51
|
Montes de Oca M, Kumar R, Rivera FDL, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Boyle GM, Price RN, Anstey NM, Loughland JR, Burel J, Doolan DL, Haque A, McCarthy JS, Engwerda CR. Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Rep 2016; 17:399-412. [PMID: 27705789 PMCID: PMC5082731 DOI: 10.1016/j.celrep.2016.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/19/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Fabian de Labastida Rivera
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Southport, QLD 4215, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 4111, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ric N Price
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Jessica R Loughland
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Julie Burel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia.
| |
Collapse
|
52
|
Warren KJ, Simet SM, Pavlik JA, DeVasure JM, Sisson JH, Poole JA, Wyatt TA. RSV-specific anti-viral immunity is disrupted by chronic ethanol consumption. Alcohol 2016; 55:35-42. [PMID: 27788776 DOI: 10.1016/j.alcohol.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/25/2023]
Abstract
Alcohol-use disorders (AUD) persist in the United States and are heavily associated with an increased susceptibility to respiratory viral infections. Respiratory syncytial virus (RSV) in particular has received attention as a viral pathogen commonly detected in children and immune-compromised populations (elderly, asthmatics), yet more recently was recognized as an important viral pathogen in young adults. Our study evaluated the exacerbation of RSV-associated illness in mice that chronically consumed alcohol for 6 weeks prior to infection. Prior studies showed that lung viral titers remained elevated in these animals, leading to a hypothesis that T-cell activation and immune specificity were deficient in controlling viral spread and replication in the lungs. Herein, we confirm a reduction in RSV-specific IFNγ production by CD8 T cells and a depolarization of Th1 (CD4+IFNγ+) and Th2 (CD4+IL-4+) T cells at day 5 after RSV infection. Furthermore, over the course of viral infection (day 1 to day 7 after RSV infection), we detected a delayed influx of neutrophils, monocytes/macrophages, and lymphocytes into the lungs. Taken together, the data show that both the early and late adaptive immunity to RSV infection are altered by chronic ethanol consumption. Future studies will determine the interactions between the innate and adaptive immune systems to delineate therapeutic targets for individuals with AUD often hospitalized by respiratory infection.
Collapse
|
53
|
Nanishi E, Hoshina T, Takada H, Ishimura M, Nishio H, Uehara T, Mizuno Y, Hasegawa S, Ohga S, Nagao M, Igarashi M, Yajima S, Kusumoto Y, Onishi N, Sasahara Y, Yasumi T, Heike T, Hara T. A nationwide survey of common viral infections in childhood among patients with primary immunodeficiency diseases. J Infect 2016; 73:358-68. [PMID: 27498293 DOI: 10.1016/j.jinf.2016.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Patients with primary immunodeficiency diseases (PID) are highly susceptible to various microorganisms. However, no population-based studies have been performed among common viral pathogens, such as respiratory syncytial virus (RSV), rotavirus (RV), varicella-zoster virus (VZV) and influenza virus (IV). The objective of this study was to reveal the clinical burden of these four infections among PID patients in Japan. METHODS We conducted a nationwide survey by sending questionnaires to 898 hospitals with pediatric departments throughout Japan. RESULTS Nine hundred ten PID patients from 621 hospitals were registered (response rate: 69.2%). Fifty-four of the patients were hospitalized due to these viral infections. The durations of hospitalization due to RSV and RV infections differed significantly in the PID patients with and without cellular immunodeficiency (12.0 vs 6.5 days, p = 0.041; and 14.0 vs 6.0 days, p = 0.031, respectively). There was no significant difference in the duration of hospitalization in PID patients with and without cellular immunodeficiency who were hospitalized with IV infections (7.3 vs 6.1 days, p = 0.53). CONCLUSIONS Special attention should be paid to PID patients with compromised cellular immunity who present with RSV and RV infection due to their high risk for severe disease.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takayuki Hoshina
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Perinatal and Pediatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisanori Nishio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for the Study of Global Infection, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Uehara
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Japan
| | - Yumi Mizuno
- Department of Pediatric Infectious Disease, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Shunji Hasegawa
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Masayoshi Nagao
- Department of Pediatrics and Clinical Research, NHO Hokkaido Medical Center, Sapporo, Japan
| | - Maiko Igarashi
- Department of Pediatrics, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Shuhei Yajima
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Yoshio Kusumoto
- Department of Pediatrics, Osaka General Medical Center, Osaka, Japan
| | - Noriko Onishi
- Department of Pediatrics, Fujita General Hospital, Fukushima, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Fukuoka Children's Hospital, Fukuoka, Japan
| | | |
Collapse
|
54
|
Wong TM, Petrovsky N, Bissel SJ, Wiley CA, Ross TM. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology. Hum Vaccin Immunother 2016; 12:2096-2105. [PMID: 27215855 PMCID: PMC4994749 DOI: 10.1080/21645515.2016.1162931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which AdvaxTM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either AdvaxTM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with AdvaxTM was similar to Imject Alum. Overall, RSV vaccine formulated with AdvaxTM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared to unvaccinated mice.
