51
|
Sodium alginate/gum arabic/glycerol multicomponent edible films loaded with natamycin: Study on physicochemical, antibacterial, and sweet potatoes preservation properties. Int J Biol Macromol 2022; 213:1068-1077. [PMID: 35697167 DOI: 10.1016/j.ijbiomac.2022.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Sweet potato (Ipomonea batatas Lam) is easily damaged due to its thin skin, which is limited in shelf life and causes enormous economic losses in the food industry. A new type of safe, non-toxic, and edible antibacterial functional film was developed with sodium alginate (2.5 %), gum arabic (1 %), glycerol (2 %), and natamycin as an antimicrobial agent in this study. The physical and antibacterial properties of films, such as thickness, chromaticity, water vapor permeability, tensile strength, and elongation at break, were studied. Furthermore, the antibacterial film was applied in the preservation of sweet potatoes. The results showed that natamycin emulsion had good compatibility with sodium alginate. Besides reducing the transparency of the composite membrane, the mechanical properties, barrier properties, and thermal stability of the composite film were significantly enhanced by the addition of natamycin prepared by a pH-cycle method. When the concentration of natamycin in the membrane solution reached 40 μg/mL or more, the antibacterial film had a noticeable inhibitory effect on the growth of molds, and yeasts, significantly enhancing the bacteriostatic effect of the base film. During the sweet potatoes storage, the water content, total starch content, Vc content, and flavonoid glycoside content of sweet potato showed a downward trend. However, the treatment of antibacterial film containing natamycin could slow down the physiological and quality changes of sweet potatoes during conventional storage, and the sweet potatoes still had good processing quality after 120 days of storage.
Collapse
|
52
|
Maintaining the nutritional quality and increasing the shelf life of dried apricot using sodium alginate and pectin as edible coating. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
53
|
Yan W, Sun H, Liu W, Chen H. Preparation and Properties of Blended Composite Film Manufactured Using Walnut-Peptide-Chitosan-Sodium Alginate. Foods 2022; 11:1758. [PMID: 35741956 PMCID: PMC9223285 DOI: 10.3390/foods11121758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, layer-by-layer assembly was performed to prepare sodium alginate (SA) layer and walnut-peptide-chitosan (CS) bilayer composite films. Genipin was adopted to crosslink CS and walnut peptide. The properties of walnut peptide-CS-SA composite film were determined, and the influence of material ratio on the performance of composite film was explored. According to the results, the mechanical tensile property, oil absorption property, and water vapor barrier property of the composite film were improved with the presence of genipin. Moreover, the proportion of CS and walnut peptide had significant effects on color, transmittance, mechanical properties, barrier properties, and antioxidant properties of the composite films. Among them, the composite film containing 1% (w/v) CS, 1% (w/v) walnut peptide, and 0.01% (w/v) genipin showed the best performance, with a tensile strength of 3.65 MPa, elongation at break of 30.82%, water vapor permeability of 0.60 g·mm·m-2·h-1·kPa-1, oil absorption of 0.85%, and the three-phase electrochemistry of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate of 25.59%. Under this condition, the tensile property, barrier property, and oxidation resistance of the composite film are good, which can provide a good preservation effect for food, and has great application potential.
