51
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
52
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
53
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
54
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
55
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|
56
|
Abstract
AbstractRecent findings emphasize the complexity, both genetic and functional, of the manifold genes and mutations causing inherited retinal degeneration in humans. Knowledge of the genetic bases of these diseases can contribute to design of rational therapy, as well as elucidating the function of each gene product in normal visual processes.
Collapse
|
57
|
Channel structure and divalent cation regulation of phototransduction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe identification of additional subunits of the cGMP-gated cation channel suggests exciting questions about their regulatory roles and about structure/functional relationships. How do the different subunits interact? How is the complex assembled into the plasma membrane? Divalent cations have been implicated in the regulation of adaptation. One often overlooked cation is magnesium. Could this ion play a role in phototransduction?
Collapse
|
58
|
Structure of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003939x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe subunit structure of the cGMP-gated cation channel of rod photoreceptors is rapidly being defined, and in the process the mode of regulation by Ca2+-calmodulin unraveled. Intriguingly, early results suggest that additional subunits of unknown function are associated with the channel and remain to be identified.
Collapse
|
59
|
Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough undoubtedly it will be incomplete by the time it is published, the target article by Daiger et al. organizes mutations in genes that produce retinal degenerations in humans into categories of clinically relevant phenotypes. Such classifications should help us understand the link between altered photoreceptor cell proteins and subsequent cell death, and they may yield insight into methods for preventing consequent blindness.
Collapse
|
60
|
Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003925x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractLarge scale DNA-mutation screening in patients with hereditary retinal diseases greatly enhances our knowledge about retinal function and diseases. Scientists, clinicians, patients, and families involved with retinal disorders may directly benefit from these developments. However, certain aspects of this expanding knowledge, such as the correlation between genotype and phenotype, may be much more complicated than we expect at present.
Collapse
|
61
|
The determination of rhodopsin structure may require alternative approaches. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe structure of rhodopsin is a subject of intense interest. Solving the structure by traditional methods has proved exceedingly challenging. It may therefore be useful to confront the problem by a combination of alternate techniques. These include FTIR (Fourier transform infrared spectroscopy) and AFM (atomic force microscopy) on the intact protein. Furthermore, additional insights may be gained through structural investigations of discrete rhodopsin domains.
Collapse
|
62
|
Na-Ca + K exchanger and Ca 2+ homeostasis in retinal rod outer segments: Inactivation of the Ca 2+ efflux mode and possible involvement of intracellular Ca 2+ stores in Ca 2+ homeostasis. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractInactivation of the Ca2+ extrusion mode of the retinal rod Na- Ca + K exchanger is suggested to be the mechanism that prevents lowering of cytosolic free Ca2+ to < 1 nM when rod cells are saturated for a prolonged time under bright light conditions. Under these conditions, Ca2+ fluxes across disk membranes can contribute significantly to Ca2+ homeostasis in rods.
Collapse
|
63
|
Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMagic angle spinning (MAS) NMR methods provide a means of obtaining high resolution structural data on rhodopsin and its photoin termediates. Current work has focused on the structure of the retinal chromophore and its interactions with surrounding protein charges. The recent development of MAS NMR methods for measuring internuclear distances with a resolution of ∼0.2 will complement diffraction methods for addressing key mechanistic questions.
Collapse
|
64
|
Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGenetic abnormalities of three factors related to the photoreceptor mechanism have been reported in both animal models and humans. Apoptotic mechanism has also been suggested as a final common pathway of photoreceptor cell death. Our findings of increased level of glutamate in photoreceptor cells in rds mice suggest that amino acid might mediate between these two pathological mechanisms.
Collapse
|
65
|
Unique lipids and unique properties of retinal proteins. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmino-terminal heteroacylation has been identified in retinal proteins including recoverin and α subunit of G-protein, transducin. The tissue-specific modification seems to mediate not only a proteinmembrane interaction but also a specific protein-protein interaction. The mechanism generating the heterogeneity and its physiological role are still unclear, but an interesting idea for the latter postulates a fine regulation of the signal transduction pathway by distinct N-acyl groups.
