RNA (ceRNA), finally prompting cell growth, migration and invasion in OS. Collectively, these findings not only uncovered that the SNHG1/miR-326/NOB1 signaling axis has a key role in OS progression but also suggested the potential application of SNHG1 and miR-326 as biomarkers in the OS diagnosis and treatment.
Collapse
Affiliation(s)
- Jiandong Wang
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Lei Cao
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jianhong Wu
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qiugen Wang
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
62
|
Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol 2017; 11:447-67. [PMID: 26864078 DOI: 10.1007/s11523-016-0423-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin has been used for nearly a century to treat type 2 diabetes mellitus. Epidemiologic studies first identified the association between metformin and reduced risk of several cancers. The anticancer mechanisms of metformin involve both indirect or insulin-dependent pathways and direct or insulin-independent pathways. Preclinical studies have demonstrated metformin's broad anticancer activity across a spectrum of malignancies. Prospective clinical trials involving metformin in the chemoprevention and treatment of cancer now number in the hundreds. We provide an update on the anticancer mechanisms of metformin and review the results thus far available from prospective clinical trials investigating metformin's efficacy in cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gauri Kelekar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sukhpreet Kaur
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, SCCT Mezzanine MS 35, Los Angeles, CA, 90048, USA.
| |
Collapse
|
63
|
Association between Morphological Patterns of Myometrial Invasion and Cancer Stem Cell Markers in Endometrial Endometrioid Carcinoma. Pathol Oncol Res 2017; 25:123-130. [PMID: 28990139 DOI: 10.1007/s12253-017-0320-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
In endometrial endometrioid adenocarcinoma (EEC), the depth of myometrial invasion (MI) is an important parameter for determining whether additional treatment is warranted. The present study investigated the association between MI patterns, cancer stem cell (CSC) phenotypes, and their clinicopathological significance in EEC. A total of 73 cases of EEC with MI were examined in this study. Haematoxylin and eosin-stained tissue specimens were analysed for MI pattern, which was categorised as infiltrating; expansile; adenomyosis (AM)-like; or microcystic, elongated, and fragmented (MELF)-type. The expression of CSC markers such as cluster of differentiation (CD)44, CD133, and Nanog1, as well as oestrogen receptor (ER) and progesterone receptor (PR) was examined by immunohistochemistry. Clinicopathological features including age, DOI, MI pattern, LVI, lymph node (LN) metastasis, disease progression, and survival outcome were recorded. Most examined cases (45/73) were International Federation of Gynecology and Obstetrics (FIGO) stage I. MI showed infiltrating (49.3%), AM-like (26.3%), MELF (15.1%), and expansile (9.6%) patterns. Tumours with the infiltrating pattern were associated with high FIGO grade (P = 0.002), reduced ER and PR, and CD44 expression (P = 0.014, 0.026, and 0.030, respectively); those with a MELF pattern showed LN metastasis (P < 0.001), lymphovascular invasion (P = 0.011), and reduced ER, CD44, and CD133 expression (P = 0.036, 0.006, and 0.016, respectively). EEC with infiltrating/MELF patterns of MI is associated with worse prognosis. These results suggest that CSC expression profiles are an unfavourable indicator of EEC.
Collapse
|
64
|
Liu W, Zhang X, Zhao J, Li J, Cui Z, Mao X. Inhibition of cervical cancer cell metastasis by benzothiazole through up-regulation of E-cadherin expression. Microb Pathog 2017; 111:182-186. [PMID: 28867625 DOI: 10.1016/j.micpath.2017.08.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
The present study was aimed to investigate the effect of benzothiazole on the invasive and metastasis potential of HeLa DH cervical cancer cells and the underlying mechanism. HeLa DH cervical cells were cultured with 5, 10, 15, 20, 25 and 30 μM concentrations of benzothiazole for 48 h. Benzothiazole treatment did not induce any cytotoxic effect on HeLa DH cells after 48 h of incubation. The results from wound healing assay revealed that migration potential of HeLa DH cells was reduced to 4% on treatment with 20 μM concentration of benzithiazole compared to 99% in the control cells. The invasion potential of HeLa DH cells was reduced to 13% on treatment with 20 μM concentration of benzithiazole. Inhibition of HeLa DH cell migration was also significantly (p < 0.002) higher in the benzithiazole treated cell cultures compared to the control cells. HeLa DH cervical cancer cells on treatment with various concentrations of benzithiazole for 48 h showed a significant (p < 0.05) increase in the expression of E-cadherin in a dose dependent manner. Among the various concentrations of benzithiazole used, western blot assay revealed that the increase in E-cadherin was maximum at 20 μM. Analysis of the levels of mRNA corresponding to E-cadherin by RT-qPCR showed significant increase in HeLa DH cervical cancer cells on treatment with 20 μM concentration of benzithiazole. Thus benzithiazole treatment suppresses the invasive and metastasis potential of HeLa DH cervical cells through upregulation of E-cadherin expression. Therefore, benzithiazole has a potential to be used for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China
| | - Xiaoxing Zhang
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China
| | - Jingjing Zhao
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China
| | - Jingxia Li
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China
| | - Zhili Cui
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China
| | - Xirui Mao
- Department of Gynaecology, Hebei Engineering University Affiliated Hospital, Handan City, Hebei 056000, China.
| |
Collapse
|
65
|
Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition. Biochem Soc Trans 2017; 45:223-228. [PMID: 28202676 DOI: 10.1042/bst20160177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) persist in tumors as a distinct population and may be causative in metastasis and relapse. CSC-rich tumors are associated with higher rates of metastasis and poor patient prognosis. Targeting CSCs therapeutically is challenging, since they seem to be resistant to standard chemotherapy. We have shown that a novel peptide agonist of bone morphogenetic protein (BMP) signaling, P123, is capable of inhibiting the growth of primary tumor cells by interacting with type I receptors selectively [activin receptor-like kinase 2 (ALK2) and ALK3, but not ALK6] and type II BMP receptors, activating SMAD 1/5/8 signaling and controlling the cell cycle pathway. Furthermore, the compound is capable of blocking transforming growth factor-β induced epithelial-to-mesenchymal transition (EMT) in primary tumor cells, a critical step for tumor progression and metastasis. In addition, we have investigated the effects of P123 on self-renewal, growth, differentiation (reversal of EMT) and apoptosis of isolated human breast CSCs. We have shown that P123 and BMP-7 reverse the EMT process in human breast CSCs, and inhibit self-renewal and growth. Moreover, compared with single treatment with paclitaxel, co-treatment with paclitaxel and P123 showed an increase in cell apoptosis. Together, these findings suggest that P123 has the therapeutic potential to suppress both bulk tumor cells and CSCs. We believe that P123 represents a new class of drugs that have the potential to eliminate the primary tumor, prevent reoccurrence and metastasis, and enhance the treatment of breast cancer.