Collapse
Affiliation(s)
- Wenqi Yan
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Haochen Sun
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Wenxin Liu
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Hao Chen
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
54
|
Multifunction Ecofriendly Active Packaging Coating-Based Hybrid Polyethyleneimine/ Sr(Ti0.7Fe0.3)(1-x)ScxO3 Nanocomposites. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
55
|
de Prado EML, de Paula GA, Dutra JAP, Cipriano DF, Kitagawa RR, Siman FDM, Meira EF, de Freitas JCC, Severi JA, Carreira LG, Oréfice RL, Villanova JCO. Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Chalapud MC, Baümler ER, Carelli AA, Salgado-Cruz MDLP, Morales-Sánchez E, Rentería-Ortega M, Calderón-Domínguez G. Pectin Films with Recovered Sunflower Waxes Produced by Electrospraying. MEMBRANES 2022; 12:560. [PMID: 35736266 PMCID: PMC9228956 DOI: 10.3390/membranes12060560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/20/2022]
Abstract
Valorization of by-products obtained from food processing has achieved an important environmental impact. In this research, sunflower wax recovered from oil refining process was incorporated to low and high-methoxyl pectin films produced by electrospraying. Film-forming solutions and wax-added electrosprayed films were physical and structurally evaluated. The addition of sunflower wax to the film-forming solutions reduces conductivity while raising surface tension and density, whereas the type of pectin had a larger impact on viscosity, with the low-methoxyl solution having the highest value. These changes in physical solution properties influenced the film characteristics, observing thicker films with lower water vapor transmission rate (WVTR) when adding wax. Micrographs obtained by scanning electron microscopy (SEM) revealed the presence of wax particles as small spherical shapes, having a good distribution through the sectional area of films. According to X-ray diffraction (XRD), atomic force microscopy (AFM) and mechanical properties analyses, the presence of wax had an impact on the degree of crystallinity, producing a more amorphous and rougher film’s structure, without affecting the elongation percentage and the tensile stress (p>0.05). These results showed that wax addition improves the physical properties of films, while the suitability of using both pectins and the electrospraying technique was demonstrated.
Collapse
Affiliation(s)
- Mayra C. Chalapud
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Erica R. Baümler
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Amalia A. Carelli
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Ma. de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Zacatenco, GAM, Mexico City 07738, Mexico;
| | - Eduardo Morales-Sánchez
- CICATA—Unidad Querétaro, Instituto Politécnico Nacional, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro 76090, Mexico;
| | - Minerva Rentería-Ortega
- Tecnológico Nacional de México/TES de San Felipe del Progreso, Av. Instituto Tecnológico S/N Ejido de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico;
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Zacatenco, GAM, Mexico City 07738, Mexico;
| |
Collapse
|
57
|
Efficacy of Pectin-Based Coating Added with a Lemon Byproduct Extract on Quality Preservation of Fresh-Cut Carrots. Foods 2022; 11:foods11091314. [PMID: 35564037 PMCID: PMC9104777 DOI: 10.3390/foods11091314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of an edible pectin-based coating supplemented with a lemon byproduct extract on the quality attributes of fresh-cut carrots was studied. Color, hardness, microbial growth, respiratory activity, and antioxidant properties of fresh-cut carrots were studied during 14 days of storage at 4 °C. The application of a pectin-based coating containing a lemon byproduct extract preserved carrots’ physiological parameters, reduced their physiological activity and, thus, delayed senescence. This aspect was also confirmed by the reduced O2 consumption of the coated carrots due to the slowing down of the product’s metabolic reactions. Moreover, coated carrots were characterized by limited changes in colour (ΔE < 3) and white-blush development on both cortical tissue and vascular cylinder, and the presence of calcium chloride in the coating formulation helped to maintain carrots’ hardness throughout storage. In addition, treatment with pectin-based coating and lemon byproduct extract improved microbiological stability of fresh-cut carrots, showing the lowest value of total bacterial count immediately after treatment (2.58 log CFU g−1). This kind of treatment also resulted in a significant preservation of valuable compounds (17.22 mg GAE 100 g−1) and antioxidant activity level (289.49 µM Trolox 100 g−1), reducing the wounding stress induced by processing operations for at least ten days.
