51
|
Zhang N, Xia M, Qiu T, Wang X, Lin CP, Guo Q, Lu J, Wu Q, Zhuang D, Yu Z, Gong F, Farrukh Hameed NU, He Y, Wu J, Zhou L. Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: A combined structural and resting-state functional MRI study. Hum Brain Mapp 2018; 39:4802-4819. [PMID: 30052314 DOI: 10.1002/hbm.24324] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cerebellum and cerebro-cerebellar system in neural plasticity induced by cerebral gliomas involving language network has long been ignored. Moreover, whether or not the process of reorganization is different in glioma patients with different growth kinetics remains largely unknown. To address this issue, we utilized preoperative structural and resting-state functional MRI data of 78 patients with left cerebral gliomas involving language network areas, including 46 patients with low-grade glioma (LGG, WHO grade II), 32 with high-grade glioma (HGG, WHO grade III/IV), and 44 healthy controls. Spontaneous brain activity, resting-state functional connectivity and gray matter volume alterations of the cerebellum were examined. We found that both LGG and HGG patients exhibited bidirectional alteration of brain activity in language-related cerebellar areas. Brain activity in areas with increased alteration was significantly correlated with the language and MMSE scores. Structurally, LGG patients exhibited greater gray matter volume in regions with increased brain activity, suggesting a structure-function coupled alteration in cerebellum. Furthermore, we observed that cerebellar regions with decreased brain activity exhibited increased functional connectivity with contralesional cerebro-cerebellar system in LGG patients. Together, our findings provide empirical evidence for a vital role of cerebellum and cerebro-cerebellar circuit in neural plasticity following lesional damage to cerebral language network. Moreover, we highlight the possible different reorganizational mechanisms of brain functional connectivity underlying different levels of behavioral impairments in LGG and HGG patients.
Collapse
Affiliation(s)
- Nan Zhang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tianming Qiu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qizhu Wu
- Sinorad Medical Electronics Co., Ltd, Shenzhen, China
| | - Dongxiao Zhuang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengda Yu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyuan Gong
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - N U Farrukh Hameed
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China
| | - Liangfu Zhou
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China
| |
Collapse
|
52
|
Agarwal S, Sair HI, Pillai JJ. Limitations of Resting-State Functional MR Imaging in the Setting of Focal Brain Lesions. Neuroimaging Clin N Am 2018; 27:645-661. [PMID: 28985935 DOI: 10.1016/j.nic.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methods of image acquisition and analysis for resting-state functional MR imaging (rsfMR imaging) are still evolving. Neurovascular uncoupling and susceptibility artifact are important confounds of rsfMR imaging in the setting of focal brain lesions such as brain tumors. This article reviews the detection of these confounds using rsfMR imaging metrics in the setting of focal brain lesions. In the near future, with the wide range of ongoing research in rsfMR imaging, these issues likely will be overcome and will open new windows into brain function and connectivity.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
53
|
Volz LJ, Kocher M, Lohmann P, Shah NJ, Fink GR, Galldiks N. Functional magnetic resonance imaging in glioma patients: from clinical applications to future perspectives. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:295-302. [PMID: 29761998 DOI: 10.23736/s1824-4785.18.03101-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functional magnetic resonance imaging (fMRI) allows the non-invasive assessment of human brain activity in vivo. In glioma patients, fMRI is frequently used to determine the individual functional anatomy of the motor and language network in a presurgical setting to optimize surgical procedures and prevent extensive damage to functionally eloquent areas. Novel developments based on resting-state fMRI may help to improve presurgical planning for patients which are unable to perform structured tasks and might extend presurgical mapping to include additional functional networks. Recent advances indicate a promising potential for future applications of fMRI in glioma patients which might help to identify neoplastic tissue or predict the long-term functional outcome of individual patients.
