51
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
52
|
Chen S, Hao Q, Yang M, Yue J, Cao L, Liu G, Zou C, Ding X, Pu H, Dong B. Association Between Angiotensin-Converting Enzyme Insertion/Deletion Polymorphisms and Frailty Among Chinese Older People. J Am Med Dir Assoc 2015; 16:438.e1-6. [DOI: 10.1016/j.jamda.2015.01.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/27/2023]
|
53
|
Marttila S, Kananen L, Häyrynen S, Jylhävä J, Nevalainen T, Hervonen A, Jylhä M, Nykter M, Hurme M. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics 2015; 16:179. [PMID: 25888029 PMCID: PMC4404609 DOI: 10.1186/s12864-015-1381-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Changes in DNA methylation are among the mechanisms contributing to the ageing process. We sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association between DNA methylation changes and gene expression levels was also investigated in the same individuals. Results We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system functions, particularly phagocytosis. Conclusions We find that certain ageing-associated immune-system impairments may be mediated via changes in DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes: hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of environmental and stochastic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1381-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Laura Kananen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Tapio Nevalainen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Antti Hervonen
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Marja Jylhä
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Matti Nykter
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Mikko Hurme
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
54
|
Zhao N, Bell DA, Maity A, Staicu AM, Joubert BR, London SJ, Wu MC. Global analysis of methylation profiles from high resolution CpG data. Genet Epidemiol 2014; 39:53-64. [PMID: 25537884 DOI: 10.1002/gepi.21874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/09/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Abstract
New high throughput technologies are now enabling simultaneous epigenetic profiling of DNA methylation at hundreds of thousands of CpGs across the genome. A problem of considerable practical interest is identification of large scale, global changes in methylation that are associated with environmental variables, clinical outcomes, or other experimental conditions. However, there has been little statistical research on methods for global methylation analysis using technologies with individual CpG resolution. To address this critical gap in the literature, we develop a new strategy for global analysis of methylation profiles using a functional regression approach wherein we approximate either the density or the cumulative distribution function (CDF) of the methylation values for each individual using B-spline basis functions. The spline coefficients for each individual are allowed to summarize the individual's overall methylation profile. We then test for association between the overall distribution and a continuous or dichotomous outcome variable using a variance component score test that naturally accommodates the correlation between spline coefficients. Simulations indicate that our proposed approach has desirable power while protecting type I error. The method was applied to detect methylation differences, both genome wide and at LINE1 elements, between the blood samples from rheumatoid arthritis patients and healthy controls and to detect the epigenetic changes of human hepatocarcinogenesis in the context of alcohol abuse and hepatitis C virus infection. A free implementation of our methods in the R language is available in the Global Analysis of Methylation Profiles (GAMP) package at http://research.fhcrc.org/wu/en.html.
Collapse
Affiliation(s)
- Ni Zhao
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | | | | |
Collapse
|
55
|
Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol Psychiatry 2014; 19:1156-62. [PMID: 25245500 PMCID: PMC4211971 DOI: 10.1038/mp.2014.111] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may have in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD.
Collapse
|
56
|
O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, Balaguer S, Callaghan RC. Systems Biology and immune aging. Immunol Lett 2014; 162:334-45. [DOI: 10.1016/j.imlet.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
57
|
O'Connor JE, Herrera G, Martínez-Romero A, Oyanguren FSD, Díaz L, Gomes A, Balaguer S, Callaghan RC. WITHDRAWN: Systems Biology and Immune Aging. Immunol Lett 2014:S0165-2478(14)00197-7. [PMID: 25251659 DOI: 10.1016/j.imlet.2014.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of anarticle that has already been published, http://dx.doi.org/10.1016/j.imlet.2014.09.009. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- José-Enrique O'Connor
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain.