Collapse
|
58
|
Synergistic Effect of Dipping in Aloe Vera Gel and Mixing with Chitosan or Calcium Chloride on the Activities of Antioxidant Enzymes and Cold Storage Potential of Peach (Prunus persica L.) Fruits. COATINGS 2022. [DOI: 10.3390/coatings12040498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peach is a climacteric fruit characterized by a rapid maturation, high respiration level, weight loss, breakdown of texture, and interior browning. Fast tempering of the fruit and subsequent mold expansion caused a negative impact on the marketing. This study was carried out to estimate the synergistic influence of coating with Aloe vera gel (AVG) at 15% or 30% mixed with chitosan (CH) at 1.5% as a kind of natural polymers or calcium chloride (CaCl2) at 3% on physical and chemical features. We investigated the changes in antioxidant enzymes activities of peach fruits Prunus persica (L.) Metghamer Sultany. Fruits were kept at 3 ± 1 °C and relative humidity (RH) 85–90% for 36 days during two consecutive seasons (2020 and 2021). Results revealed that applying AVG at 30% blended with CH at 1.5% significantly impacted the storage period of peach fruits, reduced the ion leakage (IL), malondialdehyde (MDA), and lessened weight loss. The differences were significant compared to the other treatments and untreated fruits (control) that exhibited the higher values for IL, MDA, and weight loss in the 36th day. Moreover, fruit quality features such as firmness, total acidity (TA), total soluble solids (TSS), and skin color chroma (c*), hue angle (h) were also maintained. Furthermore, this combination was raised of phenolic content, antioxidant capacity (DPPH), antioxidant enzyme activity such as catalase (CAT), peroxidase (POD), and quench the generation of H2O2 and O2•−. It could be concluded that dipping peach fruits in AVG at 30% blended with CH at 1.5% retained the biological features of peach fruit at considerable levels during cold storing. Thus, this effective mixture can be utilized to prolong the storage and marketing period of peach fruits. Nevertheless, a more in-depth analysis is required for this edible coating to be successfully commercialized in the peach fruit post-harvest industry.
Collapse
|
59
|
|
60
|
Miranda M, Sun X, Marín A, dos Santos LC, Plotto A, Bai J, Benedito Garrido Assis O, David Ferreira M, Baldwin E. Nano- and micro-sized carnauba wax emulsions-based coatings incorporated with ginger essential oil and hydroxypropyl methylcellulose on papaya: Preservation of quality and delay of post-harvest fruit decay. Food Chem X 2022; 13:100249. [PMID: 35499002 PMCID: PMC9040031 DOI: 10.1016/j.fochx.2022.100249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 01/28/2023] Open
Abstract
Carnauba wax nano and micro-sized emulsions and hydroxypropyl methylcellulose coatings, alone or combined with ginger essential oils (GEO) were applied on papayas and evaluated under several storage conditions. In a first experiment, storage parameters were: 6 days at 22 °C, and 9 days at 13 °C followed by 5 days at 22 °C. In a second experiment, storage was: 5 days at 22 °C, and 10 days at 16 °C followed by 3 days at 22 °C. Coating effects were dependent on storage conditions. While fruits were in cold storage, there were few changes; however, at 22 °C, the differences between coatings became more evident. Nanoemulsions maintained papaya quality during storage by retarding firmness loss, color changes, and reducing respiration rates, resulting in delayed ripening. GEO exhibited some positive effect on fungal disease control. Nanoemulsion-based coatings improved shelf life by reducing weight loss, color development, and slowing ripening of papaya fruit.
Collapse
Affiliation(s)
- Marcela Miranda
- United States Department of Agriculture (USDA) – ARS, Horticultural Research Laboratory, Ft. Pierce, FL, USA
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Xiuxiu Sun
- United States Department of Agriculture (USDA) – ARS, Horticultural Research Laboratory, Ft. Pierce, FL, USA
- USDA–ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Anna Marín
- Jaume I University, Castelló de la Plana, Valencia, Spain
| | | | - Anne Plotto
- United States Department of Agriculture (USDA) – ARS, Horticultural Research Laboratory, Ft. Pierce, FL, USA
| | - Jinhe Bai
- United States Department of Agriculture (USDA) – ARS, Horticultural Research Laboratory, Ft. Pierce, FL, USA
| | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, Brazil
| | - Elizabeth Baldwin
- United States Department of Agriculture (USDA) – ARS, Horticultural Research Laboratory, Ft. Pierce, FL, USA
| |
Collapse
|
61
|
Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front Nutr 2022; 9:828065. [PMID: 35308287 PMCID: PMC8931696 DOI: 10.3389/fnut.2022.828065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The production of safe and healthy foodstuffs is considered as one of the most important challenges in the food industry, and achieving this important goal is impossible without using various processes and preservatives. However, recently, there has been a growing concern about the use of chemical preservatives and attention has been focused on minimal process and/or free of chemical preservatives in food products. Therefore, researchers and food manufacturers have been induced to utilize natural-based preservatives such as antimicrobial enzymes in their production. Lactoperoxidase, as an example of antimicrobial enzymes, is the second most abundant natural enzyme in the milk and due to its wide range of antibacterial activities, it could be potentially applied as a natural preservative in various food products. On the other hand, due to the diffusion of lactoperoxidase into the whole food matrix and its interaction and/or neutralization with food components, the direct use of lactoperoxidase in food can sometimes be restricted. In this regard, lactoperoxidase can be used as a part of packaging material, especially edible and coating, to keep its antimicrobial properties to extend food shelf-life and food safety maintenance. Therefore, this study aims to review various antimicrobial enzymes and introduce lactoperoxidase as a natural antimicrobial enzyme, its antimicrobial properties, and its functionality in combination with an edible film to extend the shelf-life of food products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Nasim Khorshidian
| |
Collapse
|
62
|
Kawhena TG, Opara UL, Fawole OA. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022; 11:593. [PMID: 35206069 PMCID: PMC8871292 DOI: 10.3390/foods11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
63
|
Viacava GE, Cenci MP, Ansorena MR. Effect of Chitosan Edible Coatings Incorporated with Free or Microencapsulated Thyme Essential Oil on Quality Characteristics of Fresh-Cut Carrot Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02783-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
64
|
Kong I, Degraeve P, Pui LP. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation-A Review. Foods 2022; 11:555. [PMID: 35206032 PMCID: PMC8871330 DOI: 10.3390/foods11040555] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Edible films with essential oils (EOs) are becoming increasingly popular as an alternative to synthetic packaging due to their environmentally friendly properties and ability as carriers of active compounds. However, the required amounts of EOs to impart effective antimicrobial properties generally exceed the organoleptic acceptance levels. However, by nanoemulsifying EOs, it is possible to increase their antimicrobial activity while reducing the amount required. This review provides an overview of the physico-chemical and mechanical properties of polysaccharide-based edible films incorporated with EOs nanoemulsions and of their application to the preservation of different food types. By incorporating EOs nanoemulsions into the packaging matrix, these edible films can help to extend the shelf-life of food products while also improving the quality and safety of the food product during storage. It can be concluded that these edible films have the potential to be used in the food industry as a green, sustainable, and biodegradable method for perishable foods preservation.
Collapse
Affiliation(s)
- Ianne Kong
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Pascal Degraeve
- BioDyMIA Research Unit, Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 rue Henri de Boissieu, F-01 000 Bourg en Bresse, France;
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
65
|
Maroufi LY, Shahabi N, Ghanbarzadeh MD, Ghorbani M. Development of Antimicrobial Active Food Packaging Film Based on Gelatin/Dialdehyde Quince Seed Gum Incorporated with Apple Peel Polyphenols. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
66
|
Azari A, Ahari H, Anvar AA. Increased shelf life of Oncorhynchus mykiss (Rainbow trout) through Cu-Clay nanocomposites. Food Sci Biotechnol 2022; 31:295-309. [PMID: 35273820 PMCID: PMC8885968 DOI: 10.1007/s10068-022-01031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial growth is widely responsible for shortened shelf life of cold water-living fish products. So, it seems that current chemical-based food packaging has no acceptable efficacy, and food industrialists tend to the usage of more novel approaches like active food packaging. Among them, there is a great research interest in nanotechnology-emerging approaches. This study aimed to investigate the anti-microbial efficacies of Polyethylene/CuNP/nanoclay nanocomposites to enhance the shelf life and physiochemical features of rainbow trout. Three main nanocomposites with various concentrations of Cu and clay nanoparticles were examined. SEM, XRD, and EDX (as physiochemical analysis), disk diffusion (as antimicrobial assays), total volatile nitrogen (TVB-N), and peroxide value (PV) (as biochemical parameters) were measured. Based on the results, nanocomposites could reduce the microorganism growth rate by reducing the number of colonies (33.3%), inhibitory activities against both gram-positive (8 mm) and gram-negative bacteria (10 mm), maintenance of TVB-N (42% reduction), and PV (44% reduction) below the standard range. To sum up, these new nanocomposites can be a good candidate to enhance the shelf life of Rainbow Trout. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01031-0.