Collapse
Affiliation(s)
- Terianne M. Wong
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| | | | | | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|
55
|
Kim JH, Patil AM, Choi JY, Kim SB, Uyangaa E, Hossain FMA, Park SY, Lee JH, Eo SK. CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4(+)Foxp3(+) T and IL-17(+)CD4(+) Th17 cells. J Neuroinflammation 2016; 13:223. [PMID: 27439902 PMCID: PMC5050958 DOI: 10.1186/s12974-016-0656-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background CCR5 is a CC chemokine receptor involved in the migration of effector leukocytes including macrophages, NK, and T cells into inflamed tissues. Also, the role of CCR5 in CD4+Foxp3+ regulatory T cell (Treg) homing has recently begun to grab attention. Japanese encephalitis (JE) is defined as severe neuroinflammation of the central nervous system (CNS) following infection with mosquito-borne flavivirus JE virus. However, the potential contribution of CCR5 to JE progression via mediating CD4+Foxp3+ Treg homing has not been investigated. Methods Infected wild-type (Ccr5+/+) and CCR5-deficient (Ccr5−/−) mice were examined daily for mortality and clinical signs, and neuroinflammation in the CNS was evaluated by infiltration of inflammatory leukocytes and cytokine expression. In addition, viral burden, NK- and JEV-specific T cell responses were analyzed. Adoptive transfer of CCR5+CD4+Foxp3+ Tregs was used to evaluate the role of Tregs in JE progression. Results CCR5 ablation exacerbated JE without altering viral burden in the extraneural and CNS tissues, as manifested by increased CNS infiltration of Ly-6Chi monocytes and Ly-6Ghi granulocytes. Compared to Ccr5+/+ mice, Ccr5−/− mice unexpectedly showed increased responses of IFN-γ+NK and CD8+ T cells in the spleen, but not CD4+ T cells. More interestingly, CCR5-ablation resulted in a skewed response to IL-17+CD4+ Th17 cells and correspondingly reduced CD4+Foxp3+ Tregs in the spleen and brain, which was closely associated with exacerbated JE. Our results also revealed that adoptive transfer of sorted CCR5+CD4+Foxp3+ Tregs into Ccr5−/− mice could ameliorate JE progression without apparently altering the viral burden and CNS infiltration of IL-17+CD4+ Th17 cells, myeloid-derived Ly-6Chi monocytes and Ly-6Ghi granulocytes. Instead, adoptive transfer of CCR5+CD4+Foxp3+ Tregs into Ccr5−/− mice resulted in increased expression of anti-inflammatory cytokines (IL-10 and TGF-β) in the spleen and brain, and transferred CCR5+ Tregs were found to produce IL-10. Conclusions CCR5 regulates JE progression via governing timely and appropriate CNS infiltration of CD4+Foxp3+ Tregs, thereby facilitating host survival. Therefore, this critical and extended role of CCR5 in JE raises possible safety concerns regarding the use of CCR5 antagonists in human immunodeficiency virus (HIV)-infected individuals who inhabit regions in which both HIV and flaviviruses, such as JEV and West Nile virus, are endemic.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea. .,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
56
|
Shrivastava P, Sarkar I, Atanley E, Gomis S, van Drunen Littel-van den Hurk S. IL-12p40 gene-deficient BALB/c mice exhibit lower weight loss, reduced lung pathology and decreased sensitization to allergen in response to infection with pneumonia virus of mice. Virology 2016; 497:1-10. [PMID: 27400340 DOI: 10.1016/j.virol.2016.