51
|
Abstract
The idea that Cdc2 and cyclins play a key role in the control of the G2/M transition of the cell cycle came largely from genetic analysis of fission yeast and physiological studies of clam, frog, sea urchin and starfish eggs and oocytes. However, it took a long time to realise that Cdc2 and cyclins form a stoichiometric complex and that a cyclin subunit is necessary for the Cdc2 subunit to gain its protein kinase activity.
Cyclins were first recognized as proteins whose abundance oscillates during the early cell cycles of marine invertebrate eggs and their connection with MPF (maturation-promoting factor), the entity defined in frog and starfish oocytes whose activity controls entry into M phase, was far from clear at first. Indeed, it was a long time before MPF was shown to be a protein kinase,and direct proof that MPF is a heterodimer comprising one molecule of cyclin and one molecule of Cdc2 was finally obtained only when the Cdc2-associated component of purified starfish MPF was sequenced and found to be cyclin B. When this fundamental discovery was confirmed in vertebrates and mammalian members of the Cdc2 family were also shown to bind cyclins, Cdc2 became Cdk1,the first cyclin-dependent protein kinase.
Collapse
Affiliation(s)
- Marcel Dorée
- CRBM, UPR 1086-CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | |
Collapse
|
52
|
Abstract
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.
Collapse
Affiliation(s)
- Irina Groisman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | |
Collapse
|
53
|
Mendez R, Barnard D, Richter JD. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J 2002; 21:1833-44. [PMID: 11927567 PMCID: PMC125948 DOI: 10.1093/emboj/21.7.1833] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational activation of several dormant mRNAs in vertebrate oocytes is mediated by cytoplasmic polyadenylation, a process controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein CPEB. The translation of CPE-containing mRNAs does not occur en masse at any one time, but instead is temporally regulated. We show here that in Xenopus, partial destruction of CPEB controls the temporal translation of CPE-containing mRNAs. While some mRNAs, such as the one encoding Mos, are polyadenylated at prophase I, the polyadenylation of cyclin B1 mRNA requires the partial destruction of CPEB that occurs at metaphase I. CPEB destruction is mediated by a PEST box and Cdc2-catalyzed phosphorylation, and is essential for meiotic progression to metaphase II. CPEB destruction is also necessary for mitosis in the early embryo. These data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.
Collapse
Affiliation(s)
- Raul Mendez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
Present address: Center for Genomic Regulation, C/Dr Aiguader, 80 Barcelona 08003, Spain Corresponding author e-mail:
| | | | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
Present address: Center for Genomic Regulation, C/Dr Aiguader, 80 Barcelona 08003, Spain Corresponding author e-mail:
| |
Collapse
|
54
|
Affiliation(s)
- K Nasmyth
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| |
Collapse
|
55
|
Masui Y. From oocyte maturation to the in vitro cell cycle: the history of discoveries of Maturation-Promoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 2001; 69:1-17. [PMID: 11776390 DOI: 10.1046/j.1432-0436.2001.690101.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article briefly reviews the classical cell cycle studies using oocytes and zygotes of mainly amphibians in the past century. The discussions are focused on the investigations into the cytoplasmic factors that regulate meiosis during oocyte maturation and the initiation of mitosis during fertilisation, which were carried out in the author's lab between 1967 and 1987. This chronicle traces the development of the problems and the direction in which their solutions were attempted in the course of these investigations. The author tries to answer the following questions: why he decided to study oocyte maturation, how he discovered progesterone as a maturation-inducing hormone, how he discovered and characterised the cytoplasmic regulators of the cell cycle, Maturation-Promoting Factor (MPF) and Cyto-Static Factor (CSF), and how he invented the method of observing cell cycle processes in a cytoplasmic extract in vitro.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, Ontario, Canada.
| |
Collapse
|
56
|
Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Bréchot C, Sobczak-Thépot J, Jessus C. Membrane-anchored cyclin A2 triggers Cdc2 activation in Xenopus oocyte. FEBS Lett 2001; 506:243-8. [PMID: 11602254 DOI: 10.1016/s0014-5793(01)02920-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In Xenopus oocyte, the formation of complexes between neosynthesized cyclins and Cdc2 contributes to Cdc2 kinase activation that triggers meiotic divisions. It has been proposed that cytoplasmic membranes could be involved in this process. To investigate this possibility, we have injected in the oocyte two undegradable human cyclin A2 mutants anchored to the endoplasmic reticulum (ER) membrane. They encode fusion proteins between the truncated cyclin A2-Delta152 and a viral or cellular ER-targeting domain. We show that both mutants are fully functional as mitotic cyclins when expressed in Xenopus oocytes, bind Cdc2 and activate M-phase promoting factor.