Collapse
Affiliation(s)
- Armin Azari
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- grid.411463.50000 0001 0706 2472Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
67
|
|
68
|
Cimowsky S, Kumar GD, Biscaia Ribeiro da Silva AL, White E, Kerr WL, Rodrigues C, Juneja VK, Dunn LL. Postharvest control of Escherichia coli O157:H7 on romaine lettuce using a novel pelargonic acid sanitizer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
69
|
Khajavian M, Vatanpour V, Castro-Muñoz R, Boczkaj G. Chitin and derivative chitosan-based structures - Preparation strategies aided by deep eutectic solvents: A review. Carbohydr Polym 2022; 275:118702. [PMID: 34742428 DOI: 10.1016/j.carbpol.2021.118702] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
The high molecular weight of chitin, as a biopolymer, challenges its extraction due to its insolubility in the solvents. Also, chitosan, as the N-deacetylated form of chitin, can be employed as a primary material for different industries. The low mechanical stability and poor plasticity of chitosan films, as a result of incompatible interaction between chitosan and the used solvent, have limited its industrialization. Deep eutectic solvents (DESs), as novel solvents, can solve the extraction difficulties of chitin, and the low mechanical stability and weak plasticity of chitosan films. Also, DESs can be considered for the different chitosan and chitin productions, including chitin nanocrystal and nanofiber, N,N,N-trimethyl-chitosan, chitosan-based imprinted structures, and DES-chitosan-based beads and monoliths. This review aims to focus on the preparation and characterization (chemistry and morphology) of DES-chitin-based and DES-chitosan-based structures to understand the influence of the incorporation of DESs into the chitin and chitosan structure.
Collapse
Affiliation(s)
- Mohammad Khajavian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran.
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; EcoTech Center, Gdańsk University of Technology, Gdańsk 80-233, Poland
| |
Collapse
|
70
|
Kapoor R, Malvandi A, Feng H, Kamruzzaman M. Real-time moisture monitoring of edible coated apple chips during hot air drying using miniature NIR spectroscopy and chemometrics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
71
|
Natural Polymers Used in Edible Food Packaging—History, Function and Application Trends as a Sustainable Alternative to Synthetic Plastic. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.
Collapse
|
72
|
Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci Food Saf 2021; 21:198-226. [PMID: 34907649 DOI: 10.1111/1541-4337.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.
Collapse
Affiliation(s)
- Imen Hamed
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
73
|
Abstract
Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.
Collapse
|
74
|
Leandro GR, de Souza OF, de Medeiros TKF, de Oliveira JPF, de Medeiros RS, de Albuquerque PBS, de Souza MP. Quality and safety of the Coalho cheese using a new edible coating based on the Ziziphus joazeiro fruit pulp. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
75
|
Guroo I, Gull A, Wani SM, Wani SA, Al-Huqail AA, Alhaji JH. Influence of Different Types of Polysaccharide-Based Coatings on the Storage Stability of Fresh-Cut Kiwi Fruit: Assessing the Physicochemical, Antioxidant and Phytochemical Properties. Foods 2021; 10:foods10112806. [PMID: 34829087 PMCID: PMC8623952 DOI: 10.3390/foods10112806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
The present study focuses on studying the influence of various edible biopolymer coatings at several concentrations on physicochemical, antioxidant and lipid peroxidation activity levels of biopolymer-coated fresh-cut kiwi slices stored at room temperature (relative humidity: 90%). Kiwi slices were coated by dipping in xanthan gum (0.1, 0.2, 0.3% w/v), alginate (1, 2, 3% w/v) and chitosan (0.25, 0.50, 0.75% w/v) solutions for 2 min. Kiwi fruit slices without any treatment were designated as the control. Compared to the control, all coated samples retained higher ascorbic acid, titratable acidity, total phenolic component and antioxidant capacity levels. However, xanthan-gum-coated slices retained significantly higher amounts of total phenolics in comparison to alginate- and chitosan-coated slices (p ≤ 0.05). HPLC analysis showed the presence of neochlorogenic acid, chlorogenic acid, ellagic acid and epicatechin. The results suggest that the xanthan gum can be utilized to enhance the shelf life of fresh-cut kiwi slices without compromising quality.