Collapse
Affiliation(s)
- Lukas J Volz
- Department of Neurology, University of Cologne, Cologne, Germany - .,SAGE Center for the Study of the Mind and Brain, University of California - Santa Barbara, Santa Barbara, CA, USA -
| | - Martin Kocher
- Institute of Neuroscience and Medicine, Jülich Research Center, Jülich, Germany.,Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Jülich Research Center, Jülich, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, Jülich Research Center, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute for Translational Medicine (INM-3, -4), Forschungszentrum Jülich, Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Jülich Research Center, Jülich, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Jülich Research Center, Jülich, Germany.,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
54
|
Bowden SG, Gill BJA, Englander ZK, Horenstein CI, Zanazzi G, Chang PD, Samanamud J, Lignelli A, Bruce JN, Canoll P, Grinband J. Local Glioma Cells Are Associated with Vascular Dysregulation. AJNR Am J Neuroradiol 2018; 39:507-514. [PMID: 29371254 DOI: 10.3174/ajnr.a5526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Malignant glioma is a highly infiltrative malignancy that causes variable disruptions to the structure and function of the cerebrovasculature. While many of these structural disruptions have known correlative histopathologic alterations, the mechanisms underlying vascular dysfunction identified by resting-state blood oxygen level-dependent imaging are not yet known. The purpose of this study was to characterize the alterations that correlate with a blood oxygen level-dependent biomarker of vascular dysregulation. MATERIALS AND METHODS Thirty-two stereotactically localized biopsies were obtained from contrast-enhancing (n = 16) and nonenhancing (n = 16) regions during open surgical resection of malignant glioma in 17 patients. Preoperative resting-state blood oxygen level-dependent fMRI was used to evaluate the relationships between radiographic and histopathologic characteristics. Signal intensity for a blood oxygen level-dependent biomarker was compared with scores of tumor infiltration and microvascular proliferation as well as total cell and neuronal density. RESULTS Biopsies corresponded to a range of blood oxygen level-dependent signals, ranging from relatively normal (z = -4.79) to markedly abnormal (z = 8.84). Total cell density was directly related to blood oxygen level-dependent signal abnormality (P = .013, R2 = 0.19), while the neuronal labeling index was inversely related to blood oxygen level-dependent signal abnormality (P = .016, R2 = 0.21). The blood oxygen level-dependent signal abnormality was also related to tumor infiltration (P = .014) and microvascular proliferation (P = .045). CONCLUSIONS The relationship between local, neoplastic characteristics and a blood oxygen level-dependent biomarker of vascular function suggests that local effects of glioma cell infiltration contribute to vascular dysregulation.
Collapse
Affiliation(s)
- S G Bowden
- From the Department of Neurological Surgery (S.G.B.), Oregon Health & Science University, Portland, Oregon.,The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - B J A Gill
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - Z K Englander
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - C I Horenstein
- Department of Radiology (C.I.H.), North Shore University Hospital, Long Island, New York
| | - G Zanazzi
- Pathology and Cell Biology (G.Z., P.C.)
| | - P D Chang
- Department of Radiology (P.D.C.), University of California, San Francisco, California
| | - J Samanamud
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - A Lignelli
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| | - J N Bruce
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - P Canoll
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.).,Pathology and Cell Biology (G.Z., P.C.)
| | - J Grinband
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| |
Collapse
|
55
|
Ghinda DC, Wu JS, Duncan NW, Northoff G. How much is enough-Can resting state fMRI provide a demarcation for neurosurgical resection in glioma? Neurosci Biobehav Rev 2017; 84:245-261. [PMID: 29198588 DOI: 10.1016/j.neubiorev.2017.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023]
Abstract
This study represents a systematic review of the insights provided by resting state functional MRI (rs-fMRI) use in the glioma population. Following PRISMA guidelines, 45 studies were included in the review and were classified in glioma-related neuronal changes (n=28) and eloquent area localization (n=17). Despite the heterogeneous nature of the studies, there is considerable evidence of diffuse functional reorganization occurring in the setting of gliomas with local and interhemispheric functional connectivity alterations involving different functional networks. The studies showed evidence of decreased long distance functional connectivity and increased global local efficiency occurring in the setting of gliomas. The tumour grade seems to correlate with distinct functional connectivity changes. Overall, there is a potential clinical utility of rs-fMRI for identifying the functional brain network disruptions occurring in the setting of gliomas. Further studies utilizing standardized analytical methods are required to elucidate the mechanism through which gliomas induce global changes in brain connectivity.
Collapse
Affiliation(s)
- Diana C Ghinda
- Ottawa Hospital Research Institute, University of Ottawa, Division of Neurosurgery, The Ottawa Hospital, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada; Mind, Brain Imaging and Neuroethics, Canada Research Chair, EJLB-Michael Smith Chair for Neuroscience and Mental Health, Royal Ottawa Mental Health Centre, University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada.
| | - Jin-Song Wu
- Glioma Surgery Division, Department of Neurological Surgery, Huashan Hospital, Fudan University, 518 Wuzhong E Rd, Shanghai, China.
| | - Niall W Duncan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Canada Research Chair, EJLB-Michael Smith Chair for Neuroscience and Mental Health, Royal Ottawa Mental Health Centre, University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada; Mental Health Center/7th Hospital, Zhejiang University School of Medicine, 305 Tianmu Road, Hangzhou, Zhejiang Province, 310013, China.