Collapse
|
66
|
Choi JE, Bae JS, Kang MJ, Chung MJ, Jang KY, Park HS, Moon WS. Expression of epithelial-mesenchymal transition and cancer stem cell markers in colorectal adenocarcinoma: Clinicopathological significance. Oncol Rep 2017; 38:1695-1705. [DOI: 10.3892/or.2017.5790] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/16/2017] [Indexed: 11/05/2022] Open
|
67
|
Deng Y, Davis SP, Yang F, Paulsen KS, Kumar M, Sinnott DeVaux R, Wang X, Conklin DS, Oberai A, Herschkowitz JI, Chung AJ. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700705. [PMID: 28544415 PMCID: PMC5565626 DOI: 10.1002/smll.201700705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Indexed: 05/20/2023]
Abstract
Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Steven P Davis
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Fan Yang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Kevin S Paulsen
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Maneesh Kumar
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Rebecca Sinnott DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Assad Oberai
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| |
Collapse
|
68
|
Kowalik A, Kowalewska M, Góźdź S. Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl Res 2017; 185:58-84.e15. [PMID: 28506696 DOI: 10.1016/j.trsl.2017.04.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Eight million people die of cancer each year and 90% of deaths are caused by systemic disease. Circulating tumor cells (CTCs) contribute to the formation of metastases and thus are the subject of extensive research and an abiding interest to biotechnology and pharmaceutical companies. Recent technological advances have resulted in greatly improved CTC detection, enumeration, expansion, and culture methods. However, despite the fact that nearly 150 years have passed since the first detection and description of CTCs in human blood and enormous technological progress that has taken place in this field, especially within the last decade, few CTC detection methods have been approved for routine clinical use. This reflects the substantial methodological problems related to the nature of these cells, their heterogeneity, and diverse metastatic potential. Here, we provide an overview of CTC phenotypes, including the plasticity of CTCs and the relevance of inflammation and cell fusion phenomena for CTC biology. We also review the literature on CTC detection methodology-its recent improvements, clinical significance, and efforts of its clinical application in cancer patients management. At present, CTC detection remains a challenging diagnostic approach as a result of numerous current methodological limitations. This is especially problematic during the early stages of the disease due to the small numbers of CTCs released into the blood of cancer patients. Nonetheless, the rapid development of novel techniques of CTC detection and enumeration in peripheral blood is expected to expedite their implementation in the clinical setting. It is of utmost importance to understand the biology of CTCs and their distinct populations as a prerequisite for achieving this ultimate goal.
Collapse
Affiliation(s)
- Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Department of Surgery and Surgical Nursing with the Scientific Research Laboratory, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Warszawa, Poland; Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warszawa, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Hollycross Cancer Center, Kielce, Poland; Department of Prevention and Cancer Epidemiology, Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
69
|
DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 2017; 36:5551-5566. [PMID: 28581528 DOI: 10.1038/onc.2017.159] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022]
Abstract
Widespread genome hypo-methylation and promoter hyper-methylation of epithelium-specific genes are hallmarks of stable epithelial-to-mesenchymal transition (EMT), which in prostate cancer (PCa) correlates with castration resistance, cancer stem cells generation, chemoresistance and worst prognosis. Exploiting our consolidated 'ex-vivo' system, we show that cancer-associated fibroblasts (CAFs) released factors have pivotal roles in inducing genome methylation changes required for EMT and stemness in EMT-prone PCa cells. By global DNA methylation analysis and RNA-Seq, we provide compelling evidence that conditioned media from CAFs explanted from two unrelated patients with advanced PCa, stimulates concurrent DNA hypo- and hyper-methylation required for EMT and stemness in PC3 and DU145, but not in LN-CaP and its derivative C4-2B, PCa cells. CpG island (CGI) hyper-methylation associates with repression of genes required for epithelial maintenance and invasion antagonism, whereas activation of EMT markers and stemness genes correlate with CGI hypo-methylation. Remarkably, methylation variations and EMT-regulated transcripts almost completely reverse qualitatively and quantitatively during MET. Unsupervised clustering analysis of the PRAD TCGA data set with the differentially expressed (DE) and methylated EMT signature, identified a gene cluster of DE genes defined by a CAF+ and AR- phenotype and worst diagnosis. This gene cluster includes the relevant factors for EMT and stemness, which display DNA methylation variations in regulatory regions inversely correlated to their expression changes, thus strongly sustaining the ex-vivo data. DNMT3A-dependent methylation is essential for silencing epithelial maintenance and EMT counteracting genes, such as CDH1 and GRHL2, that is, the direct repressor of ZEB1, the key transcriptional factor for EMT and stemness. Accordingly, DNMT3A knock-down prevents EMT entry. These results shed light on the mechanisms of establishment and maintenance of coexisting DNA hypo- and hyper-methylation patterns during cancer progression, the generation of EMT and cell stemness in advanced PCa, and may pave the way to new therapeutic implications.
Collapse
|
70
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
71
|
Kastrati I, Siklos MI, Brovkovych SD, Thatcher GRJ, Frasor J. A Novel Strategy to Co-target Estrogen Receptor and Nuclear Factor κB Pathways with Hybrid Drugs for Breast Cancer Therapy. Discov Oncol 2017; 8:135-142. [PMID: 28396978 DOI: 10.1007/s12672-017-0294-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Nearly 75% of breast tumors express estrogen receptor (ER), and will be treated with endocrine therapy, such as selective estrogen receptor modulator (SERM), tamoxifen, or aromatase inhibitors. Despite their proven success, as many as 40-50% of ER+ tumors fail to respond to endocrine therapy and eventually recur as aggressive, metastatic cancers. Therefore, preventing and/or overcoming endocrine resistance in ER+ tumors remains a major clinical challenge. Deregulation or activation of the nuclear factor κB (NFκB) pathway has been implicated in endocrine resistance and poor patient outcome in ER+ tumors. As a consequence, one option to improve on existing anti-cancer treatment regimens may be to introduce additional anti-NFκB activity to endocrine therapy drugs. Our approach was to design and test SERM-fumarate co-targeting hybrid drugs capable of simultaneously inhibiting both ER, via the SERM, raloxifene, and the NFκB pathway, via fumarate, in breast cancer cells. We find that the hybrid drugs display improved anti-NFκB pathway inhibition compared to either raloxifene or fumarate. Despite some loss in potency against the ER pathway, these hybrid drugs maintain anti-proliferative activity in ER+ breast cancer cells. Furthermore, these drugs prevent clonogenic growth and mammosphere formation of ER+ breast cancer cells. As a proof-of-principle, the simultaneous inhibition of ER and NFκB via a single bifunctional hybrid drug may represent a viable approach to improve the anti-inflammatory activity and prevent therapy resistance of ER-targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC90, Chicago, IL, 60612, USA.
| | - Marton I Siklos
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Svitlana D Brovkovych
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC90, Chicago, IL, 60612, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC90, Chicago, IL, 60612, USA.