Collapse
Affiliation(s)
- Ishrat Guroo
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Amir Gull
- Division of Food Science and Technology, Sher-e-Kashmir University of Science and Technology, Shalimar 190025, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Science and Technology, Shalimar 190025, India
| | - Sajad Ahmad Wani
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, India
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jwaher Haji Alhaji
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
76
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
77
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
78
|
Rahnama M, Anvar SA, Ahari H, Kazempoor R. Antibacterial effects of extracted corn zein with garlic extract-based nanoemulsion on the shelf life of Vannamei prawn (Litopenaeus vannamei) at refrigerated temperature. J Food Sci 2021; 86:4969-4990. [PMID: 34622450 DOI: 10.1111/1750-3841.15923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Litopenaeus vannamei is one of the most perishable foods due to microorganism growth. Using essential oil-based nanoemulsion as a biodegradable and edible coating can enhance the shelf life of shrimp at refrigerated temperature through retarding microbial growth compared to synthetic coatings. METHODS Zein was extracted from 50 g dry milled corn with ethanol. Garlic essential oil was prepared by mixing with Tween 80. Nanoemulsion was prepared in an ultrasonic bath. DLS analysis, turbidity, and stability of nanoemulsions were performed. Radical scavenging activity, and total phenol content were done for evaluation of garlic essential oil and nanoemulsion. A 10% zein solution was prepared using ethanol 95% and glycerol plasticizer (2.5%). In the end, various microbial analysis, peroxide value, the thiobarbituric acid reactive substance (TBARS) value, the total volatile basic nitrogen (TVB-N) values, and sensory evaluations of different shrimp samples were determined. RESULTS Corn zein along with garlic-based nanoemulsion, had a great impact on the TVB-N, TBARS, and peroxide value (which indicated that z+24% garlic nanoemulsion group was the lowest among other groups on days 3, 7, and 14 (p < 0.05) as well as microbial properties (garlic EO nanoemulsion had significantly better antibacterial effectiveness compared to other groups (p < 0.05)), and sensory evaluation (the z+24% garlic nanoemulsion sample received a significantly higher score than other groups (p < 0.05)) of Litopenaeus vannamei. CONCLUSIONS Corn zein nanoemulsion functioned as an antioxidant and antimicrobial agent, increasing the shelf life of Litopenaeus vannamei at refrigerated temperature. PRACTICAL APPLICATION Emerging nanotechnology-based approaches with no side-effects on immune system of consumers plays a vital role in bioactive packaging, and on reduction of food spoilage or food poisoning in the transportation, exporting, and distribution stages of food products, especially marine-based products with cold chain transportation. Additionally, it can reduce aquaculture and environmental risks due to the usage of chemical agents used in packaging. Our results showed that administration of a corn zein with nanoemulsion of garlic extract can prolong shelf life of Litopenaeus vannamei. The paper should be of interest to readers such as food microbiologists, aquaculture scientists, fisheries scientists, marine biologists, biomaterial scientists, food packaging industrialists, medical microbiologists, public health managers, and health system managers.