| |
Collapse
|
56
|
The Temporal Pattern of a Lesion Modulates the Functional Network Topology of Remote Brain Regions. Neural Plast 2017; 2017:3530723. [PMID: 28845308 PMCID: PMC5560088 DOI: 10.1155/2017/3530723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Focal brain lesions can alter the morphology and function of remote brain areas. When the damage is inflicted more slowly, the functional compensation by and structural reshaping of these areas seem to be more effective. It remains unclear, however, whether the momentum of lesion development also modulates the functional network topology of the remote brain areas. In this study, we compared resting-state functional connectivity data of patients with a slowly growing low-grade glioma (LGG) with that of patients with a faster-growing high-grade glioma (HGG). Using graph theory, we examined whether the tumour growth velocity modulated the functional network topology of remote areas, more specifically of the hemisphere contralateral to the lesion. We observed that the contralesional network topology characteristics differed between patient groups. Based only on the connectivity of the hemisphere contralateral to the lesion, patients could be classified in the correct tumour-grade group with 70% accuracy. Additionally, LGG patients showed smaller contralesional intramodular connectivity, smaller contralesional ratio between intra- and intermodular connectivity, and larger contralesional intermodular connectivity than HGG patients. These results suggest that, in the hemisphere contralateral to the lesion, there is a lower capacity for local, specialized information processing coupled to a higher capacity for distributed information processing in LGG patients. These results underline the utility of a network perspective in evaluating effects of focal brain injury.
Collapse
|
57
|
Lang S, Gaxiola-Valdez I, Opoku-Darko M, Partlo LA, Goodyear BG, Kelly JJP, Federico P. Functional Connectivity in Frontoparietal Network: Indicator of Preoperative Cognitive Function and Cognitive Outcome Following Surgery in Patients with Glioma. World Neurosurg 2017; 105:913-922.e2. [PMID: 28583454 DOI: 10.1016/j.wneu.2017.05.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Patients with diffuse glioma are known to have impaired cognitive functions preoperatively. However, the mechanism of these cognitive deficits remains unclear. Resting-state functional connectivity in the frontoparietal network (FPN) is associated with cognitive performance in healthy subjects. For this reason, it was hypothesized that functional connectivity of the FPN would be related to cognitive functioning in patients with glioma. To assess this relationship, preoperative cognitive status was correlated to patient-specific connectivity within the FPN. Further, we assessed whether connectivity could predict neuropsychologic outcome following surgery. METHODS Sixteen patients with diffuse glioma underwent neuropsychologic assessment and preoperative functional magnetic resonance imaging using task (n-back) and resting-state scans. Thirteen patients had postoperative cognitive assessment. An index of patient-specific functional connectivity in the FPN was derived by averaging connectivity values between 2 prefrontal and 2 parietal cortex regions defined by activation during the n-back task. The relationship of these indices with cognitive performance was assessed. RESULTS Higher average connectivity within the FPN is associated with lower composite cognitive scores. Higher connectivity of the parietal region of the tumor-affected hemisphere is associated specifically with lower fluid cognition. Lower connectivity of the parietal region of the nontumor hemisphere is associated with worse neuropsychologic outcome 1 month after surgery. CONCLUSION Resting-state functional connectivity between key regions of the FPN is associated with cognitive performance in patients with glioma and is related to cognitive outcome following surgery.
Collapse
Affiliation(s)
- Stefan Lang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Lisa A Partlo
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bradley G Goodyear
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - John J P Kelly
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
58
|
Kalpathy-Cramer J, Chandra V, Da X, Ou Y, Emblem KE, Muzikansky A, Cai X, Douw L, Evans JG, Dietrich J, Chi AS, Wen PY, Stufflebeam S, Rosen B, Duda DG, Jain RK, Batchelor TT, Gerstner ER. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma. J Neurooncol 2017; 131:603-610. [PMID: 27853960 PMCID: PMC7672995 DOI: 10.1007/s11060-016-2332-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Targeting tumor angiogenesis is a potential therapeutic strategy for glioblastoma because of its high vascularization. Tivozanib is an oral pan-VEGF receptor tyrosine kinase inhibitor that hits a central pathway in glioblastoma angiogenesis. We conducted a phase II study to test the effectiveness of tivozanib in patients with recurrent glioblastoma. Ten adult patients were enrolled and treated with tivozanib 1.5 mg daily, 3 weeks on/1 week off in 28-day cycles. Brain MRI and blood biomarkers of angiogenesis were performed at baseline, within 24-72 h of treatment initiation, and monthly thereafter. Dynamic contrast enhanced MRI, dynamic susceptibility contrast MRI, and vessel architecture imaging were used to assess vascular effects. Resting state MRI was used to assess brain connectivity. Best RANO criteria responses were: 1 complete response, 1 partial response, 4 stable diseases, and 4 progressive disease (PD). Two patients were taken off study for toxicity and 8 patients were taken off study for PD. Median progression-free survival was 2.3 months and median overall survival was 8.1 months. Baseline abnormal tumor vascular permeability, blood flow, tissue oxygenation and plasma sVEGFR2 significantly decreased and plasma PlGF and VEGF increased after treatment, suggesting an anti-angiogenic effect of tivozanib. However, there were no clear structural changes in vasculature as vessel caliber and enhancing tumor volume did not significantly change. Despite functional changes in tumor vasculature, tivozanib had limited anti-tumor activity, highlighting the limitations of anti-VEGF monotherapy. Future studies in glioblastoma should leverage the anti-vascular activity of agents targeting VEGF to enhance the activity of other therapies.