| |
Collapse
|
72
|
Shah PP, Dupre TV, Siskind LJ, Beverly LJ. Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget 2017; 8:22625-22639. [PMID: 28186986 PMCID: PMC5410250 DOI: 10.18632/oncotarget.15150] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) in eukaryotes is a main organelle involved in a wide variety of functions including calcium storage, lipid biosynthesis, protein folding and protein transport. Disruption of ER homeostasis leads to ER stress and activation of the unfolded protein response (UPR). We and others have previously found that ER stress induces EMT in different cellular systems. Induction of ER stress with chemical modulators of ER homeostasis was sufficient to activate an EMT-like state in all cellular systems tested. Here, we provide evidence for the first time demonstrating that ER stress induces EMT that is neither cancer cell specific nor cell-type specific. In addition, we observed that chemotherapeutic drugs commonly used to treat patients also activate ER stress that is concomitant with activation of an EMT-like state. Interestingly, we find that following removal of ER stress, partial EMT characteristics still persist indicating that ER stress induced EMT is a long-term effect. Induction of mesenchymal characteristics, following chemotherapeutics treatment may be involved in providing cancer stemness and invasiveness in the cellular system. Interestingly, we find that mice treated with cisplatin have elevated level of ER stress and EMT markers in multiple tissues including lung, liver and kidneys. Furthermore, increased ER stress, as demonstrated by increased Bip, Chop, PDI, Ero1α and IRE1, and EMT, as demonstrated by increased Vimentin and Snail, is a hallmark of primary lung adenocarcinoma samples from patients. These observations have potential clinical relevance because overexpression of ER stress and EMT markers might contribute to chemoresistance and poor survival of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Parag P. Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Tess V. Dupre
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Levi J. Beverly
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
73
|
Islam M, Mane S, Hyder E, Jones S, Ellis I. The motogenic effect of EGF and TGF-α on the migration of tumor cells from the oral region. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17698481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mohammad Islam
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, Scotland, UK
| | - Shraddha Mane
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, Scotland, UK
| | - Erum Hyder
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, Scotland, UK
| | - Sarah Jones
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, Scotland, UK
| | - Ian Ellis
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
74
|
Kenda Suster N, Smrkolj S, Virant-Klun I. Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. J Ovarian Res 2017; 10:11. [PMID: 28231820 PMCID: PMC5324304 DOI: 10.1186/s13048-017-0306-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of aggressive character of ovarian cancer and unsuccessful treatment of women with this deadly disease has been recently explained by the theory of cancer stem cells (CSCs). It has been reported that ovarian carcinogenesis and progression of disease is associated with epithelial-mesenchymal transition (EMT). EMT, a physiological cell process during embryonic development and later in life during regeneration, could, when induced in pathological condition, generate CSCs-like cells. Until now EMT in the ovarian tissue has been mainly studied in cell cultures in vitro. The aim of this study was to focus on in situ morphological changes in the ovarian surface epithelium of tumor tissue in women with epithelial ovarian cancer after we applied the antibodies for markers of EMT vimentin and pluripotency-related markers NANOG, SOX2 and SSEA-4. Methods We analyzed ovarian tissue sections of 20 women with high grade serous ovarian carcinoma. After eosin and hematoxylin staining, used in standard practice, immunohistochemistry was performed for vimentin and markers of pluripotency: NANOG, SSEA-4 and SOX2. We focused on the ovarian surface epithelium in order to observe morphological changes in tumor tissue. Results Among epithelial cells of the ovarian surface epithelium in women with serous ovarian carcinoma we observed a population of small NANOG-positive cells with diameters of up to 5 μm and nuclei, which filled almost the entire cell volumes. These small NANOG-positive cells were in some cases concentrated in the regions with morphologically changed epithelial cells. In these regions, a population of bigger round cells with diameters of 10–15 μm with large nuclei, and positively stained for vimentin, NANOG and other markers of pluripotnecy, were released from the surface epithelium. These cells are proposed as CSCs, and possibly originate from small stem cells among epithelial cells. They formed typical cell clusters, invaded the tissue by changing their round shape into a mesenchymal-like phenotype, and contributed to the manifestation of ovarian cancer. Conclusions Our findings show morphological changes in the ovarian surface epithelium in tumor slides of high grade serous ovarian carcinoma and provide a new population of putative CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0306-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
75
|
Nørøxe DS, Poulsen HS, Lassen U. Hallmarks of glioblastoma: a systematic review. ESMO Open 2017; 1:e000144. [PMID: 28912963 PMCID: PMC5419216 DOI: 10.1136/esmoopen-2016-000144] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023] Open
Abstract
Despite decades of intense research, the complex biology of glioblastoma (GBM) is not completely understood. Progression-free survival and overall survival have remained unchanged since the implementation of the STUPP regimen in 2005 with concomitant radio-/chemotherapy and adjuvant chemotherapy with temozolomide. In the context of Hanahan and Weinberg's six hallmarks and two emerging hallmarks of cancer, we discuss up-to-date status and recent research in the biology of GBM. We discuss the clinical impact of the research results with the most promising being in the hallmarks ‘enabling replicative immortality’, ‘inducing angiogenesis’, ‘reprogramming cellular energetics’ and ‘evading immune destruction’. This includes the importance of molecular diagnostics according to the new WHO classification and how next generation sequencing is being implemented in the clinical daily life. Molecular results linked together with clinical outcome have revealed the importance of the prognostic biomarker isocitratedehydrogenase (IDH), which is now part of the diagnostic criteria in brain tumours. IDH is discussed in the context of the hallmark ‘reprogramming cellular energetics’. O-6-methylguanine-DNA methyltransferase status predicts a more favourable response to treatment and is thus a predictive marker. Based on genomic aberrations, Verhaak et al have suggested a division of GBM into three subgroups, namely, proneural, classical and mesenchymal, which could be meaningful in the clinic and could help guide and differentiate treatment decisions according to the specific subgroup. The information achieved will develop and improve precision medicine in the future.