Collapse
Affiliation(s)
- Mahsa Rahnama
- Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amirali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Kazempoor
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| |
Collapse
|
79
|
Shulga О, Chorna A, Shulga S. ANTIMICROBIAL BIODEGRADABLE PACKAGING FOR SLICED BAKERY. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.15673/fst.v15i2.2098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the modern minds of the advanced ecology and safety of food products control, it is relevant the development of antimicrobial biodegradable packaging. The article presents the results of the antagonistic action of nanodispersed titanium dioxide powder (TiO2) at the warehouse of biodegradable packaging for bakery products on the living of microorganisms (Escherichia сoli, Bacillus subtilis, Candida albicans, Aspergillus niger). It is known there are developments on the use of antimicrobial substances of both organic and inorganic origin, the microbiological action of the substances used have an effect on pathogenic, opportunistic, fungi, gram-negative and gram-positive bacteria. We found that the introduction of 1% TiO2 r into the molding solution allows to give the package antibacterial properties, as it inhibits the development of Escherichia coli and Bacillus subtilis, as there is a delay in the growth of their colonies compared to the sample without packaging with TiO2. According to the results of provocative testing, biodegradable packaging with a content of 1% TiO2 has an inhibitory effect on Bacillus subtilis. In addition to antimicrobial properties, the package under study must also have barrier properties, so the vapor permeability of the presented package was determined. The study results show that the addition of 1% TiO2 slightly reduces the vapor permeability, but the increase in the concentration 2–5% of TiO2 causes an increase in vapor permeability from 4.7 to 5.2 mg / (m∙h∙kPa). The vapor permeability of the presented biodegradable antimicrobial packaging is due to the presence of pores, the number and size of which were determined experimentally. Thus, nanodispersed TiO2 in the amount of 1% in the molding solution of the biodegradable coating is an effective antimicrobial component for antimicrobial coatings, which does not impair their barrier properties.
Collapse
|
80
|
Green Silver Nanoparticles Embedded in Cellulosic Network for Fresh Food Packaging. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.
Collapse
|
81
|
Natamycin release from alginate active films to liquid and semi-solid media. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
82
|
Moeini A, Germann N, Malinconico M, Santagata G. Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Chen J, Wu A, Yang M, Ge Y, Pristijono P, Li J, Xu B, Mi H. Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108063] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
84
|
El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108066] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Castañeda‐Ruelas GM, Ibarra‐Medina RK, Niño‐Medina G, Mora‐Rochín S, Montes‐Ávila J, Cuevas‐Rodríguez EO, Jiménez‐Edeza M. Phenolic extract from nejayote flour: Bioactive properties and its potential use as an antimicrobial agent of alginate‐based edible coatings. Cereal Chem 2021. [DOI: 10.1002/cche.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gloria M. Castañeda‐Ruelas
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - R. Karely Ibarra‐Medina
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Guillermo Niño‐Medina
- Facultad de Agronomía Universidad Autónoma de Nuevo Leon San Nicolas de los Garza Mexico
| | - Saraid Mora‐Rochín
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Julio Montes‐Ávila
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Edith O. Cuevas‐Rodríguez
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| | - Maribel Jiménez‐Edeza
- Programa de Posgrado Integral en Biotecnología Facultad de Ciencias Químico‐Biológicas Universidad Autónoma de Sinaloa Culiacán México
| |
Collapse
|
86
|
3D-Printed Nanocellulose-Based Cushioning-Antibacterial Dual-Function Food Packaging Aerogel. Molecules 2021; 26:molecules26123543. [PMID: 34200653 PMCID: PMC8228327 DOI: 10.3390/molecules26123543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning-antibacterial dual-function packaging aerogel with a shell-core structure (CNGA/C-AgNPs) was obtained. The CNGA/C-AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C-AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C-AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.
Collapse
|
87
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
88
|
Kawhena TG, Opara UL, Fawole OA. A Comparative Study of Antimicrobial and Antioxidant Activities of Plant Essential Oils and Extracts as Candidate Ingredients for Edible Coatings to Control Decay in 'Wonderful' Pomegranate. Molecules 2021; 26:molecules26113367. [PMID: 34199618 PMCID: PMC8199716 DOI: 10.3390/molecules26113367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
This study determined the antimicrobial and antioxidant activity of lemongrass (LO), thyme (TO), and oregano (OO) essential oils and ethanolic extracts of pomegranate peel (PPE) and grape pomace (GPE) as candidate ingredients for edible coatings. Antifungal effects against Botrytis cinerea and Penicillium spp. were tested using paper disc and well diffusion methods. Radical scavenging activity (RSA) was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays. Gas chromatography-mass spectrometry analysis identified limonene (16.59%), α-citral (27.45%), β-citral (27.43%), thymol (33.31%), paracymene (43.26%), 1,8-cineole (17.53%), and trans-caryphellene (60.84%) as major compounds of the essential oils. From both paper disc and well diffusion methods, LO recorded the widest zone of inhibition against tested microbes (B. cinerea and Penicillium spp.). The minimum inhibitory concentrations of LO against B. cinerea and Penicillium spp., were 15 µL/mL and 30 µL/mL, respectively. The highest (69.95%) and lowest (1.64%) RSA at 1 mg/mL were recorded for PPE and OO. Application of sodium alginate and chitosan-based coatings formulated with LO (15 or 30 µL/mL) completely inhibited spore germination and reduced the decay severity of ‘Wonderful’ pomegranate. Lemongrass oil proved to be a potential antifungal agent for edible coatings developed to extend shelf life of ‘Wonderful’ pomegranate.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Nigeria
- Correspondence: or (U.L.O.); or (O.A.F.)