Collapse
|
66
|
Further insight into the structural and regulatory properties of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent studies from several different laboratories have provided further insight into structure-function relationships of cyclic nucleotide-gated channel and in particular the cCMPgated channel of rod photoreceptors. Site-directed mutagenesis and rod-olfactory chimeria constructs have defined important amino acids and peptide segments of the channel that are important in ion blockage, ligand specificity, and gating properties. Molecular cloning studies have indicated that cyclic nucleotide-gated channels consist of two subunits that are required to reproduce the properties of the native channels. Biochemical analysis of the cGMP-gated channel of rodcells have indicated that the 240 kDa protein that co-purifies with the 63 kDa channel subunit contains both the previously cloned second subunit of the channel and a glutamic acid-rich protein. The regulatory properties of the cGMP-gated channel from rod cells has also been studied in more detail. Studies indicate that the beta subunit of the cGMP-gated channel of rod cells contains the binding site for calmodulin. Interaction of calmodulin with the channel alters the apparent affinity of the channel for cGMP in all in vitro systems that have been studied. The significance of these recent studies are discussed in relation to the commentaries on the target article.
Collapse
|
67
|
Unsolved issues in S-modulin/recoverin study. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractS-Modulin is a frog homolog of recoverin. The function and the underlying mechanism of the action of these proteins are now understood in general. However, there remain some unsolved issues including; two distinct effects of S-modulin; Ca2+-dependent binding of S-modulin to membranes and a possible target protein; S-modulin-like proteins in other neurons. These issues are considered in this commentary.
Collapse
|
68
|
Mechanisms of photoreceptor degenerations. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe candidate gene approach has identified many causes of photoreceptor rod cell death in retinitis pigmentosa. Some mutations lead to increased cyclicGMP concentrations in rods. Rod photoreceptors are also particularly susceptible to some mutations in housekeeping genes. Although many more cases of macular degeneration than retinitis pigmentosa occur each year, there is much less known about both genetic and sporadic forms of this disease.
Collapse
|
69
|
Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight adaptation is modulated almost exclusively by changes in intracellular Ca2+ concentration, and other Ca2+-independent mechanisms are likely to play only a minor role. Changes in Ca2+i may be not only necessary for light adaptation to take place but sufficient to cause it.
Collapse
|
70
|
The genetic kaleidoscope of vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSite-specific phenotypic effects of the 73 known alleles in the rhodopsin gene that cause retinal degeneration are difficult to interpret because most alleles are documented in only one case or one family, which means variation in effects could actually arise from interactions with other loci. However, sample sizes necessary to detect epistatic interaction may place an answer to this question beyond our grasp.
Collapse
|
71
|
Evidence that the type I adenylyl cyclase may be important for neuroplasticity: Mutant mice deficient in the gene for type I adenylyl cyclase show altered behavior and LTP. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003956x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulatory properties of the neurospecific, type I adenylyl cyclase and its distribution within brain have suggested that this enzyme may be important for neuroplasticity. To address this issue, the murine, Ca2+ -stimulated adenylyl cyclase (type I), was inactivated by targeted mutagenesis. Ca2+ -stimulated adenylyl cyclase activity was reduced 40% to 60% in the hippocampus, neocortex, and cerebellum. Long term potentiation in the CA1 region of the hippocampus from mutants was perturbed relative to controls. Both the initial slope and maxim um extent of changes in synaptic response were reduced. Although mutant mice learned to find a hidden platform normally in the Morris water task, they did not display a preference for the region where the platform had been when it was removed. The behavioral phenotype of these mice is very similar to that exhibited by mice which have been surgically lesioned in the hippocampus. These results indicate that disruption of the gene for the type I adenylyl cyclase produces changes in spatial memory and indicate that the cAMP signal transduction pathway may play an important role for synaptic plasticity.