Collapse
Affiliation(s)
| | | | - Ulrik Lassen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet
| |
Collapse
|
76
|
Kastrati I, Delgado-Rivera L, Georgieva G, Thatcher GRJ, Frasor J. Synthesis and Characterization of an Aspirin-fumarate Prodrug that Inhibits NFκB Activity and Breast Cancer Stem Cells. J Vis Exp 2017. [PMID: 28190074 DOI: 10.3791/54798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a cancer hallmark that underlies cancer incidence and promotion, and eventually progression to metastasis. Therefore, adding an anti-inflammatory drug to standard cancer regiments may improve patient outcome. One such drug, aspirin (acetylsalicylic acid, ASA), has been explored for cancer chemoprevention and anti-tumor activity. Besides inhibiting the cyclooxygenase 2-prostaglandin axis, ASA's anti-cancer activities have also been attributed to nuclear factor ĸB (NFĸB) inhibition. Because prolonged ASA use may cause gastrointestinal toxicity, a prodrug strategy has been implemented successfully. In this prodrug design the carboxylic acid of ASA is masked and additional pharmacophores are incorporated. This protocol describes how we synthesized an aspirin-fumarate prodrug, GTCpFE, and characterized its inhibition of the NFĸB pathway in breast cancer cells and attenuation of the cancer stem-like properties, an important NFĸB-dependent phenotype. GTCpFE effectively inhibits the NFĸB pathway in breast cancer cell lines whereas ASA lacks any inhibitory activity, indicating that adding fumarate to ASA structure significantly contributes to its activity. In addition, GTCpFE shows significant anti-cancer stem cell activity by blocking mammosphere formation and attenuating the cancer stem cell associated CD44+CD24- immunophenotype. These results establish a viable strategy to develop improved anti-inflammatory drugs for chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Irida Kastrati
- Physiology and Biophysics, College of Medicine, University of Illinois at Chicago;
| | - Loruhama Delgado-Rivera
- Medicinal Chemistry and Pharmacognosy, College of Medicine, University of Illinois at Chicago
| | | | - Gregory R J Thatcher
- Medicinal Chemistry and Pharmacognosy, College of Medicine, University of Illinois at Chicago
| | - Jonna Frasor
- Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
77
|
Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG, Rees RC, Boocock DJ. A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 2017; 7:40633. [PMID: 28094783 PMCID: PMC5240554 DOI: 10.1038/srep40633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer.
Collapse
Affiliation(s)
- Naomi Harner-Foreman
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stéphanie A. Laversin
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Morgan G. Mathieu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stephen Reeder
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Robert C. Rees
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
78
|
Kim YJ, Jeon Y, Kim T, Lim WC, Ham J, Park YN, Kim TJ, Ko H. Combined treatment with zingerone and its novel derivative synergistically inhibits TGF-β1 induced epithelial-mesenchymal transition, migration and invasion of human hepatocellular carcinoma cells. Bioorg Med Chem Lett 2016; 27:1081-1088. [PMID: 28110870 DOI: 10.1016/j.bmcl.2016.12.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-β1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-β1 induced EMT. In addition, ZD 2-1 inhibited the TGF-β1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-β1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-β1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-β1 induced EMT.
Collapse
Affiliation(s)
- Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea; Department of Pathology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngsic Jeon
- Department of Pathology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Taejung Kim
- Natural Constituents Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea
| | - Won-Chul Lim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea
| | - Jungyeob Ham
- Natural Constituents Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Jin Kim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea
| | - Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea.
| |
Collapse
|
79
|
Zhang X, Liu X, Luo J, Xiao W, Ye X, Chen M, Li Y, Zhang GJ. Notch3 inhibits epithelial-mesenchymal transition by activating Kibra-mediated Hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis 2016; 5:e269. [PMID: 27841855 PMCID: PMC5141289 DOI: 10.1038/oncsis.2016.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Invasion, metastasis and chemoresistance are leading causes of death in breast cancer patients. A vital change of epithelial cells, epithelial-mesenchymal transition (EMT), is involved in these processes. Unfortunately, the molecular mechanisms controlling EMT remain to be elucidated. Our previous studies have shown that ectopic N3ICD expression inhibits EMT in MDA-MB-231, a triple-negative breast cancer (TNBC) epithelial cell line. To decipher the mechanism, we performed in-depth studies. Specifically, we found that overexpressing N3ICD transcriptionally upregulated the expression of Kibra, an upstream member of the Hippo pathway. Correspondingly, we also observed that phosphorylated Hippo pathway core kinases, including Lats1/2 and MST1/2, were increased and decreased by overexpressing and knocking down Notch3, respectively. Furthermore, we found that the oncogenic transcriptional coactivator yes-associated protein (YAP), which is negatively regulated by the Hippo pathway, was inhibited by overexpressing N3ICD in breast cancer epithelial cells. The ability of Kibra to inhibit EMT has been previously reported. We thus speculated that Notch3 inhibition of EMT is mediated by upregulated Kibra. To verify this hypothesis, a rescue experiment was performed. Evidently, the ability of Notch3 to inhibit EMT can be countered by knocking down Kibra expression. These data suggest that Notch3 inhibits EMT by activating the Hippo/YAP pathway by upregulating Kibra in breast cancer epithelial cells, and Kibra may be a downstream effector of Notch3. These findings deepen our understanding of EMT in both development and disease, and will undoubtedly help to provide new therapeutic strategies for interfering with cancer invasion and metastasis, especially for TNBC.
Collapse
Affiliation(s)
- X Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Liu
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - J Luo
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - W Xiao
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Ye
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - M Chen
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Y Li
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| | - G-J Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| |
Collapse
|
80
|
Tonekaboni SAM, Dhawan A, Kohandel M. Mathematical modelling of plasticity and phenotype switching in cancer cell populations. Math Biosci 2016; 283:30-37. [PMID: 27832999 DOI: 10.1016/j.mbs.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 01/06/2023]
Abstract
The cancer stem cell (CSC) hypothesis suggests that cancer stem cells proliferate via a hierarchical model of unidirectional differentiation. However, growing experimental evidence has advanced this hypothesis by introducing a bidirectional hierarchy, in which non-CSCs may dedifferentiate into CSCs. Various models have been developed enabling the incorporation of this plasticity within cancer cell populations, focusing on behaviour in the limit of a large number of cells. However, stochastic effects predominate in the limit of small numbers of cells, which correlates with biologically relevant assays such as the mammosphere formation assay (MFA). Here, we consider two mathematical models incorporating cellular plasticity, namely a two-compartment model and a hierarchical model, and by parameterizing these models with experimental data, we show this behavioural difference in the limits of large and small numbers of cells. Additionally, we analyse the effects of varying cellular plasticity on the survival of the cancer cell population, and show that interestingly, increased plasticity, in certain cases, may be advantageous in reducing the survival probability. Thus, this analysis highlights the necessity of experimentally studying both small and large populations of cancer cells concurrently to obtain valid model predictions, potentially aiding the design of novel therapeutics.