Collapse
Affiliation(s)
| | - Vyshak Chandra
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Xiao Da
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Yangming Ou
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Kyrre E Emblem
- Martinos Center for Biomedical Imaging, Charlestown, USA
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Alona Muzikansky
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xuezhu Cai
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Linda Douw
- Martinos Center for Biomedical Imaging, Charlestown, USA
- Department of Anatomy and Neuroscience/VUmc CCA Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - John G Evans
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Jorg Dietrich
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, USA
| | | | | | - Bruce Rosen
- Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Dan G Duda
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rakesh K Jain
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA
| | - Elizabeth R Gerstner
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Yawkey 9E, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
59
|
Ghinda CD, Duffau H. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas. Front Surg 2017; 4:3. [PMID: 28197403 PMCID: PMC5281570 DOI: 10.3389/fsurg.2017.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.
Collapse
Affiliation(s)
- Cristina Diana Ghinda
- Department of Neurosurgery, The Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Neuroscience Division, University of Ottawa, Ottawa, ON, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France; Brain Plasticity, Stem Cells and Glial Tumors Team, National Institute for Health and Medical Research (INSERM), Montpellier, France
| |
Collapse
|
60
|
Derks J, Dirkson AR, de Witt Hamer PC, van Geest Q, Hulst HE, Barkhof F, Pouwels PJW, Geurts JJG, Reijneveld JC, Douw L. Connectomic profile and clinical phenotype in newly diagnosed glioma patients. NEUROIMAGE-CLINICAL 2017; 14:87-96. [PMID: 28154795 PMCID: PMC5278114 DOI: 10.1016/j.nicl.2017.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/30/2016] [Accepted: 01/07/2017] [Indexed: 02/01/2023]
Abstract
Gliomas are primary brain tumors, originating from the glial cells in the brain. In contrast to the more traditional view of glioma as a localized disease, it is becoming clear that global brain functioning is impacted, even with respect to functional communication between brain regions remote from the tumor itself. However, a thorough investigation of glioma-related functional connectomic profiles is lacking. Therefore, we constructed functional brain networks using functional MR scans of 71 glioma patients and 19 matched healthy controls using the automated anatomical labelling (AAL) atlas and interregional Pearson correlation coefficients. The frequency distributions across connectivity values were calculated to depict overall connectomic profiles and quantitative features of these distributions (full-width half maximum (FWHM), peak position, peak height) were calculated. Next, we investigated the spatial distribution of the connectomic profile. We defined hub locations based on the literature and determined connectivity (1) between hubs, (2) between hubs and non-hubs, and (3) between non-hubs. Results show that patients had broader and flatter connectivity distributions compared to controls. Spatially, glioma patients particularly showed increased connectivity between non-hubs and hubs. Furthermore, connectivity distributions and hub-non-hub connectivity differed within the patient group according to tumor grade, while relating to Karnofsky performance status and progression-free survival. In conclusion, newly diagnosed glioma patients have globally altered functional connectomic profiles, which mainly affect hub connectivity and relate to clinical phenotypes. These findings underscore the promise of using connectomics as a future biomarker in this patient population.