Collapse
|
72
|
Calcium/calmodulin-sensitive adenylyl cyclase as an example of a molecular associative integrator. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractEvidence suggests that the Ca2+/calmodulin-sensitive adenylyl cyclase may play a key role in neural plasticity and learning in Aplysia, Drosophila, and mammals. This dually-regulated enzyme has been proposed as a possible site of stimulus convergence during associative learning. This commentary discusses the evidence that is required to demonstrate that a protein in a second messenger cascade actually functions as a molecular site of associative integration. It also addresses the issue of how a dually-regulated protein could contribute to the temporal pairing requirements of classical conditioning: that relationship between stimuli display both temporal contiguity and predictability.
Collapse
|
73
|
The key to rhodopsin function lies in the structure of its interface with transducin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight activated rhodopsin functions by catalyzing the exchange of GTP for GDP on numerous copies of transducin. Peptide mapping has shown that at least six regions, three on rhodopsin and three on the transducin alpha subunit, are involved in the active interface between the two proteins. The most informative structural studies of rhodopsin should include focus on the transducin interaction.
Collapse
|
74
|
Rispoli G, Navangione A, Vellani V. Transport of K+ by Na(+)-Ca2+, K+ exchanger in isolated rods of lizard retina. Biophys J 1995; 69:74-83. [PMID: 7669912 PMCID: PMC1236226 DOI: 10.1016/s0006-3495(95)79877-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transport of K+ by the photoreceptor Na(+)-Ca2+, K+ exchanger was investigated in isolated rod outer segments (OS) by recording membrane current under whole-cell voltage-clamp conditions. Known amounts of K+ were imported in the OS through the Ca(2+)-activated K+ channels while perfusing with high extracellular concentration of K+, [K+]o. These channels were detected in the recordings from the OS, which probably retained a small portion of the rest of the cell. The activation of forward exchange (Na+ imported per Ca2+ and K+ extruded) by intracellular K+, Ki+, was described by first-order kinetics with a Michaelis constant, Kapp(Ki+), of about 2 mM and a maximal current, Imax, of about -60 pA. [Na+]i larger than 100 mM had little effect on Kapp(Ki+) and Imax, indicating that Nai+ did not compete with Ki+ for exchange sites under physiological conditions, and that Na+ release at the exchanger intracellular side was not a rate-limiting step for the exchange process. Exchanger stoichiometry resulted in one K+ ion extruded per one positive charge imported. Exchange current was detected only if Ca2+ and K+ were present on the same membrane side, and Na+ was simultaneously present on the opposite side. Nonelectrogenic modes of ion exchange were tested taking advantage of the hindered diffusion found for Cai2+ and Ki+. Experiments were carried out so that the occurrence of a putative nonelectrogenic ion exchange, supposedly induced by the preapplication of certain extracellular ion(s), would have resulted in the transient presence of both Cai2+ and Ki+. The lack of electrogenic forward exchange in a subsequent switch to high Nao+, excluded the presence of previous nonelectrogenic transport.
Collapse
Affiliation(s)
- G Rispoli
- INFM, Dipartimento di Biologia dell'Università, Ferrara, Italy
| | | | | |
Collapse
|
75
|
Abstract
The roles of 1) inactivation of Na-Ca+K exchange and 2) Ca2+ release from discs in regulation of cytosolic free Ca2+ were examined in intact rod outer segments (ROS) purified from bovine retinas. Measurements of cytosolic free Ca2+ (with fluo-3) were combined with Ca2+ flux measurements (45Ca) in ROS that contained about 600 microM total Ca2+. Na(+)-induced Ca2+ extrusion was measured in a Ca(2+)-free medium and did not lower cytosolic free Ca2+ to below 1 nM as expected from a coupling stoichiometry of 4Na+:(1Ca(2+) + 1K+). Instead, cytosolic free Ca2+ was rapidly (20 s) lowered from about 1300 nM to 100-150 nM, while at the same time about 35% of total ROS Ca2+ was removed. During the next 40 min cytosolic free Ca2+ remained virtually steady, but total ROS Ca2+ was reduced by a further 50% at a 100-fold lower rate than that observed for the initial fast phase. The steady cytosolic Ca2+ concentration resulted from Ca2+ release from discs and subsequent removal across the plasma membrane by Na-Ca+K exchange operating at a greatly reduced rate. Addition of the alkali cation channel ionophore gramicidin led to a persistent increase in cytosolic free Ca2+ concentration to about 400 nM, presumably caused by an increase in intracellular Na+. It is suggested that cytosolic free Ca2+ is not determined by the Na+:Ca2+ coupling ratio of the exchanger, but rather by a sensor on its cytoplasmic domain that controls inactivation of the Ca2+ extrusion mode and is sensitive to intracellular Ca2+, Na+, and K+.