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis and pneumonia in infants and pneumonia virus of mice (PVM) causes similar disease. BALB/c mice are highly susceptible, while C57BL/6 mice are more resistant to PVM. IL-12 was significantly more up-regulated in response to PVM infection in BALB/c than in C57BL/6 mice. IL-12p40-deficient neonatal and adult BALB/c mice showed significantly less weight loss than wild-type mice after PVM challenge. The percentage of regulatory T cells, as well as IFN-β and IL-18 expression, was higher in the lungs of both neonatal and adult IL-12p40-/- mice. Adult IL-12p40-/- mice also showed enhanced TGF-β and IL-10 expression and reduced inflammatory responses. Furthermore, IL-12p40-/- mice showed decreased sensitization to inhaled cockroach antigen after PVM infection when compared to wild-type mice. In conclusion, these data suggest that a depressed regulatory capacity in BALB/c mice to PVM infection results in enhanced immunopathology and sensitization to allergen.
Collapse
Affiliation(s)
- Pratima Shrivastava
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Ethel Atanley
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Susantha Gomis
- Veterinary Pathology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| |
Collapse
|
57
|
Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV. J Virol 2016; 90:5965-5977. [PMID: 27099320 DOI: 10.1128/jvi.00235-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better understanding of the antibody repertoire induced after infection or after vaccination against RSV, we investigated antibody levels against fusion (F) protein, attachment (G) protein, and F-specific epitopes in human and animal sera. The results indicate the importance of prefusion-specific antigenic site Ø antibodies as well as of antibodies targeting other epitopes in virus neutralization. However, vaccination of cotton rats with FI-RSV specifically resulted in the induction of weakly neutralizing, antigenic site I-specific antibodies, which may play a role in the enhancement of disease observed after vaccination with such preparations.
Collapse
|
58
|
Novel Respiratory Syncytial Virus-Like Particle Vaccine Composed of the Postfusion and Prefusion Conformations of the F Glycoprotein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:451-9. [PMID: 27030590 PMCID: PMC4895010 DOI: 10.1128/cvi.00720-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/19/2016] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants and children and represents an important global health burden for the elderly and the immunocompromised. Despite decades of research efforts, no licensed vaccine for RSV is available. We have developed virus-like particle (VLP)-based RSV vaccines assembled with the human metapneumovirus (hMPV) matrix protein (M) as the structural scaffold and the RSV fusion glycoprotein (F) in either the postfusion or prefusion conformation as its prime surface immunogen. Vaccines were composed of postfusion F, prefusion F, or a combination of the two conformations and formulated with a squalene-based oil emulsion as adjuvant. Immunization with these VLP vaccines afforded full protection against RSV infection and prevented detectable viral replication in the mouse lung after challenge. Analyses of lung cytokines and chemokines showed that VLP vaccination mostly induced the production of gamma interferon (IFN-γ), a marker of the Th1-mediated immune response, which is predominantly required for viral protection. Conversely, immunization with a formalin-inactivated RSV (FI-RSV) vaccine induced high levels of inflammatory chemokines and cytokines of the Th2- and Th17-mediated types of immune responses, as well as severe lung inflammation and histopathology. The VLP vaccines showed restricted production of these immune mediators and did not induce severe bronchiolitis or perivascular infiltration as seen with the FI-RSV vaccine. Remarkably, analysis of the serum from immunized mice showed that the VLP vaccine formulated using a combination of postfusion and prefusion F elicited the highest level of neutralizing antibody and enhanced the Th1-mediated immune response.
