51
|
de Paula BP, Chávez DWH, Lemos Junior WJF, Guerra AF, Corrêa MFD, Pereira KS, Coelho MAZ. Growth Parameters and Survivability of Saccharomyces boulardii for Probiotic Alcoholic Beverages Development. Front Microbiol 2019; 10:2092. [PMID: 31552002 PMCID: PMC6747048 DOI: 10.3389/fmicb.2019.02092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/26/2019] [Indexed: 01/26/2023] Open
Abstract
The aim of this research was to optimize the growth parameters (pH, ethanol tolerance, initial cell concentration and temperature) for Saccharomyces boulardii and its tolerance to in vitro gastrointestinal conditions for probiotic alcoholic beverage development. Placket-Burman screening was used to select only statistically significant variables, and the polynomial mathematical model for yeast growth was obtained by central composite rotatable design. Confirmation experiments to determine the kinetic parameters for yeast growth were carried out by controlling the temperature and pH. Soon after, the survivability of yeast was tested under in vitro conditions mimicking the human upper gastrointestinal transit. S. boulardii had suitable resistance to alcohol and gastrointestinal conditions for probiotic alcoholic beverage development.
Collapse
Affiliation(s)
- Breno Pereira de Paula
- Coordenadoria do Curso de Engenharia de Alimentos, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Valença, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - André Fioravante Guerra
- Coordenadoria do Curso de Engenharia de Alimentos, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Valença, Brazil
| | | | | | - Maria Alice Zarur Coelho
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
52
|
Bellut K, Michel M, Hutzler M, Zarnkow M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK. Investigation into the Potential ofLachancea fermentatiStrain KBI 12.1 for Low Alcohol Beer Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1629227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Konstantin Bellut
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Maximilian Michel
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | - Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
53
|
Somani A, Box WG, Smart KA, Powell CD. Physiological and transcriptomic response of Saccharomyces pastorianus to cold storage. FEMS Yeast Res 2019; 19:5420514. [PMID: 31073596 DOI: 10.1093/femsyr/foz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Removal of yeast biomass at the end of fermentation, followed by a period of storage before re-inoculation into a subsequent fermentation, is common in the brewing industry. Storage is typically conducted at cold temperatures to preserve yeast quality, a practice which has unfavourable cost and environmental implications. To determine the potential for alleviating these effects, the transcriptomic and physiological response of Saccharomyces pastorianus strain W34/70 to standard (4°C) and elevated (10°C) storage temperatures was explored. Higher temperatures resulted in increased expression of genes associated with the production and mobilisation of intracellular glycogen, trehalose, glycerol and fatty acids, although these observations were limited to early stages of storage. Intracellular trehalose and glycerol concentrations were higher at 4°C than at 10°C, as a consequence of the cellular response to cold stress. However, significant changes in glycogen degradation or cellular fatty acid composition did not occur between the two sets of populations, ensuring that cell viability remained consistent. It is anticipated that this data may lead to changes in standard practice for handling yeast cultures, without compromising yeast quality. This work has significance not only for the brewing industry, but also for food and biofuel sectors requiring short-term storage of liquid yeast.