Collapse
Affiliation(s)
- P P Schnetkamp
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| |
Collapse
|
76
|
Gallemore RP, Li JD, Govardovskii VI, Steinberg RH. Calcium gradients and light-evoked calcium changes outside rods in the intact cat retina. Vis Neurosci 1994; 11:753-61. [PMID: 7918225 DOI: 10.1017/s0952523800003059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied light-evoked changes in extracellular Ca2+ concentration ([Ca2+]o) in the intact cat eye using ion-sensitive double-barreled microelectrodes. Two prominent changes in Ca2+ concentration were observed that differed in retinal location. There was a light-evoked increase in [Ca2+]o, accompanied by brief ON and OFF transients, which was maximal in the inner plexiform layer and was not further studied. There was an unexpected sustained light-evoked decrease in [Ca2+]o, of relatively rapid onset and offset, which was maximal in the distalmost region of the subretinal space (SRS). [Ca2+]o in the SRS was 1.0 mM higher than in the vitreous humor during dark adaptation and this transretinal gradient disappeared during rod-saturating illumination. After correcting for the light-evoked increase in the volume of the SRS, an increase in the total Ca2+ content of the SRS during illumination was revealed, which presumably represents the Ca2+ released by rods. To explain the light-evoked [Ca2+]o changes, we used the diffusion model described in the accompanying paper (Li et al., 1994b), with the addition of light-dependent sources of Ca2+ at the retina/retinal pigment epithelium (RPE) border and rod outer segments. We conclude that a drop in [Ca2+]o around photoreceptors, which persists during illumination and reduces a transretinal Ca2+ gradient, is the combined effect of the light-evoked SRS volume increase, Ca2+ release from photoreceptors, and an unidentified mechanism(s), which is presumably Ca2+ transport by the RPE. The relatively rapid onset and offset of the [Ca2+]o decrease remains unexplained. These steady-state shifts in [Ca2+]o should have significant effects on photoreceptor function, especially adaptation.
Collapse
Affiliation(s)
- R P Gallemore
- Department of Physiology, University of California, San Francisco 94143-0444
| | | | | | | |
Collapse
|
77
|
Barnes S. After transduction: response shaping and control of transmission by ion channels of the photoreceptor inner segments. Neuroscience 1994; 58:447-59. [PMID: 7513385 DOI: 10.1016/0306-4522(94)90072-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoreceptors convert the elements of the visual image into the elements of a neural image. This process involves well-studied molecular events occurring at the outer segment, but also employs important molecular events in the proximal regions of the photoreceptor, including the synaptic terminal, encompassed here as the inner segment. Integral to neural processing at this level in the visual system, the inner segment mechanisms modify the visual signal before transmission to second order cells at the photoreceptor output synapse. This commentary, emphasizing the author's own work, discusses biophysical properties of the ensemble of ion channels in the photoreceptor inner segment that shape the light response and enable its transmission. Examples that illustrate ion channels whose biophysical properties seem well suited for their roles in photoreceptor function include: h channels, cation-selective channels activated by hyperpolarization, which carry current that counteracts the strong hyperpolarizing influence of cGMP-gated channel closure accompanying bright light; Kx channels, carrying potassium current which shares the kinetic properties of the M-current found in many other cell types, which shape responses to dim light and set the dark resting potential; and Ca channels that regulate calcium influx to control Ca-gated channel activity and synaptic output, "re-transducing" the neural signal now into a chemical one. The role of chloride current, carried in Ca-activated Cl channels dependent on the unknown chloride equilibrium potential in photoreceptors, is also discussed.