Collapse
Affiliation(s)
- Jolanda Derks
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; VUmc CCA Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Anne R Dirkson
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; VUmc CCA Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Philip C de Witt Hamer
- VUmc CCA Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Quinten van Geest
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands; UCL Institute of Neurology, University College London, 23 Queen Square, London, UK; UCL Institute of Healthcare Engineering, University College London, Gower street, London, UK
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- VUmc CCA Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands; Department of Neurology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; VUmc CCA Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St, Charlestown, MA, USA
| |
Collapse
|
61
|
The effect of IDH1 mutation on the structural connectome in malignant astrocytoma. J Neurooncol 2016; 131:565-574. [PMID: 27848136 DOI: 10.1007/s11060-016-2328-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Mutation of the IDH1 gene is associated with differences in malignant astrocytoma growth characteristics that impact phenotypic severity, including cognitive impairment. We previously demonstrated greater cognitive impairment in patients with IDH1 wild type tumor compared to those with IDH1 mutant, and therefore we hypothesized that brain network organization would be lower in patients with wild type tumors. Volumetric, T1-weighted MRI scans were obtained retrospectively from 35 patients with IDH1 mutant and 32 patients with wild type malignant astrocytoma (mean age = 45 ± 14 years) and used to extract individual level, gray matter connectomes. Graph theoretical analysis was then applied to measure efficiency and other connectome properties for each patient. Cognitive performance was categorized as impaired or not and random forest classification was used to explore factors associated with cognitive impairment. Patients with wild type tumor demonstrated significantly lower network efficiency in several medial frontal, posterior parietal and subcortical regions (p < 0.05, corrected for multiple comparisons). Patients with wild type tumor also demonstrated significantly higher incidence of cognitive impairment (p = 0.03). Random forest analysis indicated that network efficiency was inversely, though nonlinearly associated with cognitive impairment in both groups (p < 0.0001). Cognitive reserve appeared to mediate this relationship in patients with mutant tumor suggesting greater neuroplasticity and/or benefit from neuroprotective factors. Tumor volume was the greatest contributor to cognitive impairment in patients with wild type tumor, supporting our hypothesis that greater lesion momentum between grades may cause more disconnection of core neurocircuitry and consequently lower efficiency of information processing.
Collapse
|
62
|
|
63
|
Burks JD, Bonney PA, Conner AK, Glenn CA, Briggs RG, Battiste JD, McCoy T, O'Donoghue DL, Wu DH, Sughrue ME. A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation. J Neurosurg 2016; 126:1795-1811. [DOI: 10.3171/2016.5.jns153006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEGliomas invading the anterior corpus callosum are commonly deemed unresectable due to an unacceptable risk/benefit ratio, including the risk of abulia. In this study, the authors investigated the anatomy of the cingulum and its connectivity within the default mode network (DMN). A technique is described involving awake subcortical mapping with higher attention tasks to preserve the cingulum and reduce the incidence of postoperative abulia for patients with so-called butterfly gliomas.METHODSThe authors reviewed clinical data on all patients undergoing glioma surgery performed by the senior author during a 4-year period at the University of Oklahoma Health Sciences Center. Forty patients were identified who underwent surgery for butterfly gliomas. Each patient was designated as having undergone surgery either with or without the use of awake subcortical mapping and preservation of the cingulum. Data recorded on these patients included the incidence of abulia/akinetic mutism. In the context of the study findings, the authors conducted a detailed anatomical study of the cingulum and its role within the DMN using postmortem fiber tract dissections of 10 cerebral hemispheres and in vivo diffusion tractography of 10 healthy subjects.RESULTSForty patients with butterfly gliomas were treated, 25 (62%) with standard surgical methods and 15 (38%) with awake subcortical mapping and preservation of the cingulum. One patient (1/15, 7%) experienced postoperative abulia following surgery with the cingulum-sparing technique. Greater than 90% resection was achieved in 13/15 (87%) of these patients.CONCLUSIONSThis study presents evidence that anterior butterfly gliomas can be safely removed using a novel, attention-task based, awake brain surgery technique that focuses on preserving the anatomical connectivity of the cingulum and relevant aspects of the cingulate gyrus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dee H. Wu
- 4Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | |
Collapse
|
64
|
Hart MG, Price SJ, Suckling J. Functional connectivity networks for preoperative brain mapping in neurosurgery. J Neurosurg 2016; 126:1941-1950. [PMID: 27564466 DOI: 10.3171/2016.6.jns1662] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Resection of focal brain lesions involves maximizing the resection while preserving brain function. Mapping brain function has entered a new era focusing on distributed connectivity networks at "rest," that is, in the absence of a specific task or stimulus, requiring minimal participant engagement. Central to this frame shift has been the development of methods for the rapid assessment of whole-brain connectivity with functional MRI (fMRI) involving blood oxygenation level-dependent imaging. The authors appraised the feasibility of fMRI-based mapping of a repertoire of functional connectivity networks in neurosurgical patients with focal lesions and the potential benefits of resting-state connectivity mapping for surgical planning. METHODS Resting-state fMRI sequences with a 3-T scanner and multiecho echo-planar imaging coupled to independent component analysis were acquired preoperatively from 5 study participants who had a right temporoparietooccipital glioblastoma. Seed-based functional connectivity analysis was performed with InstaCorr. Network identification focused on 7 major functional connectivity networks described in the literature and a putative language network centered on Broca's area. RESULTS All 8 functional connectivity networks were identified in each participant. Tumor-related topological changes to the default mode network were observed in all participants. In addition, each participant had at least 1 other abnormal network, and each network was abnormal in at least 1 participant. Individual patterns of network irregularities were identified with a qualitative approach and included local displacement due to mass effect, loss of a functional network component, and recruitment of new regions. CONCLUSIONS Resting-state fMRI can reliably and rapidly detect common functional connectivity networks in patients with glioblastoma and also has sufficient sensitivity for identifying patterns of network alterations. Mapping of functional connectivity networks offers the possibility to expand investigations to less commonly explored neuropsychological processes, such as executive control, attention, and salience. Changes in these networks may allow insights into mechanisms underlying the functional consequences of tumor growth, surgical intervention, and patient rehabilitation.
