51
|
Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH, Chen LS. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC PLANT BIOLOGY 2014; 14:284. [PMID: 25348611 PMCID: PMC4219002 DOI: 10.1186/s12870-014-0284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/14/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. RESULTS B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. CONCLUSIONS C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level.
Collapse
Affiliation(s)
- Peng Guo
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Ping Qi
- />Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Lin-Tong Yang
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xin Ye
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan-Xin Jiang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jing-Hao Huang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Fruit Tree Science, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Li-Song Chen
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
52
|
Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:93-105. [PMID: 25039836 DOI: 10.1111/tpj.12621] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 05/04/2023]
Abstract
Glyoxalase II (GLY II), the second enzyme of glyoxalase pathway that detoxifies cytotoxic metabolite methylglyoxal (MG), belongs to the superfamily of metallo-β-lactamases. Here, detailed analysis of one of the uncharacterized rice glyoxalase II family members, OsGLYII-2 was conducted in terms of its metal content, enzyme kinetics and stress tolerance potential. Functional complementation of yeast GLY II mutant (∆GLO2) and enzyme kinetics data suggested that OsGLYII-2 possesses characteristic GLY II activity using S-lactoylglutathione (SLG) as the substrate. Further, Inductively Coupled Plasma Atomic Emission spectroscopy and modelled structure revealed that OsGLYII-2 contains a binuclear Zn/Fe centre in its active site and chelation studies indicated that these are essential for its activity. Interestingly, reconstitution of chelated enzyme with Zn(2+), and/or Fe(2+) could not reactivate the enzyme, while addition of Co(2+) was able to do so. End product inhibition study provides insight into the kinetics of GLY II enzyme and assigns hitherto unknown function to reduced glutathione (GSH). Ectopic expression of OsGLYII-2 in Escherichia coli and tobacco provides improved tolerance against salinity and dicarbonyl stress indicating towards its role in abiotic stress tolerance. Maintained levels of MG and GSH as well as better photosynthesis rate and reduced oxidative damage in transgenic plants under stress conditions seems to be the possible mechanism facilitating enhanced stress tolerance.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
53
|
Huerta-Ocampo JA, Barrera-Pacheco A, Mendoza-Hernández CS, Espitia-Rangel E, Mock HP, Barba de la Rosa AP. Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J Proteome Res 2014; 13:3607-27. [PMID: 24942474 DOI: 10.1021/pr500153m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salt stress is one of the major factors limiting crop productivity worldwide. Amaranth is a highly nutritious pseudocereal with remarkable nutraceutical properties; it is also a stress-tolerant plant, making it an alternative crop for sustainable food production in semiarid conditions. A two-dimensional electrophoresis gel coupled with a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) approach was applied in order to analyze the changes in amaranth root protein accumulation in plants subjected to salt stress under hydroponic conditions during the osmotic phase (1 h), after recovery (24 h), and during the ionic phase of salt stress (168 h). A total of 101 protein spots were differentially accumulated in response to stress, in which 77 were successfully identified by LC-MS/MS and a database search against public and amaranth transcriptome databases. The resulting proteins were grouped into different categories of biological processes according to Gene Ontology. The identification of several protein isoforms with a change in pI and/or molecular weight reveals the importance of the salt-stress-induced posttranslational modifications in stress tolerance. Interestingly stress-responsive proteins unique to amaranth, for example, Ah24, were identified. Amaranth is a stress-tolerant alternative crop for sustainable food production, and the understanding of amaranth's stress tolerance mechanisms will provide valuable input to improve stress tolerance of other crop plants.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. , Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
54
|
Zhou CP, Qi YP, You X, Yang LT, Guo P, Ye X, Zhou XX, Ke FJ, Chen LS. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity. BMC Genomics 2013; 14:621. [PMID: 24034812 PMCID: PMC3847489 DOI: 10.1186/1471-2164-14-621] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) were irrigated for 17 weeks with nutrient solution containing 2 μM (control) or 600 μM (Mn-toxicity) MnSO4. The objectives of this study were to understand the mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in Mn-tolerance. Results Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis seedling growth, leaf CO2 assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis leaves. They were grouped into the following functional categories: biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms; (5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein metabolisms, stress responses and cell transport. Conclusions Our results demonstrated that C. sinensis was more tolerant to Mn-toxicity than C. grandis, and that Mn-toxicity affected gene expression far less in C. sinensis leaves. This might be associated with more Mn accumulation in roots and less Mn accumulation in leaves of Mn-toxicity C. sinensis seedlings than those of C. grandis seedlings. Our findings increase our understanding of the molecular mechanisms involved in the responses of plants to Mn-toxicity.