Collapse
Affiliation(s)
- S Barnes
- Lions' Sight Centre, University of Calgary, Faculty of Medicine, Alberta, Canada
| |
Collapse
|
78
|
Koch KW. Calcium as modulator of phototransduction in vertebrate photoreceptor cells. Rev Physiol Biochem Pharmacol 1993; 125:149-92. [PMID: 7984873 DOI: 10.1007/bfb0030910] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K W Koch
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany
| |
Collapse
|
79
|
Affiliation(s)
- P A Hargrave
- Department of Ophthalmology, School of Medicine, University of Florida, Gainesville 32610
| | | |
Collapse
|
80
|
Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54450-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
81
|
Schnetkamp PP, Basu DK, Szerencsei RT. The stoichiometry of Na-Ca+K exchange in rod outer segments isolated from bovine retinas. Ann N Y Acad Sci 1991; 639:10-21. [PMID: 1785833 DOI: 10.1111/j.1749-6632.1991.tb17285.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca2+ extrusion in the outer segments of retinal rods (ROS) is mediated by a protein that couples both the inward Na+ gradient and the outward K+ gradient to Ca2+ extrusion. Na(+)-stimulated Ca2+ release from ROS requires internal K+ and is accompanied by release of internal K+, whereas a slow component of Na(+)-stimulated Ca2+ release does not require K+. In this paper we discuss our observations on the K+ transport via Na-Ca+ K exchange in bovine ROS, on the electrogenicity and stoichiometry of the ROS Na-Ca+ K exchanger, and on the mechanism on coupling Ca2+ to K+ via this protein. Finally, we discuss briefly the physiological implications of Na-Ca+ K exchange.
Collapse
Affiliation(s)
- P P Schnetkamp
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
82
|
Achilles A, Friedel U, Haase W, Reiländer H, Cook NJ. Biochemical and molecular characterization of the sodium-calcium exchanger from bovine rod photoreceptors. Ann N Y Acad Sci 1991; 639:234-44. [PMID: 1785849 DOI: 10.1111/j.1749-6632.1991.tb17310.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Achilles
- Max-Planck-Institut für Biophysik, Abteilung für Molekulare Membranbiologie, Frankfurt am Main, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
83
|
Schnetkamp P, Basu D, Li X, Szerencsei R. Regulation of intracellular free Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. II. Thermodynamic competence of transmembrane Na+ and K+ gradients and inactivation of Na(+)-dependent Ca2+ extrusion. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54451-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
84
|
Lopez-Escalera R, Li XB, Szerencsei RT, Schnetkamp PP. Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods. Biochemistry 1991; 30:8970-6. [PMID: 1892814 DOI: 10.1021/bi00101a009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucose transport across the plasma membrane of isolated bovine rod outer segments (ROS) was measured by uptake of 14C-labeled 3-O-methylglucose and 2-deoxyglucose and was inferred from deenergization of ROS with 2-deoxyglucose. Glucose transport was mediated by a facilitated diffusion glucose transporter that equilibrated external and internal free hexose concentrations. Glucose transport in ROS displayed two components as judged from kinetic analysis of hexose equilibration and as judged from inhibition by cytochalasin B and phloretin. Transport under exchange conditions was considerably faster as compared with net hexose uptake, similar to that observed for the erythrocyte glucose transporter. Sensitivity to cytochalasin B and affinity to 3-O-methylglucose were similar to those observed for the hepatocyte glucose transporter. The cytochalasin-insensitive component appears unique to ROS and did not reflect leakage transport as judged from a comparison with L-glucose uptake. Glucose transport feeds glycolysis localized to ROS. We suggest that a major role for glycolysis in ROS is phosphorylation of GDP to GTP via pyruvate kinase and PEP, while phosphorylation of ADP to ATP can use the creatine kinase/phosphocreatine pathway as well.
Collapse
Affiliation(s)
- R Lopez-Escalera
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|