Collapse
Affiliation(s)
| | - Andrew Dhawan
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
81
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
82
|
Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DCC, Zhang JF, Waye MMY. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2016; 6:22513-25. [PMID: 26068968 PMCID: PMC4673179 DOI: 10.18632/oncotarget.4154] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types and elevated expression of H19 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in colorectal cancer (CRC) especially during epithelial to mesenchymal transition (EMT) progression. In our studies, H19 was characterized as a novel regulator of EMT in CRC. We found that H19 was highly expressed in mesenchymal-like cancer cells and primary CRC tissues. Stable expression of H19 significantly promotes EMT progression and accelerates in vivo and in vitro tumor growth. Furthermore, by using bioinformatics study and RNA immunoprecipitation combined with luciferase reporter assays, we demonstrated that H19 functioned as a competing endogenous RNA (ceRNA) for miR-138 and miR-200a, antagonized their functions and led to the de-repression of their endogenous targets Vimentin, ZEB1, and ZEB2, all of which were core marker genes for mesenchymal cells. Taken together, these observations imply that the lncRNA H19 modulated the expression of multiple genes involved in EMT by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and EMT progression.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Cheuk-Wa Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Guo-Xin Hu
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Li Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Li-Jia Xiao
- Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, P.R. China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Mary Miu-Yee Waye
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
83
|
Goyal S, Nangia-Makker P, Farhana L, Yu Y, Majumdar APN. Racial disparity in colorectal cancer: Gut microbiome and cancer stem cells. World J Stem Cells 2016; 8:279-287. [PMID: 27679684 PMCID: PMC5031889 DOI: 10.4252/wjsc.v8.i9.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades there has been remarkable progress in cancer diagnosis, treatment and screening. The basic mechanisms leading to pathogenesis of various types of cancers are also understood better and some patients, if diagnosed at a particular stage go on to lead a normal pre-diagnosis life. Despite these achievements, racial disparity in some cancers remains a mystery. The higher incidence, aggressiveness and mortality of breast, prostate and colorectal cancers (CRCs) in African-Americans as compared to Caucasian-Americans are now well documented. The polyp-carcinoma sequence in CRC and easy access to colonic epithelia or colonic epithelial cells through colonoscopy/colonic effluent provides the opportunity to study colonic stem cells early in course of natural history of the disease. With the advent of metagenomic sequencing, uncultivable organisms can now be identified in stool and their numbers correlated with the effects on colonic epithelia. It would be expected that these techniques would revolutionize our understanding of the racial disparity in CRC and pave a way for the same in other cancers as well. Unfortunately, this has not happened. Our understanding of the underlying factors responsible in African-Americans for higher incidence and mortality from colorectal carcinoma remains minimal. In this review, we aim to summarize the available data on role of microbiome and cancer stem cells in racial disparity in CRC. This will provide a platform for further research on this topic.
Collapse
|
84
|
Li Z, Xu Y, Wang Q, Xie C, Liu Y, Tu Z. Tissue factor pathway inhibitor-2 induced hepatocellular carcinoma cell differentiation. Saudi J Biol Sci 2016; 24:95-102. [PMID: 28053577 PMCID: PMC5199000 DOI: 10.1016/j.sjbs.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
To investigate the effect of over-expression of tissue factor pathway inhibitor-2 (TFPI-2) on the differentiation of hepatocellular carcinoma (HCC) cells (Hep3B and HepG2). The TFPI-2 recombinant adenovirus (pAd-TFPI-2) was constructed using the pAdeasy-1 vector system. Transfected by pAd-TFPI-2, the cell proliferation of HCC cells was evaluated by CCK-8 assay, flow cytometry was used to detect cell apoptosis and CD133 expression. Real-time PCR and Western blot were used to detect the expression levels of markers of hepatocellular cancer stem cells (CSC) and hepatocytes. The over-expression of TFPI-2 significantly suppressed cell proliferation, induced apoptosis, and dramatically decreased the percentage of CD133 cells, which was considered as CSC in HCC. Real-time PCR and Western blot showed that the expression of markers of CSC in Hep3B cells and HepG2 cells infected with pAd-TFPI-2 was markedly lower than those of the control group (P < 0.05), while the expression of markers of hepatocytes was significantly increased (P < 0.05). Hence, TFPI-2 could induce the differentiation of hepatocellular carcinoma cells into hepatocytes, and is expected to serve as a novel way for the treatment of HCC.
Collapse
Affiliation(s)
- Ziwei Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yong Xu
- Pingshan People's Hospital, Guangdong 518118, China
| | - Qin Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Changli Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yincui Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zhiguang Tu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
85
|
Roudi R, Madjd Z, Ebrahimi M, Najafi A, Korourian A, Shariftabrizi A, Samadikuchaksaraei A. Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma. Tumour Biol 2016; 37:11843-11859. [PMID: 27048287 DOI: 10.1007/s13277-016-5041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/29/2022] Open
Abstract
Identification of the cellular and molecular aspects of lung cancer stem cells (LCSCs) that are suggested to be the main culprit of tumor initiation, maintenance, drug resistance, and relapse is a prerequisite for targeted therapy of lung cancer. In the current study, LCSCs subpopulation of A549 cells was enriched, and after characterization of the spheroid cells, complementary DNA (cDNA) microarray analysis was applied to identify differentially expressed genes (DEGs) between the spheroid and parental cells. Microarray results were validated using quantitative real-time reverse transcription-PCR (qRT-PCR), flow cytometry, and western blotting. Our results showed that spheroid cells had higher clonogenic potential, up-regulation of stemness gene Sox2, loss of CD44 expression, and gain of CD24 expression compared to parental cells. Among a total of 160 genes that were differentially expressed between the spheroid cells and the parental cells, 104 genes were up-regulated and 56 genes were down-regulated. Analysis of cDNA microarray revealed an embryonic stem cell-like signature and over-expression of epithelial-mesenchymal transition (EMT)-associated genes in the spheroid cells. cDNA microarray results were validated at the gene expression level using qRT-PCR, and further validation was performed at the protein level by flow cytometry and western blotting. The embryonic stem cell-like signature in the spheroid cells supports two important notions: maintenance of CSCs phenotype by dedifferentiating mechanisms activated through oncogenic pathways and the origination of CSCs from embryonic stem cells (ESCs). PI3/AKT3, as the most common up-regulated pathway, and other pathways related to aggressive tumor behavior and EMT process can confer to the spheroid cells' high potential for metastasis and distant seeding.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Korourian
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine and Molecular Imaging, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol 2016; 9:74. [PMID: 27578206 PMCID: PMC5006452 DOI: 10.1186/s13045-016-0307-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC) model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.
Collapse
Affiliation(s)
- Aparna Jayachandran
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Bijay Dhungel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Jason C Steel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
87
|
Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 2016; 6:20636-49. [PMID: 26010068 PMCID: PMC4653031 DOI: 10.18632/oncotarget.4114] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
The insulin-like growth factor binding protein 5 (IGFBP5), which is often dysregulated in human cancers, plays a crucial role in carcinogenesis and cancer development. However, the function and underlying mechanism of IGFBP5 in tumor growth and metastasis has been elusive, particularly in malignant human melanoma. Here, we reported that IGFBP5 acts as an important tumor suppressor in melanoma tumorigenicity and metastasis by a series of experiments including transwell assay, xenograft model, in vivo tumor metastasis experiment, and RNA-Seq. Overexpression of IGFBP5 in A375, a typical human melanoma cell line, inhibited cell malignant behaviors significantly, including in vitro proliferation, anchorage-independent growth, migration and invasion, as well as in vivo tumor growth and pulmonary metastasis. In addition, overexpression of IGFBP5 suppressed epithelial-mesenchymal transition (EMT), and decreased the expression of E-cadherin and the key stem cell markers NANOG, SOX2, OCT4, KLF4, and CD133. Furthermore, IGFBP5 exerts its inhibitory activities by reducing the phosphorylation of IGF1R, ERK1/2, and p38-MAPK kinases and abating the expression of HIF1α and its target genes, VEGF and MMP9. All these findings were confirmed by IGFBP5 knockdown in human melanoma cell line A2058. Taken together, these results shed light on the mechanism of IGFBP5 as a potential tumor-suppressor in melanoma progression, indicating that IGFBP5 might be a novel therapeutic target for human melanoma.