Collapse
|
59
|
Sharma A, Wu W, Sung B, Huang J, Tsao T, Li X, Gomi R, Tsuji M, Worgall S. Respiratory Syncytial Virus (RSV) Pulmonary Infection in Humanized Mice Induces Human Anti-RSV Immune Responses and Pathology. J Virol 2016; 90:5068-5074. [PMID: 26962219 PMCID: PMC4859698 DOI: 10.1128/jvi.00259-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease, which causes high rates of morbidity and mortality in infants and the elderly. Models of human RSV pulmonary disease are needed to better understand RSV pathogenesis and to assess the efficacy of RSV vaccines. We assessed the RSV-specific human innate, humoral, and cellular immune responses in humanized mice (mice with a human immune system [HIS mice]) with functional human CD4(+) T and B cells. These mice were generated by introduction of HLA class II genes, various human cytokines, and human B cell activation factor into immunodeficient NOD scid gamma (NSG) mice by the use of an adeno-associated virus vector, followed by engraftment of human hematopoietic stem cells. During the first 3 days of infection, HIS mice lost more weight and cleared RSV faster than NSG mice. Human chemokine (C-C motif) ligand 3 (CCL3) and human interleukin-1β (IL-1β) expression was detected in the RSV-infected HIS mice. The pathological features induced by RSV infection in HIS mice included peribronchiolar inflammation, neutrophil predominance in the bronchioalveolar lavage fluid, and enhanced airway mucus production. Human anti-RSV IgG and RSV-neutralizing antibodies were detected in serum and human anti-RSV mucosal IgA was detected in bronchioalveolar lavage fluid for up to 6 weeks. RSV infection induced an RSV-specific human gamma interferon response in HIS mouse splenocytes. These results indicate that human immune cells can induce features of RSV lung disease, including mucus hyperplasia, in murine lungs and that HIS mice can be used to elicit human anti-RSV humoral and cellular immunity. IMPORTANCE Infections with respiratory syncytial virus (RSV) are common and can cause severe lung disease in infants and the elderly. The lack of a suitable animal model with disease features similar to those in humans has hampered efforts to predict the efficacy of novel anti-RSV therapies and vaccines for use in humans. A murine model consisting of mice with a human immune system (HIS mice) could be useful for assessment of RSV disease and anti-RSV responses specific to humans. This study investigates an HIS mouse model to imitate human RSV disease and immune responses. We found that RSV lung infection in HIS mice results in an RSV-specific pathology that mimics RSV disease in humans and induces human anti-RSV immune responses. This model could be useful for better understanding of human RSV disease and for the development of RSV therapies.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
60
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
61
|
|
62
|
Ren Q, Ren L, Ren C, Liu X, Dong C, Zhang X. Platelet endothelial cell adhesion molecule-1 (PECAM1) plays a critical role in the maintenance of human vascular endothelial barrier function. Cell Biochem Funct 2015; 33:560-5. [PMID: 26607202 DOI: 10.1002/cbf.3155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Qi Ren
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Limin Ren
- Department of Neurosurgery; Zoucheng People's Hospital; Jining 273500 Shandong China
| | - Changjie Ren
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xuefei Liu
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| | - Chun Dong
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xinghua Zhang
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| |
Collapse
|
63
|
Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. J Virol 2015; 89:11692-705. [PMID: 26355098 DOI: 10.1128/jvi.02018-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. IMPORTANCE It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for clearing lung viral loads, we show that modulation of specific subsets of dendritic cells and CD8 T cells producing T helper type 1 cytokines are important immune correlates conferring protection but not causing vaccine-enhanced disease.
Collapse
|
64
|
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization among infants. Despite the significant healthcare burden, there is no licensed RSV vaccine currently available. This problem is further exacerbated as a natural RSV infection fails to elicit the development of long-lived immunity. It is well established that RSV-specific antibodies play a critical role in mediating protection from severe disease. The CD8 T-cell response is critical for mediating virus clearance following an acute RSV infection. However, the relative contribution of memory CD8 T cells in providing protection against secondary RSV infections remains unclear. In addition, data from animal models indicate that memory CD8 T-cell responses can be pathogenic under certain conditions. Herein, we provide an overview of the CD8 T-cell response elicited by RSV infection and how our current knowledge may impact future studies and vaccine development.