Collapse
Affiliation(s)
- Michael G Hart
- Brain Mapping Unit, Department of Psychiatry, and.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Stephen J Price
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | | |
Collapse
|
65
|
Mallela AN, Peck KK, Petrovich-Brennan NM, Zhang Z, Lou W, Holodny AI. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients. Brain Connect 2016; 6:587-595. [PMID: 27457676 DOI: 10.1089/brain.2016.0432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To examine the functional connectivity of the primary and supplementary motor areas (SMA) in glioma patients using resting-state functional MRI (rfMRI). To correlate rfMRI data with tumor characteristics and clinical information to characterize functional reorganization of resting-state networks (RSN) and the limitations of this method. This study was IRB approved and in compliance with Health Insurance Portability and Accountability Act. Informed consent was waived in this retrospective study. We analyzed rfMRI in 24 glioma patients and 12 age- and sex-matched controls. We compared global activation, interhemispheric connectivity, and functional connectivity in the hand motor RSNs using hemispheric voxel counts, pairwise Pearson correlation, and pairwise total spectral coherence. We explored the relationship between tumor grade, volume, location, and the patient's clinical status to functional connectivity. Global network activation and interhemispheric connectivity were reduced in gliomas (p < 0.05). Functional connectivity between the bilateral motor cortices and the SMA was reduced in gliomas (p < 0.01). High-grade gliomas had lower functional connectivity than low-grade gliomas (p < 0.05). Tumor volume and distance to ipsilateral motor cortex demonstrated no association with functional connectivity loss. Functional connectivity loss is associated with motor deficits in low-grade gliomas, but not in high-grade gliomas. Global reduction in resting-state connectivity in areas distal to tumor suggests that radiological tumor boundaries underestimate areas affected by glioma. Association between motor deficits and rfMRI suggests that rfMRI may accurately reflect functional changes in low-grade gliomas. Lack of association between rfMRI and clinical motor deficits implies decreased sensitivity of rfMRI in high-grade gliomas, possibly due to neurovascular uncoupling.