Collapse
|
88
|
Yang SW, Tsai CY, Pan YC, Yeh CN, Pang JHS, Takano M, Kittaka A, Juang HH, Chen TC, Chiang KC. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1995-2002. [PMID: 27382252 PMCID: PMC4918737 DOI: 10.2147/dddt.s107256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Even with multidisciplinary treatment, the prognosis and quality of life of patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are still not satisfactory. Previously, 19-Nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3 (MART-10), the new brand 1α,25(OH)2D3 analog, has been demonstrated to be an effective drug to inhibit HNSCC growth in vitro. Since most cancer patients die of metastasis, in this study, the antimetastatic effect of MART-10 on HNSCC was investigated. Our results reveal that both 1α,25(OH)2D3 and MART-10 effectively repressed the migration and invasion of HNSCC cells, with MART-10 being much more potent than 1α,25(OH)2D3. The antimetastatic effect of 1α,25(OH)2D3 and MART-10 was mediated by attenuation of epithelial–mesenchymal transition (EMT), which was supported by the finding that the expression of EMT-inducing transcriptional factors, Sail and Twist, was inhibited by 1α,25(OH)2D3 and MART-10. The upregulation of E-cadherin and downregulation of N-cadherin in FaDu cells induced by both drugs further confirmed the repression of EMT. In addition, 1α,25(OH)2D3 and MART-10 treatment inhibited intracellular MMP-9 expression and extracellular MMP activity in FaDu cells. Collectively, our results suggest that the less-calcemia 1α,25(OH)2D3 analog, MART-10, is a promising drug for HNSCC treatment. Further clinical studies are warranted.
Collapse
Affiliation(s)
- Shih-Wei Yang
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| | - Chi-Ying Tsai
- Department of Oral and Maxillofacial Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Yi-Chun Pan
- Department of General Dentistry, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, Republic of China
| | - Chun-Nan Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tai C Chen
- Endocrine Core Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Kun-Chun Chiang
- General Surgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China; Zebrafish Center, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| |
Collapse
|
89
|
Sun M, Zhang N, Wang X, Li Y, Qi W, Zhang H, Li Z, Yang Q. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci 2016; 6:44. [PMID: 27313840 PMCID: PMC4910241 DOI: 10.1186/s13578-016-0104-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/12/2016] [Indexed: 11/26/2022] Open
Abstract
Background The complications of clinical metastatic disease are responsible for the majority of breast cancer related deaths, and fewer therapies substantially prolong survival. Nitidine chloride (NC), a natural polyphenolic compound, has been shown to exhibit potent anticancer effects in many cancer types, including breast cancer. The epithelial-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs)-like properties emerge as critical steps in the metastasis of human cancers. However, the effects of NC on the EMT and the CSCs-like properties in breast cancer cells, and the underlying molecular mechanisms are not fully understood. Results In the present study, MDA-MB-468 and MCF-7 cancer cells were treated with NC. Scratch and Transwell assays were performed to determine whether NC could attenuate the migratory and invasive capability of cancer cells; Mammosphere formation and flow cytometry analysis were performed to confirm that NC decreased CSCs-like phenotype; RT-PCR and western blot analysis were used to examine the expression level of EMT and CSC related markers in both cells. Mechanistically, NC could inhibit the components of Hedgehog pathway (smoothened, patched, Gli1 and Gli2), subsequently inhibited the expression of Snail, Slug and Zeb1, which were correlated with the significant changes of the expression of EMT related markers (N-cadherin, E-cadherin, and Vimentin) to reverse EMT. On the other hand, NC could also inhibit the expression of CSCs related factors such as Nanog, Nestin, Oct-4 and CD44 via Hedgehog pathway. Furthermore, transforming growth factor-β1 (TGF-β1)-induced increment of EMT and CSCs properties could be reversed by NC. Conclusions Taken together, these data indicated that NC suppressed breast cancer EMT and CSCs-like properties through inhibiting Hedgehog signaling pathway. Our study suggested that NC may be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Mingjuan Sun
- Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117 Shandong Province People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Wenwen Qi
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Zengjun Li
- Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117 Shandong Province People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China ; Pathology Tissue Bank, Qilu Hospital, Shandong University, Wenhua Xi Road No.107, Jinan, 250012 Shandong Province People's Republic of China
| |
Collapse
|
90
|
Elshafae SM, Hassan BB, Supsavhad W, Dirksen WP, Camiener RY, Ding H, Tweedle MF, Rosol TJ. Gastrin-releasing peptide receptor (GRPr) promotes EMT, growth, and invasion in canine prostate cancer. Prostate 2016; 76:796-809. [PMID: 26939805 PMCID: PMC5867904 DOI: 10.1002/pros.23154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is upregulated in early and late-stage human prostate cancer (PCa) and other solid tumors of the mammary gland, lung, head and neck, colon, uterus, ovary, and kidney. However, little is known about its role in prostate cancer. This study examined the effects of a heterologous GRPr agonist, bombesin (BBN), on growth, motility, morphology, gene expression, and tumor phenotype of an osteoblastic canine prostate cancer cell line (Ace-1) in vitro and in vivo. METHODS The Ace-1 cells were stably transfected with the human GRPr and tumor cells were grown in vitro and as subcutaneous and intratibial tumors in nude mice. The effect of BBN was measured on cell proliferation, cell migration, tumor growth (using bioluminescence), tumor cell morphology, bone tumor phenotype, and epithelial-mesenchymal transition (EMT) and metastasis gene expression (quantitative RT-PCR). GRPr mRNA expression was measured in primary canine prostate cancers and normal prostate glands. RESULTS Bombesin (BBN) increased tumor cell proliferation and migration in vitro and tumor growth and invasion in vivo. BBN upregulated epithelial-to-mesenchymal transition (EMT) markers (TWIST, SNAIL, and SLUG mRNA) and downregulated epithelial markers (E-cadherin and β-catenin mRNA), and modified tumor cell morphology to a spindle cell phenotype. Blockade of GRPr upregulated E-cadherin and downregulated VIMENTIN and SNAIL mRNA. BBN altered the in vivo tumor phenotype in bone from an osteoblastic to osteolytic phenotype. Primary canine prostate cancers had increased GRPr mRNA expression compared to normal prostates. CONCLUSION These data demonstrated that the GRPr is important in prostate cancer growth and progression and targeting GRPr may be a promising strategy for treatment of prostate cancer. Prostate 76:796-809, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - Bardes B. Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Wessel P. Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Rachael Y. Camiener
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Haiming Ding
- Department of Radiology, Wexner Medical Center, The Wright Center for Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| | - Michael F. Tweedle
- Department of Radiology, Wexner Medical Center, The Wright Center for Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
91
|
Ren H, Du P, Ge Z, Jin Y, Ding D, Liu X, Zou Q. TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance. J Cancer 2016; 7:1074-80. [PMID: 27326250 PMCID: PMC4911874 DOI: 10.7150/jca.14031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 01/07/2023] Open
Abstract
Purpose Increasing evidences revealed that cancer cells with the characteristics of epithelial-mesenchymal transition (EMT) or cancer stem cells (CSC) have high ability of progression, invasion, metastasis and chemoresistance. TWIST1 and BMI1 are crucial transcription factors required for EMT and CSC. Both TWIST1 and BMI1 are up-regulated in various cancers and have a positive correlation with poor prognosis. Although recent results showed that the two molecules function in promoting cancer metastasis and chemoresistance respectively, the correlation of TWIST1 and BMI1 is not well understood. Methods In this review, we summarize recent advance in cancer research focus on TWIST1 and BMI1 in cancer metastasis and chemoresistance, and emphasize the possible link between EMT and CSC. Results Further investigation of TWIST1 and BMI1 cooperately promote CSC proliferation due to EMT-associated effect will help to understand the mechanism of tumor cells metastasis and chemoresistance. Conclusions TWIST1 and BMI1 in cancer cells will be effective targets for treating chemoresistant metastatic lesions.