| | - Guadalupe Herrera
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Alicia Martínez-Romero
- Cytometry Technological Service, Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Francisco Sala-de Oyanguren
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Laura Díaz
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Angela Gomes
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Susana Balaguer
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Robert C Callaghan
- Department of Pathology, Faculty of Medicine, The University of Valencia, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| |
Collapse
|
58
|
Acquisition of aberrant DNA methylation is associated with frailty in the very old: findings from the Newcastle 85+ Study. Biogerontology 2014; 15:317-28. [PMID: 24770842 DOI: 10.1007/s10522-014-9500-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Frailty is a major health problem in older people and, as the population ages, identification of its underlying biological mechanisms will be increasingly important. DNA methylation patterns within genomic DNA change during ageing and alterations in DNA methylation, particularly at gene promoter regions, can lead to altered gene expression. However the importance of altered DNA methylation in frailty is largely unknown. Using cross-sectional data from the Newcastle 85+ Study (all participants aged 85 years) frailty was operationalized by the Fried model. DNA methylation levels were assessed by highly quantitative pyrosequencing at the gene promoter associated CpG islands from a panel of five age-related methylation marker loci and at LINE-1 repetitive elements (as a surrogate for genome-wide methylation). While genome-wide methylation (as assessed at LINE-1 elements) showed no association with frailty status, there was a clear association between CpG island methylation and frailty. When compared to participants with CpG island methylation levels in the combined middle two (referent) quartiles, those in the lowest quartile had significantly decreased odds of frailty [odds ratio 0.47 (95 % CI 0.26-0.85); n = 321, p = 0.013]. Overall this study suggests a potential role for age-related changes in CpG island methylation in the development of frailty.
Collapse
|
59
|
Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 2014; 136-137:101-15. [DOI: 10.1016/j.mad.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
|
60
|
Lisanti S, Omar WAW, Tomaszewski B, De Prins S, Jacobs G, Koppen G, Mathers JC, Langie SAS. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One 2013; 8:e79044. [PMID: 24260150 PMCID: PMC3832524 DOI: 10.1371/journal.pone.0079044] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the "gold standard" of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.
Collapse
Affiliation(s)
- Sofia Lisanti
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Wan A. W. Omar
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bartłomiej Tomaszewski
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Centre for Brain Ageing and Vitality, Institute for Ageing & Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Sofie De Prins
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Griet Jacobs
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - John C. Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Centre for Brain Ageing and Vitality, Institute for Ageing & Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Sabine A. S. Langie
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Brain Ageing and Vitality, Institute for Ageing & Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
61
|
A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology 2013; 15:47-64. [PMID: 24243065 PMCID: PMC3905196 DOI: 10.1007/s10522-013-9477-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022]
Abstract
Senescence of vascular smooth muscle cells (VSMCs) contributes to aging as well as age-related diseases of the cardiovascular system. Senescent VSMCs have been shown to be present in atherosclerotic plaques. Both replicative (RS) and stress-induced premature senescence (SIPS) accompany cardiovascular diseases. We aimed to establish the signature of RS and SIPS of VSMCs, induced by a common anticancer drug, doxorubicin, and to discover the so far undisclosed features of senescent cells that are potentially harmful to the organism. Most of the senescence hallmarks were common for both RS and SIPS; however, some differences were observed. 32 % of doxorubicin-treated cells were arrested in the G2/M phase of the cell cycle, while 73 % of replicatively senescing cells were arrested in the G1 phase. Moreover, on the basis of alkaline phosphatase activity measurements, we show that a 7-day treatment with doxorubicin (dox), does not cause precocious cell calcification, which is a characteristic feature of RS. We did not observe calcification even though after 7 days of dox-treatment many other markers characteristic for senescent cells were present. It can suggest that dox-induced SIPS does not accelerate the mineralization of vessels. We consider that detailed characterization of the two types of cellular senescence can be useful in in vitro studies of potential anti-aging factors.