Collapse
Affiliation(s)
- Arka N Mallela
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,2 Perelman School of Medicine at the University of Pennsylvania , Philadelphia, Pennsylvania
| | - Kyung K Peck
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,3 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Nicole M Petrovich-Brennan
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Zhigang Zhang
- 4 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - William Lou
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,5 Weill Cornell Medical College , New York, New York
| | - Andrei I Holodny
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,6 Brain Tumor Center, Memorial Sloan-Kettering Cancer Center , New York, New York
| |
Collapse
|
66
|
Qian H, Wang X, Wang Z, Wang Z, Liu P. Altered Vision-Related Resting-State Activity in Pituitary Adenoma Patients with Visual Damage. PLoS One 2016; 11:e0160119. [PMID: 27512990 PMCID: PMC4981336 DOI: 10.1371/journal.pone.0160119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
Objective To investigate changes of vision-related resting-state activity in pituitary adenoma (PA) patients with visual damage through comparison to healthy controls (HCs). Methods 25 PA patients with visual damage and 25 age- and sex-matched corrected-to-normal-vision HCs underwent a complete neuro-ophthalmologic evaluation, including automated perimetry, fundus examinations, and a magnetic resonance imaging (MRI) protocol, including structural and resting-state fMRI (RS-fMRI) sequences. The regional homogeneity (ReHo) of the vision-related cortex and the functional connectivity (FC) of 6 seeds within the visual cortex (the primary visual cortex (V1), the secondary visual cortex (V2), and the middle temporal visual cortex (MT+)) were evaluated. Two-sample t-tests were conducted to identify the differences between the two groups. Results Compared with the HCs, the PA group exhibited reduced ReHo in the bilateral V1, V2, V3, fusiform, MT+, BA37, thalamus, postcentral gyrus and left precentral gyrus and increased ReHo in the precuneus, prefrontal cortex, posterior cingulate cortex (PCC), anterior cingulate cortex (ACC), insula, supramarginal gyrus (SMG), and putamen. Compared with the HCs, V1, V2, and MT+ in the PAs exhibited decreased FC with the V1, V2, MT+, fusiform, BA37, and increased FC primarily in the bilateral temporal lobe (especially BA20,21,22), prefrontal cortex, PCC, insular, angular gyrus, ACC, pre-SMA, SMG, hippocampal formation, caudate and putamen. It is worth mentioning that compared with HCs, V1 in PAs exhibited decreased or similar FC with the thalamus, whereas V2 and MT+ exhibited increased FCs with the thalamus, especially pulvinar. Conclusions In our study, we identified significant neural reorganization in the vision-related cortex of PA patients with visual damage compared with HCs. Most subareas within the visual cortex exhibited remarkable neural dysfunction. Some subareas, including the MT+ and V2, exhibited enhanced FC with the thalamic pulvinar, which indicates an important role in the compensatory mechanism following visual impairment. In addition, neural dysfunction within the visual cortex was associated with neural activity alternation in the higher-order cognitive cortex, especially subareas in default mode network (DMN) and salience network (SN).
Collapse
Affiliation(s)
- Haiyan Qian
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgery Institute, Capital Medical University affiliated to Capital Medical University, Beijing, China
| | - Xingchao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Zhongyan Wang
- Department of Radiology, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Zhenmin Wang
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgery Institute, Capital Medical University affiliated to Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
67
|
Zhang H, Shi Y, Yao C, Tang W, Yao D, Zhang C, Wang M, Wu J, Song Z. Alteration of the Intra- and Cross- Hemisphere Posterior Default Mode Network in Frontal Lobe Glioma Patients. Sci Rep 2016; 6:26972. [PMID: 27248706 PMCID: PMC4888650 DOI: 10.1038/srep26972] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022] Open
Abstract
Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor’s hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade.
Collapse
Affiliation(s)
- Haosu Zhang
- Neurosurgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Yonghong Shi
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, 200032 Shanghai, China
| | - Chengjun Yao
- Neurosurgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Weijun Tang
- Neurosurgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Demin Yao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, 200032 Shanghai, China
| | - Chenxi Zhang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, 200032 Shanghai, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, 200032 Shanghai, China
| | - Jinsong Wu
- Neurosurgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, 200032 Shanghai, China
| |
Collapse
|
68
|
Ghumman S, Fortin D, Noel-Lamy M, Cunnane SC, Whittingstall K. Exploratory study of the effect of brain tumors on the default mode network. J Neurooncol 2016; 128:437-44. [DOI: 10.1007/s11060-016-2129-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
|
69
|
Fang S, Wang Y, Jiang T. The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions. World Neurosurg 2016; 91:340-6. [PMID: 27072331 DOI: 10.1016/j.wneu.2016.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
Abstract
Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China.
| |
Collapse
|
70
|
Maesawa S, Bagarinao E, Fujii M, Futamura M, Wakabayashi T. Use of Network Analysis to Establish Neurosurgical Parameters in Gliomas and Epilepsy. Neurol Med Chir (Tokyo) 2016; 56:158-69. [PMID: 26923836 PMCID: PMC4831941 DOI: 10.2176/nmc.ra.2015-0302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cutting-edge neuroimaging technologies can facilitate preoperative evaluation in various neurosurgical settings. Surgery for gliomas and epilepsy requires precise localization for resection due to the need to preserve (or perhaps improve) higher cognitive functions. Accordingly, a hodological approach should be taken that considers subcortical networks as well as cortical functions within various functional domains. Resting state functional magnetic resonance imaging (fMRI) has the potential to provide new insights that are valuable for this approach. In this review, we describe recent developments in network analysis using resting state fMRI related to factors in glioma and epilepsy surgery: the identification of functionally dominant areas, evaluation of cognitive function by alteration of resting state networks (RSNs), glioma grading, and epileptic focus detection. One particular challenge that is close to realization is using fMRI for the identification of sensorimotor- and language-dominant areas during a task-free resting state. Various RSNs representative of the default mode network demonstrated at least some alterations in both patient groups, which correlated with behavioral changes including cognition, memory, and attention, and the development of psychosis. Still challenging is the detection of epileptic foci and propagation pathways when using only network analysis with resting state fMRI; however, a combined method with simultaneous electroencephalography has produced promising results. Consequently, network analysis is expected to continue to advance as neuroimaging technology improves in the next decade, and preoperative evaluation for neurosurgical parameters through these techniques should improve parallel with them.