| | - Olaniyi Amos Fawole
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
- Correspondence: or (U.L.O.); or (O.A.F.)
| |
Collapse
|
89
|
Kurek M, Benbettaieb N, Ščetar M, Chaudy E, Elez-Garofulić I, Repajić M, Klepac D, Valić S, Debeaufort F, Galić K. Novel functional chitosan and pectin bio-based packaging films with encapsulated Opuntia-ficus indica waste. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
90
|
Almeida L, Figueiredo E, Dias F, Santos F, Fernandes B, Vicente A, Cerqueira M, Silva A, Vale D, Souza B. Antimicrobial properties of chitosan and galactomannan composite coatings and physical properties of films made thereof. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
91
|
Pandey S. Polysaccharide‐Based Membrane for Packaging Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
92
|
Goswami B, Mahanta D. Starch and its Derivatives: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
93
|
Oluba OM, Osayame E, Shoyombo AO. Production and characterization of keratin-starch bio-composite film from chicken feather waste and turmeric starch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
94
|
Electrospun Antibacterial and Antioxidant Zein/Polylactic Acid/Hydroxypropyl Methylcellulose Nanofibers as an Active Food Packaging System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02654-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
|
96
|
Chaiwarit T, Kantrong N, Sommano SR, Rachtanapun P, Junmahasathien T, Kumpugdee-Vollrath M, Jantrawut P. Extraction of Tropical Fruit Peels and Development of HPMC Film Containing the Extracts as an Active Antibacterial Packaging Material. Molecules 2021; 26:molecules26082265. [PMID: 33919710 PMCID: PMC8070744 DOI: 10.3390/molecules26082265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water–ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
| | - Nutthapong Kantrong
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Taepin Junmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Engineering, Beuth University of Applied Sciences Berlin, 13353 Berlin, Germany;
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: or ; Tel.: +66-891184007
| |
Collapse
|
97
|
|
98
|
Khaledian S, Basiri S, Shekarforoush SS. Shelf-life extension of pacific white shrimp using tragacanth gum -based coatings containing Persian lime peel (Citrus latifolia) extract. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
99
|
|
100
|
Karimi Khorrami N, Radi M, Amiri S, McClements DJ. Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers. Int J Biol Macromol 2021; 182:373-384. [PMID: 33781817 DOI: 10.1016/j.ijbiomac.2021.03.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
This study focuses on the fabrication and characterization of alginate-based films functionalized by incorporating nanostructured lipid carriers (NLCs). The effect of different NLC/alginate mass ratios (R = 0.05, 0.1, 0.2, and 0.35) on the physical, morphological, mechanical, and barrier properties of the calcium-alginate films was evaluated. The addition of the NLCs significantly improved the UV-absorbing properties, without greatly altering their transparent appearance. As the NLC concentration increased, the tensile strength, elastic modulus, and swelling ratio of the films decreased, while their thermal stability, water vapor permeability, and contact angle increased. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the films revealed that NLC incorporation led to a more porous internal structure and a rougher surface. Fourier Transform Infrared (FTIR) analysis indicated that there were no new interactions between the calcium-alginate and NLC constituents within the films. Overall, this study shows that NLCs can be successfully incorporated into calcium-alginate films and used to modulate their physicochemical properties. In future, it will be useful to examine the potential of these films to incorporate hydrophobic bioactives such as drugs, nutraceuticals, antimicrobials, antioxidants, and pigments for specific pharmaceutical or food applications.
Collapse
Affiliation(s)
- Neda Karimi Khorrami
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|