Collapse
|
62
|
Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, Bucci L, Sirchia SM, Tabano S, Cavagnini F, Monti D, Franceschi C, Di Blasio AM, Vitale G. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1961-73. [PMID: 22923132 PMCID: PMC3776126 DOI: 10.1007/s11357-012-9463-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/24/2012] [Indexed: 05/13/2023]
Abstract
The role of epigenetics in the modulation of longevity has not been studied in humans. To this aim, (1) we evaluated the DNA methylation from peripheral leukocytes of 21 female centenarians, their 21 female offspring, 21 offspring of both non-long-lived parents, and 21 young women through ELISA assay, pyrosequencing analysis of Alu sequences, and quantification of methylation in CpG repeats outside CpG islands; (2) we compared the DNA methylation profiles of these populations through Infinium array for genome-wide CpG methylation analysis. We observed an age-related decrease in global DNA methylation and a delay of this process in centenarians' offspring. Interestingly, literature data suggest a link between the loss of DNA methylation observed during aging and the development of age-associated diseases. Genome-wide methylation analysis evidenced DNA methylation profiles specific for aging and longevity: (1) aging-associated DNA hypermethylation occurs predominantly in genes involved in the development of anatomical structures, organs, and multicellular organisms and in the regulation of transcription; (2) genes involved in nucleotide biosynthesis, metabolism, and control of signal transmission are differently methylated between centenarians' offspring and offspring of both non-long-lived parents, hypothesizing a role for these genes in human longevity. Our results suggest that a better preservation of DNA methylation status, a slower cell growing/metabolism, and a better control in signal transmission through epigenetic mechanisms may be involved in the process of human longevity. These data fit well with the observations related to the beneficial effects of mild hypothyroidism and insulin-like growth factor I system impairment on the modulation of human lifespan.
Collapse
Affiliation(s)
- Davide Gentilini
- />Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095 Milan, Italy
| | - Daniela Mari
- />Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- />Geriatric Unit, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Davide Castaldi
- />Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095 Milan, Italy
- />Dipartimento di Informatica, Sistemistica e Comunicazione, Universita’ degli Studi di Milano-Bicocca, Milan, Italy
| | | | - Giulia Ogliari
- />Geriatric Unit, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Rita Ostan
- />Department of Experimental Pathology, University of Bologna, Bologna, Italy
- />CIG-Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy
| | - Laura Bucci
- />Department of Experimental Pathology, University of Bologna, Bologna, Italy
- />CIG-Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy
| | - Silvia M. Sirchia
- />Medical Genetics Unit, Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Silvia Tabano
- />Medical Genetics Unit, Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Francesco Cavagnini
- />Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095 Milan, Italy
| | - Daniela Monti
- />Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Claudio Franceschi
- />Department of Experimental Pathology, University of Bologna, Bologna, Italy
- />CIG-Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy
| | - Anna Maria Di Blasio
- />Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095 Milan, Italy
| | - Giovanni Vitale
- />Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095 Milan, Italy
- />Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
63
|
Mitteldorf JJ. How does the body know how old it is? Introducing the epigenetic clock hypothesis. BIOCHEMISTRY (MOSCOW) 2013; 78:1048-53. [DOI: 10.1134/s0006297913090113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
64
|
Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2013; 15:483-94. [PMID: 23098078 DOI: 10.1089/rej.2012.1324] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-L-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
65
|
Jylhävä J, Nevalainen T, Marttila S, Jylhä M, Hervonen A, Hurme M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013; 12:388-97. [PMID: 23438186 DOI: 10.1111/acel.12058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
Plasma cell-free DNA (cf-DNA) has recently emerged as a potential biomarker of aging, reflecting systemic inflammation, and cell death. In addition, it has been suggested that cf-DNA could promote autoinflammation. Because the total cf-DNA pool comprises different cf-DNA species, we quantified the plasma levels of gene-coding cf-DNA, Alu repeat cf-DNA, mitochondrial DNA (mtDNA) copy number, and the amounts of unmethylated and total cf-DNAs. We identified the relationships between these cf-DNA species and age-associated inflammation, immunosenescence, and frailty. Additionally, we determined the cf-DNA species-specific transcriptomic signatures in blood mononuclear cells to elucidate the age-linked leukocyte responses to cf-DNA. The study population consisted of n = 144 nonagenarian participants of the Vitality 90+ Study and n = 30 young controls. In the nonagenarians, higher levels of total and unmethylated cf-DNAs were associated with systemic inflammation and increased frailty. The mtDNA copy number was also directly correlated with increased frailty but not with inflammation. None of the cf-DNA species were associated with immunosenescence. The transcriptomic pathway analysis revealed that higher levels of total and unmethylated cf-DNAs were associated with immunoinflammatory activation in the nonagenarians but not in the young controls. The plasma mtDNA appeared to be inert in terms of inflammatory activation in both the nonagenarians and young controls. These data demonstrate that the plasma levels of total and unmethylated cf-DNA and the mtDNA copy number could serve as biomarkers of frailty. In addition, we suggest that circulating self-DNA, assessed as total or unmethylated cf-DNA, might aggravate immunoinflammatory reactivity in very old individuals.
