51
|
Tanaka R, Fuse S, Kuroiwa M, Amagasa S, Endo T, Ando A, Kime R, Kurosawa Y, Hamaoka T. Vigorous-Intensity Physical Activities Are Associated with High Brown Adipose Tissue Density in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2796. [PMID: 32325644 PMCID: PMC7216014 DOI: 10.3390/ijerph17082796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
Brown adipose tissue (BAT) plays a role in adaptive thermogenesis in response to cold environments and dietary intake via sympathetic nervous system (SNS) activation. It is unclear whether physical activity increases BAT density (BAT-d). Two-hundred ninety-eight participants (age: 41.2 ± 12.1 (mean ± standard deviation), height: 163.6 ± 8.3 cm, weight: 60.2 ± 11.0 kg, body mass index (BMI): 22.4 ± 3.0 kg/m2, body fat percentage: 25.4 ± 7.5%) without smoking habits were categorized based on their physical activity levels (a group performing physical activities including walking and moderate physical activity (WM) and a group performing WM + vigorous-intensity physical activities (VWM)). We measured the total hemoglobin concentration ([Total-Hb]) in the supraclavicular region, an index of BAT-d, and anthropometric parameters. [Total-Hb] was significantly higher in VWM than WM for all participant groups presumably owing to SNS activation during vigorous-intensity physical activities, and unrelated to the amount of total physical activity levels. Furthermore, multiple regression analysis revealed that BAT-d was related to visceral fat area and VWM in men and related to body fat percentage in women. We conclude that vigorous-intensity physical activities are associated with high BAT-d in humans, especially in men.
Collapse
Affiliation(s)
- Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Akira Ando
- Japan Institute of Sports Sciences, Tokyo 115-0056, Japan;
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| |
Collapse
|
52
|
Notarius CF, Millar PJ, Keir DA, Murai H, Haruki N, O'Donnell E, Marzolini S, Oh P, Floras JS. Training heart failure patients with reduced ejection fraction attenuates muscle sympathetic nerve activation during mild dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R503-R512. [PMID: 31365304 DOI: 10.1152/ajpregu.00104.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) decreases during low-intensity dynamic one-leg exercise in healthy subjects but increases in patients with heart failure with reduced ejection fraction (HFrEF). We hypothesized that increased peak oxygen uptake (V̇o2peak) after aerobic training would be accompanied by less sympathoexcitation during both mild and moderate one-leg dynamic cycling, an attenuated muscle metaboreflex, and greater skin vasodilation. We studied 27 stable, treated HFrEF patients (6 women; mean age: 65 ± 2 SE yr; mean left ventricular ejection fraction: 30 ± 1%) and 18 healthy age-matched volunteers (6 women; mean age: 57 ± 2 yr). We assessed V̇o2peak (open-circuit spirometry) and the skin microcirculatory response to reactive hyperemia (laser flowmetry). Fibular MSNA (microneurography) was recorded before and during one-leg cycling (2 min unloaded and 2 min at 50% of V̇o2peak) and, to assess the muscle metaboreflex, during posthandgrip ischemia (PHGI). HFrEF patients were evaluated before and after 6 mo of exercise-based cardiac rehabilitation. Pretraining V̇o2peak and skin vasodilatation were lower (P < 0.001) and resting MSNA higher (P = 0.01) in HFrEF than control subjects. Training improved V̇o2peak (+3.0 ± 1.0 mL·kg-1·min-1; P < 0.001) and cutaneous vasodilation and diminished resting MSNA (-6.0 ± 2.0, P = 0.01) plus exercise MSNA during unloaded (-4.0 ± 2.5, P = 0.04) but not loaded cycling (-1.0 ± 4.0 bursts/min, P = 0.34) and MSNA during PHGI (P < 0.05). In HFrEF patients, exercise training lowers MSNA at rest, desensitizes the sympathoexcitatory metaboreflex, and diminishes MSNA elicited by mild but not moderate cycling. Training-induced downregulation of resting MSNA and attenuated reflex sympathetic excitation may improve exercise capacity and survival.
Collapse
Affiliation(s)
- Catherine F Notarius
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Millar
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Daniel A Keir
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hisayoshi Murai
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Emma O'Donnell
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Susan Marzolini
- Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul Oh
- Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - John S Floras
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|