Collapse
Affiliation(s)
- Cory J Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
65
|
|
66
|
Vaughan K, Ponomarenko J, Peters B, Sette A. Analysis of Human RSV Immunity at the Molecular Level: Learning from the Past and Present. PLoS One 2015; 10:e0127108. [PMID: 26001197 PMCID: PMC4441423 DOI: 10.1371/journal.pone.0127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
Human RSV is one of the most prevalent viral pathogens of early childhood for which no vaccine is available. Herein we provide an analysis of RSV epitope data to examine its application to vaccine design and development. Our objective was to provide an overview of antigenic coverage, identify critical antibody and T cell determinants, and then analyze the cumulative RSV epitope data from the standpoint of functional responses using a combinational approach to characterize antigenic structure and epitope location. A review of the cumulative data revealed, not surprisingly, that the vast majority of epitopes have been defined for the two major surface antigens, F and G. Antibody and T cell determinants have been reported from multiple hosts, including those from human subjects following natural infection, however human data represent a minority of the data. A structural analysis of the major surface antigen, F, showed that the majority of epitopes defined for functional antibodies (neutralizing and/or protective) were either shown to bind pre-F or to be accessible in both pre- and post-F forms. This finding may have has implications for on-going vaccine design and development. These interpretations are in agreement with previous work and can be applied in the larger context of functional epitopes on the F protein. It is our hope that this work will provide the basis for further RSV-specific epitope discovery and investigation into the nature of antigen conformation in immunogenicity.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| | - Julia Ponomarenko
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| |
Collapse
|
67
|
Long X, Li S, Xie J, Li W, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E. MMP-12-mediated by SARM-TRIF signaling pathway contributes to IFN-γ-independent airway inflammation and AHR post RSV infection in nude mice. Respir Res 2015; 16:11. [PMID: 25652021 PMCID: PMC4332892 DOI: 10.1186/s12931-015-0176-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection. Methods Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression. Results RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the recombinant murine IFN-γ-treated nude mice. Conclusions MMP-12 can result in at least part of the airway inflammation and AHR independent of IFN-γ. And SARM-TRIF- signaling pathway is involved in regulating the overproduction of MMP-12. To the best of our knowledge, this study is the first that has examined the effects of SARM on MMP-12 and further highlights the potential to target SARM-TRIF-MMP-12 cascades to treat RSV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoru Long
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Simin Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Jun Xie
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Wei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Na Zang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Lijia Wang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| |
Collapse
|
68
|
Lanari M, Vandini S, Capretti MG, Lazzarotto T, Faldella G. Respiratory syncytial virus infections in infants affected by primary immunodeficiency. J Immunol Res 2014; 2014:850831. [PMID: 25089282 PMCID: PMC4095650 DOI: 10.1155/2014/850831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies are rare inherited disorders that may lead to frequent and often severe acute respiratory infections. Respiratory syncytial virus (RSV) is one of the most frequent pathogens during early infancy and the infection is more severe in immunocompromised infants than in healthy infants, as a result of impaired T- and B-cell immune response unable to efficaciously neutralize viral replication, with subsequent increased viral shedding and potentially lethal lower respiratory tract infection. Several authors have reported a severe clinical course after RSV infections in infants and children with primary and acquired immunodeficiencies. Environmental prophylaxis is essential in order to reduce the infection during the epidemic season in hospitalized immunocompromised infants. Prophylaxis with palivizumab, a humanized monoclonal antibody against the RSV F protein, is currently recommended in high-risk infants born prematurely, with chronic lung disease or congenital heart disease. Currently however the prophylaxis is not routinely recommended in infants with primary immunodeficiency, although some authors propose the extension of prophylaxis to this high risk population.
Collapse
Affiliation(s)
- Marcello Lanari
- Pediatrics and Neonatology Unit, Imola Hospital, Via Montericco 4, 40026 Imola, Italy
| | - Silvia Vandini
- DIMEC, Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Via Massarenti 11, University of Bologna, 40138 Bologna, Italy
| | - Maria Grazia Capretti
- DIMEC, Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Via Massarenti 11, University of Bologna, 40138 Bologna, Italy
| | - Tiziana Lazzarotto
- DIMES, Clinical Microbiology Unit, Laboratory of Virology, St. Orsola-Malpighi Hospital, Via Massarenti 9, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- DIMEC, Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Via Massarenti 11, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|