Collapse
|
71
|
Mabray MC, Barajas RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat 2015; 3:8-23. [PMID: 25977902 PMCID: PMC4426283 DOI: 10.14791/btrt.2015.3.1.8] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients.
Collapse
Affiliation(s)
- Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ramon F Barajas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Maesawa S, Bagarinao E, Fujii M, Futamura M, Motomura K, Watanabe H, Mori D, Sobue G, Wakabayashi T. Evaluation of resting state networks in patients with gliomas: connectivity changes in the unaffected side and its relation to cognitive function. PLoS One 2015; 10:e0118072. [PMID: 25659130 PMCID: PMC4319851 DOI: 10.1371/journal.pone.0118072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/04/2015] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated changes in resting state networks (RSNs) in patients with gliomas located in the left hemisphere and its relation to cognitive function. We hypothesized that long distance connection, especially between hemispheres, would be affected by the presence of the tumor. We further hypothesized that these changes would correlate with, or reflect cognitive changes observed in patients with gliomas. Resting state functional MRI datasets from 12 patients and 12 healthy controls were used in the analysis. The tumor’s effect on three well-known RSNs including the default mode network (DMN), executive control network (ECN), and salience network (SN) identified using independent component analysis were investigated using dual regression analysis. Scores of neuropsychometric testing (WAIS-III and WMS-R) were also compared. Compared to the healthy control group, the patient group showed significant decrease in functional connectivity in the right angular gyrus/inferior parietal lobe of the ventral DMN and in the dorsolateral prefrontal cortex of the left ECN, whereas a significant increase in connectivity in the right ECN was observed in the right parietal lobe. Changes in connectivity in the right ECN correlated with spatial memory, while that on the left ECN correlated with attention. Connectivity changes in the ventral DMN correlated with attention, working memory, full IQ, and verbal IQ measures. Although the tumors were localized in the left side of the brain, changes in connectivity were observed in the contralateral side. Moreover, these changes correlated with some aspects of cognitive function indicating that patients with gliomas may undergo cognitive changes even in the absence of or before the onset of major symptoms. Evaluation of resting state networks could be helpful in advancing our hodological understanding of brain function in glioma cases.
Collapse
Affiliation(s)
- Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
- * E-mail:
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
| | - Miyako Futamura
- Department of Rehabilitation, Nagoya Hospital Organization, Nagoya Medical Center, Nagoya City, Aichi, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
- Department Neurology, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
- Department Neurology, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
| | - Toshihiko Wakabayashi
- Brain and Mind Research Center, Nagoya University, Nagoya City, Aichi, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya City, Aichi, Japan
| |
Collapse
|
73
|
Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy K, Dapretto M. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev Cogn Neurosci 2014; 10:148-59. [PMID: 25282602 PMCID: PMC4854607 DOI: 10.1016/j.dcn.2014.08.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 12/27/2022] Open
Abstract
The mature brain is organized into distinct neural networks defined by regions demonstrating correlated activity during task performance as well as rest. While research has begun to examine differences in these networks between children and adults, little is known about developmental changes during early adolescence. Using functional magnetic resonance imaging (fMRI), we examined the Default Mode Network (DMN) and the Central Executive Network (CEN) at ages 10 and 13 in a longitudinal sample of 45 participants. In the DMN, participants showed increasing integration (i.e., stronger within-network correlations) between the posterior cingulate cortex (PCC) and the medial prefrontal cortex. During this time frame participants also showed increased segregation (i.e., weaker between-network correlations) between the PCC and the CEN. Similarly, from age 10 to 13, participants showed increased connectivity between the dorsolateral prefrontal cortex and other CEN nodes, as well as increasing DMN segregation. IQ was significantly positively related to CEN integration at age 10, and between-network segregation at both ages. These findings highlight early adolescence as a period of significant maturation for the brain's functional architecture and demonstrate the utility of longitudinal designs to investigate neural network development.
Collapse
Affiliation(s)
- Lauren E Sherman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Carrie L Masten
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristin McNealy
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|