Collapse
Affiliation(s)
- Chen-Ping Zhou
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Funct Integr Genomics 2013; 13:351-65. [PMID: 23813016 DOI: 10.1007/s10142-013-0328-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/27/2013] [Accepted: 06/12/2013] [Indexed: 01/25/2023]
Abstract
Salinity is one of the major constraints adversely influencing crop productivity. Saltol QTL is a major QTL associated with Na⁺-K⁺ ratio and seedling stage salinity tolerance in rice. With an aim to understand the contribution of individual genes localized within saltol towards salinity tolerance, we analysed the transcript abundance of a set of these genes in seedlings of contrasting genotypes of rice. We hypothesize that this approach may be helpful in identifying new 'candidate genes' for improving salinity tolerance in crops. For this purpose, seedlings of Oryza sativa cv. IR64 (sensitive) and the landrace Pokkali (tolerant) were subjected to short/long durations of salinity. qRT-PCR analysis clearly exhibited differential regulation of genes encoding signaling related protein (SRPs), where higher transcript abundance for most of them was observed in Pokkali than IR64 under non-stress conditions, thereby indicating towards well preparedness of the former to handle stress, in anticipation. Genes encoding proteins of unknown function (PUFs), though, constitute a considerable portion of plant genome, have so far been neglected in most studies. Time course analysis of these genes showed a continuous increase in their abundance in Pokkali, while in IR64, their abundance increased till 24 h followed by a clear decrease, thereby justifying their nomenclature as 'salinity induced factors' (SIFs). This is the first report showing possible involvement of SIFs localized within salinity related QTL towards salinity stress response. Based on the phenotypes of insertional mutants, it is proposed that these SIFs may have a putative function in vegetative growth (SIFVG), fertility (SIFF), viability (SIFV) or early flowering (SIFEF).
Collapse
|
56
|
Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013; 93:179-206. [PMID: 23628855 DOI: 10.1016/j.jprot.2013.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Gururani MA, Upadhyaya CP, Strasser RJ, Yu JW, Park SW. Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199682 DOI: 10.1016/j.plantsci.2012.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Manganese stabilizing protein (MSP) is an important component of the Photosystem II (PSII) oxygen evolving complex. In our previous work, transgenic potato plants with reduced expression of MSP (MSP-As) were developed and their physiological and biochemical responses were studied. In this report, we address the response of MSP-As plants toward salinity, heavy metal and osmotic stresses. MSP-As plants treated with NaCl, ZnCl(2) or mannitol solution showed significant level of tolerance under all the stress conditions. Specific enzyme activities of major ROS-scavenging enzymes were found significantly higher in MSP-As plants than the control plants. MSP-As plants accumulated increased levels of proline and low molecular weight metabolites such as ascorbate and α-tocopherol, which indicated that these plants were much more resistant to stress compared to the corresponding control plants. The primary photochemical efficiencies and the OJIP kinetics analyses further confirmed that MSP-As plants were in better optimal health under stress compared to the control plants. Although the exact reason behind the increased stress tolerance in stressed MSP-As plants is unclear, our results strongly indicate the role of MSP of unknown function in abiotic stress tolerance.
Collapse
Affiliation(s)
- Mayank Anand Gururani
- Department of Molecular Biotechnology, School of Life & Environmental Sciences, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|