51
|
Heine P, Ehrlicher A, Käs J. Neuronal and metastatic cancer cells: Unlike brothers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3126-31. [DOI: 10.1016/j.bbamcr.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
|
52
|
Embryonic stem cells growing in 3-dimensions shift from reliance on the substrate to each other for mechanical support. J Biomech 2015; 48:1777-81. [DOI: 10.1016/j.jbiomech.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 11/22/2022]
|
53
|
Smelser AM, Macosko JC, O'Dell AP, Smyre S, Bonin K, Holzwarth G. Mechanical properties of normal versus cancerous breast cells. Biomech Model Mechanobiol 2015; 14:1335-47. [PMID: 25929519 DOI: 10.1007/s10237-015-0677-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/04/2015] [Indexed: 12/21/2022]
Abstract
A cell's mechanical properties are important in determining its adhesion, migration, and response to the mechanical properties of its microenvironment and may help explain behavioral differences between normal and cancerous cells. Using fluorescently labeled peroxisomes as microrheological probes, the interior mechanical properties of normal breast cells were compared to a metastatic breast cell line, MDA-MB-231. To estimate the mechanical properties of cell cytoplasms from the motions of their peroxisomes, it was necessary to reduce the contribution of active cytoskeletal motions to peroxisome motion. This was done by treating the cells with blebbistatin, to inhibit myosin II, or with sodium azide and 2-deoxy-D-glucose, to reduce intracellular ATP. Using either treatment, the peroxisomes exhibited normal diffusion or subdiffusion, and their mean squared displacements (MSDs) showed that the MDA-MB-231 cells were significantly softer than normal cells. For these two cell types, peroxisome MSDs in treated and untreated cells converged at high frequencies, indicating that cytoskeletal structure was not altered by the drug treatment. The MSDs from ATP-depleted cells were analyzed by the generalized Stokes-Einstein relation to estimate the interior viscoelastic modulus G* and its components, the elastic shear modulus G' and viscous shear modulus G", at angular frequencies between 0.126 and 628 rad/s. These moduli are the material coefficients that enter into stress-strain relations and relaxation times in quantitative mechanical models such as the poroelastic model of the interior regions of cancerous and non-cancerous cells.
Collapse
Affiliation(s)
- Amanda M Smelser
- Department of Biochemistry and Molecular Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jed C Macosko
- Department of Biochemistry and Molecular Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Adam P O'Dell
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Scott Smyre
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
54
|
Gal N, Massalha S, Samuelly-Nafta O, Weihs D. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications. Med Eng Phys 2015; 37:478-83. [DOI: 10.1016/j.medengphy.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/03/2015] [Accepted: 03/15/2015] [Indexed: 12/24/2022]
|
55
|
Kristal-Muscal R, Dvir L, Schvartzer M, Weihs D. Mechanical Interaction of Metastatic Cancer Cells with a Soft Gel. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.piutam.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
56
|
Ribeiro AJ, Khanna P, Sukumar A, Dong C, Dahl KN. Nuclear stiffening inhibits migration of invasive melanoma cells. Cell Mol Bioeng 2014; 7:544-551. [PMID: 25544862 PMCID: PMC4276563 DOI: 10.1007/s12195-014-0358-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation.
Collapse
Affiliation(s)
| | - Payal Khanna
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| | - Aishwarya Sukumar
- Department of Biomedical Engineering, Carnegie Melon University, Pittsburgh, PA 15213
| | - Cheng Dong
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Melon University, Pittsburgh, PA 15213
| |
Collapse
|
57
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
58
|
Coughlin MF, Fredberg JJ. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines. Phys Biol 2013; 10:065001. [PMID: 24304722 DOI: 10.1088/1478-3975/10/6/065001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
Collapse
|
59
|
Abuhattoum S, Weihs D. Location-dependent intracellular particle tracking using a cell-based coordinate system. Comput Methods Biomech Biomed Engin 2013; 16:1042-9. [PMID: 23452183 DOI: 10.1080/10255842.2012.761694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intracellular structure and active processes have been studied by particle tracking using the motion of internalised probes. Intracellular particle motion is driven by a complex combination of active and thermal processes within heterogeneous and dynamically changing micro-environments. Regions in the cells may react differently to environmental changes or following treatment, exhibiting location-dependent responses. Hence, to reveal such responses, we introduce cell-specific polar coordinate systems. The coordinates are defined for each cell by its nucleus location and orientation, providing relative particle locations in the cytoplasm. The utility of our approach is demonstrated by comparing Adenosine Triphosphate (ATP)-depleted and control cells. In both cells, we observe differences in particle transport with the distance from the nucleus. Following ATP depletion, basic particle motion analysis shows an expected reduction in activity driving particle transport. However, it is our location-dependent approach which reveals that while morphology changes primarily at the cortex, the cell response is actually nearly uniform across the cytoplasm.
Collapse
Affiliation(s)
- Shada Abuhattoum
- a Faculty of Biomedical Engineering, Technion-Israel Institute of Technology , Haifa , 32000 , Israel
| | | |
Collapse
|
60
|
Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum. Ann Biomed Eng 2012; 41:837-46. [PMID: 23271563 DOI: 10.1007/s10439-012-0721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance.
Collapse
|
61
|
Martin DS, Yu L, Van Hoozen BL. Flexural rigidity measurements of biopolymers using gliding assays. J Vis Exp 2012:50117. [PMID: 23169251 DOI: 10.3791/50117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microtubules are cytoskeletal polymers which play a role in cell division, cell mechanics, and intracellular transport. Each of these functions requires microtubules that are stiff and straight enough to span a significant fraction of the cell diameter. As a result, the microtubule persistence length, a measure of stiffness, has been actively studied for the past two decades(1). Nonetheless, open questions remain: short microtubules are 10-50 times less stiff than long microtubules(2-4), and even long microtubules have measured persistence lengths which vary by an order of magnitude(5-9). Here, we present a method to measure microtubule persistence length. The method is based on a kinesin-driven microtubule gliding assay(10). By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores attached to the microtubule, the gliding trajectories of single microtubules are tracked with nanometer-level precision. The persistence length of the trajectories is the same as the persistence length of the microtubule under the conditions used(11). An automated tracking routine is used to create microtubule trajectories from fluorophores attached to individual microtubules, and the persistence length of this trajectory is calculated using routines written in IDL. This technique is rapidly implementable, and capable of measuring the persistence length of 100 microtubules in one day of experimentation. The method can be extended to measure persistence length under a variety of conditions, including persistence length as a function of length along microtubules. Moreover, the analysis routines used can be extended to myosin-based acting gliding assays, to measure the persistence length of actin filaments as well.
Collapse
|