Collapse
Affiliation(s)
- Juulia Jylhävä
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Tapio Nevalainen
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Saara Marttila
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Marja Jylhä
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Antti Hervonen
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
- Department of Microbiology Tampere University Hospital Tampere Finland
| |
Collapse
|
66
|
Do age-related changes in DNA methylation play a role in the development of age-related diseases? Biochem Soc Trans 2013; 41:803-7. [DOI: 10.1042/bst20120358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA methylation is an important epigenetic mechanism in mammalian cells. It occurs almost exclusively at CpG sites and has a key role in a number of biological processes. It plays an important part in regulating chromatin structure and has been best studied for its role in controlling gene expression. In particular, hypermethylation of gene promoters which have high levels of CpG sites, known as CpG islands, leads to gene inactivation. In healthy cells, however, it appears that only a small number of genes are controlled through promoter hypermethylation, such as genes on the inactivated X-chromosome or at imprinted loci, and most promoter-associated CpG islands remain methylation-free regardless of gene expression status. However, a large body of evidence has now shown that this protection from methylation not only breaks down in a number of pathological conditions (e.g. cancer), but also already occurs during the normal process of aging. The present review focuses on the methylation changes that occur during healthy aging and during disease development, and the potential links between them. We focus especially on the extent to which the acquisition of aberrant methylation changes during aging could underlie the development of a number of important age-related pathological conditions.
Collapse
|
67
|
D'Aquila P, Rose G, Bellizzi D, Passarino G. Epigenetics and aging. Maturitas 2012; 74:130-6. [PMID: 23245587 DOI: 10.1016/j.maturitas.2012.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/11/2012] [Indexed: 01/06/2023]
Abstract
Over the past two decades, a growing interest on the research of the biological basis of human longevity has emerged, in order to clarify the intricacy of biological and environmental factors affecting (together with stochastic factors) the quality and the rate of human aging. These researches have outlined a complex scenario in which epigenetic marks, such as DNA methylation and numerous histone modifications, are emerging as important factors of the overall variation in life expectancy. In fact, epigenetic marks, that are responsible of the establishment of specific expression programs and of genome stability, represent a "drawbridge" across genetic, environmental and stochastic factors. In this review we provide an overview on the current knowledge and the general features of the epigenetic modifications characterizing the aging process.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Cell Biology, University of Calabria, 87036 Rende, Italy
| | | | | | | |
Collapse
|
68
|
Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 2012; 17:273-84. [PMID: 23137527 DOI: 10.1016/j.smrv.2012.08.003] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
Abstract
Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.
Collapse
|
69
|
Amodio N, Leotta M, Bellizzi D, Di Martino MT, D'Aquila P, Lionetti M, Fabiani F, Leone E, Gullà AM, Passarino G, Caraglia M, Negrini M, Neri A, Giordano A, Tagliaferri P, Tassone P. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget 2012; 3:1246-58. [PMID: 23100393 PMCID: PMC3717964 DOI: 10.18632/oncotarget.675] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/19/2012] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA methylation plays a relevant role in multiple myeloma (MM) pathogenesis. MicroRNAs (miRNAs) are a class of small non-coding RNAs that recently emerged as master regulator of gene expression by targeting protein-coding mRNAs. However, miRNAs involvement in the regulation of the epigenetic machinery and their potential use as therapeutics in MM remain to be investigated. Here, we provide evidence that the expression of de novo DNA methyltransferases (DNMTs) is deregulated in MM cells. Moreover, we show that miR-29b targets DNMT3A and DNMT3B mRNAs and reduces global DNA methylation in MM cells. In vitro transfection of MM cells with synthetic miR-29b mimics significantly impairs cell cycle progression and also potentiates the growth-inhibitory effects induced by the demethylating agent 5-azacitidine. Most importantly, in vivo intratumor or systemic delivery of synthetic miR-29b mimics, in two clinically relevant murine models of human MM, including the SCID-synth-hu system, induces significant anti-tumor effects. All together, our findings demonstrate that aberrant DNMTs expression is efficiently modulated by tumor suppressive synthetic miR-29b mimics, indicating that methyloma modulation is a novel matter of investigation in miRNA-based therapy of MM.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomimetics
- Blotting, Western