Collapse
Affiliation(s)
- Hong Ren
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Peizhun Du
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Zongyu Ge
- 2. Department of General Surgery, Huzhou Maternity and Child Health Care Hospital, Zhejiang Province, P.R. China
| | - Yiting Jin
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Di Ding
- 3. Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiuping Liu
- 4. Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Qiang Zou
- 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
92
|
Akhtar K, Ara A, Siddiqui SA, Sherwani RK. Transition of Immunohistochemical Expression of E-Cadherin and Vimentin from Premalignant to Malignant Lesions of Oral Cavity and Oropharynx. Oman Med J 2016; 31:165-9. [PMID: 27162585 DOI: 10.5001/omj.2016.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES We sought to study the expression of epithelial-to-mesenchymal transition markers E-cadherin and vimentin in precancerous lesions of the oral cavity and oropharynx and to use the specific pattern of expression to predict invasiveness. METHODS This cross-sectional study looked at 87 cases of oral and oropharyngeal lesions obtained between December 2012 and November 2014 in the Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, India. Fifty-three biopsies from the buccal mucosa, tongue, and pharynx and 34 resected oral specimens were evaluated for premalignant and malignant lesions using hematoxylin and eosin and immunohistochemical stains. Immunohistochemical expression of epithelial marker E-cadherin and mesenchymal marker vimentin was evaluated wherever possible. Slides were examined for staining pattern (cytoplasmic or membrane), proportion, and intensity of staining of tumor cells. Patients follow-up and therapy related changes were also studied. RESULTS There were 64 premalignant and 23 malignant cases in our study with 65 (74.7%) cases seen in males and 22 (25.3%) cases seen in females. The majority of malignant cases, (n = 15; 64.2%) were seen in the fifth and sixth decades of life while most of the premalignant lesions (n = 36; 56.4%) were seen in the fourth and fifth decade. Amongst the 64 premalignant oral lesions, leukoplakia comprised of 14 cases (21.9%), of which three cases had associated mild to moderate dysplasia. The majority of premalignant lesions showed strong E-cadherin expression and decreased expression of vimentin with negative and weak expression in both dysplasias and carcinoma in situ (p = 0.013). E-cadherin expression was significantly reduced in invasive carcinomas compared to dysplasias and carcinoma in situ and the difference in immunoreactivity was statistically significant (p < 0.050). Vimentin expression increased as the tumor progressed from dysplasias to carcinoma in situ to invasive carcinomas (p < 0.050). CONCLUSIONS Invasiveness of cancer can be analyzed using E-cadherin and vimentin immunohistochemical stains, which can help in predicting tumor behavior. These biomolecules can also be used as biomarkers for further research on the microinvasion of oral cancers for early diagnosis.
Collapse
Affiliation(s)
- Kafil Akhtar
- Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Anjum Ara
- Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Shahid A Siddiqui
- Department of Radiotherapy, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Rana K Sherwani
- Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
93
|
Huang X, Borgström B, Kempengren S, Persson L, Hegardt C, Strand D, Oredsson S. Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs. BMC Cancer 2016; 16:145. [PMID: 26906175 PMCID: PMC4765157 DOI: 10.1186/s12885-016-2142-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/08/2016] [Indexed: 12/28/2022] Open
Abstract
Background Cancer stem cells (CSCs) have been invoked in resistance, recurrence and metastasis of cancer. Consequently, curative cancer treatments may be contingent on CSC selective approaches. Of particular interest in this respect is the ionophore salinomycin, a natural product shown to be 100-fold more active against CSCs than clinically used paclitaxel. We have previously reported that synthetic salinomycin derivatives display increased activity against breast cancer cell lines. Herein we specifically investigate the CSC selectivity of the most active member in each class of C20-O-acylated analogs as well as a C1-methyl ester analog incapable of charge-neutral metal ion transport. Methods JIMT-1 breast cancer cells were treated with three C20-O-acylated analogs, the C1-methyl ester of salinomycin, and salinomycin. The effects of treatment on the CSC-related CD44+/CD24− and the aldehyde dehydrogenase positive (ALDH+) populations were determined using flow cytometry. The survival ability of CSCs after treatment was investigated with a colony formation assay under serum free conditions. The effect of the compounds on cell migration was evaluated using wound-healing and Boyden chamber assays. The expression of vimentin, related to mesenchymal traits and expression of E-cadherin and β-catenin, related to the epithelial traits, were investigated using immunofluorescence microscopy. Results Treatment with each of the three C20-acylated analogs efficiently decreased the putative CSC population as reflected by reduction of the CD44+/CD24− and ALDH+ populations already at a 50 nM concentration. In addition, colony forming efficiency and cell migration were reduced, and the expression of the epithelial markers E-cadherin and β-catenin at the cell surface were increased. In contrast, salinomycin used at the same concentration did not significantly influence the CSC population and the C1-methyl ester was inactive even at a 20 μM concentration. Conclusions Synthetic structural analogs of salinomycin, previously shown to exhibit increased activity against cancer cells, also exhibited improved activity against CSCs across several assays even at nanomolar concentrations where salinomycin was found inactive. The methyl ester analog of salinomycin, incapable of charge-neutral metal ion transport, did not show activity in CSC assays, lending experimental support to ionophoric stress as the molecular initiating event for the CSC effects of salinomycin and related structures. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2142-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden.
| | - Björn Borgström
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Cecilia Hegardt
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University Cancer Center/Medicon Village, Lund, Sweden.