Collapse
Affiliation(s)
- Abhishek Somani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Gogerddan Campus, University of Aberystwyth, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - Wendy G Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Katherine A Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcet Drive, Cambridge, Cambridgeshire, CB3 0AS, United Kingdom
| | - Chris D Powell
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
54
|
Tapia SM, Cuevas M, Abarca V, Delgado V, Rojas V, García V, Brice C, Martínez C, Salinas F, Larrondo LF, Cubillos FA. GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Front Microbiol 2018; 9:1460. [PMID: 30018610 PMCID: PMC6037841 DOI: 10.3389/fmicb.2018.01460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glycerol is one of the most important by-products of alcohol fermentation, and depending on its concentration it can contribute to wine flavor intensity and aroma volatility. Here, we evaluated the potential of utilizing the natural genetic variation of non-coding regions in budding yeast to identify allelic variants that could modulate glycerol phenotype during wine fermentation. For this we utilized four Saccharomyces cerevisiae strains (WE - Wine/European, SA – Sake, NA – North American, and WA – West African), which were previously profiled for genome-wide Allele Specific Expression (ASE) levels. The glycerol yields under Synthetic Wine Must (SWM) fermentations differed significantly between strains; WA produced the highest glycerol yields while SA produced the lowest yields. Subsequently, from our ASE database, we identified two candidate genes involved in alcoholic fermentation pathways, ADH3 and GPD1, exhibiting significant expression differences between strains. A reciprocal hemizygosity assay demonstrated that hemizygotes expressing GPD1WA, GPD1SA, ADH3WA and ADH3SA alleles had significantly greater glycerol yields compared to GPD1WE and ADH3WE. We further analyzed the gene expression profiles for each GPD1 variant under SWM, demonstrating that the expression of GPD1WE occurred earlier and was greater compared to the other alleles. This result indicates that the level, timing, and condition of expression differ between regulatory regions in the various genetic backgrounds. Furthermore, promoter allele swapping demonstrated that these allele expression patterns were transposable across genetic backgrounds; however, glycerol yields did not differ between wild type and modified strains, suggesting a strong trans effect on GPD1 gene expression. In this line, Gpd1 protein levels in parental strains, particularly Gpd1pWE, did not necessarily correlate with gene expression differences, but rather with glycerol yield where low Gpd1pWE levels were detected. This suggests that GPD1WE is influenced by recessive negative post-transcriptional regulation which is absent in the other genetic backgrounds. This dissection of regulatory mechanisms in GPD1 allelic variants demonstrates the potential to exploit natural alleles to improve glycerol production in wine fermentation and highlights the difficulties of trait improvement due to alternative trans-regulation and gene-gene interactions in the different genetic background.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Mara Cuevas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile
| | - Valentina Abarca
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Verónica Delgado
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente Rojas
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claire Brice
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Luis F Larrondo
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| |
Collapse
|
55
|
Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res Int 2018; 111:187-197. [PMID: 30007675 DOI: 10.1016/j.foodres.2018.04.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/25/2022]
Abstract
Cereal-based fermented beverages are non-dairy products which are considered possible carriers for probiotic strains and alternatives for use by vegans and lactose-intolerant consumers. In the present work, the commercial probiotic, Lactobacillus paracasei LBC-81, was used singly and in co-culture with potential probiotic yeasts, Saccharomyces cerevisiae CCMA 0731, S. cerevisiae CCMA 0732, and Pichia kluyveri CCMA 0615, to ferment a maize-based substrate. All tested strains showed viability higher than 6 log CFU/mL, as recommended for food probiotic products, except for the yeast P. kluyveri which decreased during fermentation and storage time. A reduction in pH value, from approximately 7 to 4, was observed. This decrease was due organic acid production, which did not affect the microbial viability. Lactic and acetic acids were the main organic acids produced during fermentation, and they decreased over 28 days of storage (<0.5 and 0.1 g/L for lactic and acetic acids, respectively). Ethanol was detected in the S. cerevisiae assays; however, the content was <5 g/L in a non-alcoholic beverage. Seventy volatile compounds were detected, including acids, alcohols, aldehydes, esters, ketones, and other compounds. Sensory analysis showed score of 5.93-4.57, respectively for appearance and taste. This is an important result, considering that the beverage had no flavoring additive and lacked a sweet taste. Therefore, probiotic beverages were successfully obtained by maize fermentation inoculated with co-culture of S. cerevisiae (CCMA 0731 or CCMA 0732) and L. paracasei LBC-81.
Collapse
|
56
|
Liu S, Liu E, Zhu B, Chai B, Liu R, Gao Q, Zhang B. Impact of maceration time on colour-related phenolics, sensory characteristics and volatile composition of mulberry wine. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuxun Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Enchao Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Bowen Chai
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Ruojin Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Qiong Gao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| |
Collapse
|
57
|
Factors Influencing the Production of Sensory Active Substances in Brewer's and Wine Yeast. KVASNY PRUMYSL 2017. [DOI: 10.18832/kp201720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS. Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 2017; 10:264-278. [PMID: 28083938 PMCID: PMC5328816 DOI: 10.1111/1751-7915.12488] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Alcohol is fundamental to the character of wine, yet too much can put a wine off‐balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine‐producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these ‘full‐bodied, fruit‐forward’ wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol‐derived ‘hotness’ on the palate. Consumer‐focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well‐ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l−1). One of the approaches has been to develop ‘low‐alcohol’ yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.
Collapse
Affiliation(s)
- Hugh D Goold
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,New South Wales Department of Primary Industries, Locked Bag 21, Orange, NSW, 2800, Australia
| | - Heinrich Kroukamp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|