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Case-Control Studies
- Cell Cycle
- Cell Proliferation
- Cellular Microenvironment/drug effects
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- DNA Methyltransferase 3A
- Gene Expression Profiling
- Humans
- Immunoenzyme Techniques
- Leukemia, Plasma Cell/genetics
- Leukemia, Plasma Cell/pathology
- Leukemia, Plasma Cell/prevention & control
- Male
- Mice
- Mice, SCID
- MicroRNAs/chemical synthesis
- MicroRNAs/genetics
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Multiple Myeloma/prevention & control
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | - Marzia Leotta
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | - Dina Bellizzi
- Department of Cell Biology, University of Calabria, Cosenza
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | | | - Marta Lionetti
- Department of Medical Sciences University of Milan, Hematology 1, IRCCS
Policlinico Foundation, Milan, Italy
| | - Fernanda Fabiani
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | - Emanuela Leone
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | - Anna Maria Gullà
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | | | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples,
Naples, Italy
| | - Massimo Negrini
- Department of Experimental Medicine and Diagnostics, University of
Ferrara
| | - Antonino Neri
- Department of Medical Sciences University of Milan, Hematology 1, IRCCS
Policlinico Foundation, Milan, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for
Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University
and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus,
Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for
Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
70
|
Abstract
Alzheimer's disease (AD) and bipolar disorder (BD) are progressive brain disorders. Upregulated mRNA and protein levels of neuroinflammatory and arachidonic acid (AA) markers with loss of synaptic markers (synaptophysin and drebrin) have been reported in brain tissue from AD and BD patients. We hypothesized that some of these changes are associated with epigenetic modifications of relevant genes. To test this, we measured gene-specific CpG methylation, global DNA methylation and histone modifications in postmortem frontal cortex from BD (n=10) and AD (n=10) patients and respective age-matched controls (10 per group). AD and BD brains showed several epigenetic similarities, including global DNA hypermethylation, and histone H3 phosphorylation. These changes were associated with hypo- and hypermethylation of CpG islands in cyclooxygenase-2 and brain-derived neurotrophic factor promoter regions, respectively. Only the AD brain showed hyper- and hypomethylated CpG islands in promoter regions for cAMP response element-binding protein and nuclear transcription factor kappa B genes, respectively. Only the BD brain demonstrated increased global histone H3 acetylation and hypermethylation of the promotor region for the drebrin-like protein gene. There was no significant epigenetic modification for 12-lipooxygenase or p450 epoxygenase in either illness. Many observed epigenetic changes were inversely related to respective changes in mRNA and protein levels. These epigenetic modifications involving neuroinflammatory, AA cascade and synaptic markers may contribute to progression in AD and BD and identify new targets for drug development.
Collapse
|
71
|
Abstract
The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the "loss of heterochromatin" model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
72
|
Montesanto A, Dato S, Bellizzi D, Rose G, Passarino G. Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity. IMMUNITY & AGEING 2012; 9:6. [PMID: 22524317 PMCID: PMC3349521 DOI: 10.1186/1742-4933-9-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 12/23/2022]
Abstract
Healthy ageing and longevity in humans result from a number of factors, including genetic background, favorable environmental and social factors and chance. In this article we aimed to overview the research on the biological basis of human healthy ageing and longevity, discussing the role of epidemiological, genetic and epigenetic factors in the variation of quality of ageing and lifespan, including the most promising candidate genes investigated so far. Moreover, we reported the methodologies applied for their identification, discussing advantages and disadvantages of the different approaches and possible solutions that can be taken to overcome them. Finally, we illustrated the recent approaches to define healthy ageing and underlined the role that the emerging field of epigenetics is gaining in the search for the determinants of healthy ageing and longevity.
Collapse
Affiliation(s)
- Alberto Montesanto
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4 C, 87036 Rende, CS, Italy
| | - Serena Dato
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4 C, 87036 Rende, CS, Italy
| | - Dina Bellizzi
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4 C, 87036 Rende, CS, Italy
| | - Giuseppina Rose
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4 C, 87036 Rende, CS, Italy
| | - Giuseppe Passarino
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4 C, 87036 Rende, CS, Italy
| |
Collapse
|