| | - Daniel Strand
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | |
Collapse
|
94
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
95
|
Liu J, Chen X, Ward T, Pegram M, Shen K. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumour Biol 2016; 37:9825-35. [PMID: 26810188 DOI: 10.1007/s13277-015-4650-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Women with triple-negative breast cancer have worse prognosis compared to other breast cancer subtypes. Acquired drug resistance remains to be an important reason influencing triple-negative breast cancer treatment efficacy. A prevailing theory postulates that the cancer resistance and recurrence results from a subpopulation of tumor cells with stemness program, which are often insensitive to cytotoxic drugs such as cisplatin. Recent studies suggested that niclosamide, an anti-helminthic drug, has potential therapeutic activities against breast cancer stem cells, which prompts us to determine its roles on eliminating cisplatin-resistant cancer cells. Hence, we established a stable cisplatin-resistant MDA-MB-231 cell line (231-CR) through continuously exposure to increasing concentrations of cisplatin (5-20 μmol/l). Interestingly, 231-CR exhibited properties associated to epithelial-mesenchymal transition with enhanced invasion, preserved proliferation, increased mammosphere formation, and reduced apoptosis compared to naive MDA-MB-231 sensitive cells (231-CS). Importantly, niclosamide or combination with cisplatin inhibited both 231-CS and 231-CR cell proliferation in vitro. In addition, niclosamide reversed the EMT phenotype of 231-CR by downregulation of snail and vimentin. Mechanistically, niclosamide treatment in combination with or without cisplatin significantly inhibited Akt, ERK, and Src signaling pathways. In vivo study showed that niclosamide or combination with cisplatin could repress the growth of xenografts originated from either 231-CS or 231-CR cells, with prominent suppression of Ki67 expression. These findings suggested that niclosamide might serve as a novel therapeutic strategy, either alone or in combination with cisplatin, for triple-negative breast cancer treatment, especially those resistant to cisplatin.
Collapse
Affiliation(s)
- Junjun Liu
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong Univerisity School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong Univerisity School of Medicine, Shanghai, China
| | - Toby Ward
- Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive West, Suite G2021, Stanford, CA, USA
| | - Mark Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive West, Suite G2021, Stanford, CA, USA.
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong Univerisity School of Medicine, Shanghai, China.
| |
Collapse
|
96
|
Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene 2016; 35:5963-5976. [PMID: 26804168 PMCID: PMC5116559 DOI: 10.1038/onc.2015.498] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022]
Abstract
Advanced prostate adenocarcinomas enriched in stem-cell features, as well as variant androgen receptor (AR)-negative neuroendocrine (NE)/small-cell prostate cancers are difficult to treat, and account for up to 30% of prostate cancer-related deaths every year. While existing therapies for prostate cancer such as androgen deprivation therapy (ADT), destroy the bulk of the AR-positive cells within the tumor, eradicating this population eventually leads to castration-resistance, owing to the continued survival of AR-/lo stem-like cells. In this study, we identified a critical nexus between p38MAPK signaling, and the transcription factor Forkhead Box Protein C2 (FOXC2) known to promote cancer stem-cells and metastasis. We demonstrate that prostate cancer cells that are insensitive to ADT, as well as high-grade/NE prostate tumors, are characterized by elevated FOXC2, and that targeting FOXC2 using a well-tolerated p38 inhibitor restores epithelial attributes and ADT-sensitivity, and reduces the shedding of circulating tumor cells in vivo with significant shrinkage in the tumor mass. This study thus specifies a tangible mechanism to target the AR-/lo population of prostate cancer cells with stem-cell properties.
Collapse
|
97
|
Guiro K, Arinzeh TL. Bioengineering Models for Breast Cancer Research. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 9:57-70. [PMID: 26792996 PMCID: PMC4712981 DOI: 10.4137/bcbcr.s29424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023]
Abstract
Despite substantial advances in early diagnosis, breast cancer (BC) still remains a clinical challenge. Most BC models use complex in vivo models and two-dimensional monolayer cultures that do not fully mimic the tumor microenvironment. The integration of cancer biology and engineering can lead to the development of novel in vitro approaches to study BC behavior and quantitatively assess different features of the tumor microenvironment that may influence cell behavior. In this review, we present tissue engineering approaches to model BC in vitro. Recent advances in the use of three-dimensional cell culture models to study various aspects of BC disease in vitro are described. The emerging area of studying BC dormancy using these models is also reviewed.
Collapse
Affiliation(s)
- Khadidiatou Guiro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Treena L Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
98
|
Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs Functioning in Colorectal Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:93-108. [PMID: 27573896 DOI: 10.1007/978-3-319-42059-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
99
|
Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN, Thatcher GRJ, Frasor J. Dimethyl Fumarate Inhibits the Nuclear Factor κB Pathway in Breast Cancer Cells by Covalent Modification of p65 Protein. J Biol Chem 2015; 291:3639-47. [PMID: 26683377 DOI: 10.1074/jbc.m115.679704] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
In breast tumors, activation of the nuclear factor κB (NFκB) pathway promotes survival, migration, invasion, angiogenesis, stem cell-like properties, and resistance to therapy--all phenotypes of aggressive disease where therapy options remain limited. Adding an anti-inflammatory/anti-NFκB agent to breast cancer treatment would be beneficial, but no such drug is approved as either a monotherapy or adjuvant therapy. To address this need, we examined whether dimethyl fumarate (DMF), an anti-inflammatory drug already in clinical use for multiple sclerosis, can inhibit the NFκB pathway. We found that DMF effectively blocks NFκB activity in multiple breast cancer cell lines and abrogates NFκB-dependent mammosphere formation, indicating that DMF has anti-cancer stem cell properties. In addition, DMF inhibits cell proliferation and significantly impairs xenograft tumor growth. Mechanistically, DMF prevents p65 nuclear translocation and attenuates its DNA binding activity but has no effect on upstream proteins in the NFκB pathway. Dimethyl succinate, the inactive analog of DMF that lacks the electrophilic double bond of fumarate, is unable to inhibit NFκB activity. Also, the cell-permeable thiol N-acetyl l-cysteine, reverses DMF inhibition of the NFκB pathway, supporting the notion that the electrophile, DMF, acts via covalent modification. To determine whether DMF interacts directly with p65, we synthesized and used a novel chemical probe of DMF by incorporating an alkyne functionality and found that DMF covalently modifies p65, with cysteine 38 being essential for the activity of DMF. These results establish DMF as an NFκB inhibitor with anti-tumor activity that may add therapeutic value in the treatment of aggressive breast cancers.
Collapse
Affiliation(s)
| | - Marton I Siklos
- Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | | | | - Emily N Thayer
- Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Jonna Frasor
- From the Departments of Physiology and Biophysics and
| |
Collapse
|
100
|
Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells. Tumour Biol 2015; 37:7213-27. [PMID: 26666817 DOI: 10.1007/s13277-015-4577-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy.
Collapse
|