Collapse
Affiliation(s)
- J Faivre
- INSERM U370, Institut Pasteur/Necker, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 2001; 276:36028-34. [PMID: 11461916 DOI: 10.1074/jbc.m104722200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Cdk1 (Cdc2) and Cdk2 should be bound to regulatory subunits named cyclins as well as phosphorylated on a conserved Thr located in the T-loop for full enzymatic activity. Cdc2- and Cdk2-cyclin complexes can be inactivated by phosphorylation on the catalytic cleft-located Thr-14 and Tyr-15 residues or by association with inhibitory subunits such as p21(Cip1). We have recently identified a novel Cdc2 regulator named RINGO that plays an important role in the meiotic cell cycle of Xenopus oocytes. RINGO can bind and activate Cdc2 but has no sequence homology to cyclins. Here we report that, in contrast with Cdc2- cyclin complexes, the phosphorylation of Thr-161 is not required for full activation of Cdc2 by RINGO. We also show that RINGO can directly stimulate the kinase activity of Cdk2 independently of Thr-160 phosphorylation. Moreover, RINGO-bound Cdc2 and Cdk2 are both less susceptible to inhibition by p21(Cip1), whereas the Thr-14/Tyr-15 kinase Myt1 can negatively regulate the activity of Cdc2-RINGO with reduced efficiency. Our results indicate that Cdk-RINGO complexes may be active under conditions in which cyclin-bound Cdks are inhibited and can therefore play different regulatory roles.
Collapse
Affiliation(s)
- A Karaiskou
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases.
Collapse
Affiliation(s)
- J Myung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
59
|
Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother 2001; 5:109-29. [PMID: 11355576 DOI: 10.1016/s1278-3218(01)00087-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Comprehension of cell cycle regulation mechanisms has progressed very quickly these past few years and regulators of the cell cycle have gained widespread importance in cancer. This review first summarizes major advances in the understanding of the control of cell cycle mechanisms. Examples of how this control is altered in tumoral cells are then described. CURRENT KNOWLEDGE AND KEY POINTS The typical mammalian cell cycle consists of four distinct phases occurring in a well-defined order, each of which should be completed successfully before the next begins. Progression of eukaryotic cells through major cell cycle transitions is mediated by sequential assembly and activation of a family of serine-threonine protein kinases, the cyclin dependent kinases (CDK). The timing of their activation is determined by their post-translational modifications (phosphorylations/dephosphorylations), and by the association of a protein called cyclin, which is the regulatory subunit of the kinase complex. The cyclin family is divided into two main classes. The 'G1 cyclins' include cyclins C, D1-3, and E, and their accumulation is rate-limiting for progression from the G1 to S phase. The 'mitotic or G2 cyclins', which include cyclin A and cyclin B, are involved in the control of G2/M transition and mitosis. The cyclins bind to and activate the CDK, which leads to phosphorylation (and then inhibition) of the tumor suppressor protein, pRb. pRb controls commitment to progress from the G1 to S phase, at least in part by repressing the activity of the E2F transcription factors known to promote cell proliferation. Both the D-type cyclins and their partner kinases CDK4/6 have proto-oncogenic properties, and their activity is carefully regulated at multiple levels including negative control by two families of CDK inhibitors. While members of the INK4 family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) interact specifically with CDK4 and CDK6, the CIP/KIP inhibitors p21CIP1/WAF1, p27KIP1 and p57KIP2 inhibit a broader spectrum of CDK. The interplay between p16INK4A, cyclin D/CDK, and pRb/E2F together constitute a functional unit collectively known as the 'pRb pathway'. Each of the major components of this mechanism may become deregulated in cancer, and accumulating evidence points to the 'pRb pathway' as a candidate obligatory target in multistep oncogenesis of possibly all human tumor types. FUTURE PROSPECTS AND PROJECTS Major advances in the understanding of cell cycle regulation mechanisms provided a better knowledge of the molecular interactions involved in human cancer. This progress has led to the promotion of new therapeutic agents presently in clinical trials or under development. Moreover, the components of the cell cycle are probably involved in other non-cancerous diseases and their role must be defined.
Collapse
Affiliation(s)
- J F Viallard
- Service de médecine interne et maladies infectieuses, centre François-Magendie, hôpital du Haut-Lévêque, 5, avenue Magellan, 33604 Pessac, France.
| | | | | | | | | |
Collapse
|
60
|
Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y. Investigating the hows and whys of DNA endoreduplication. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11283162 DOI: 10.1093/jexbot/52.355.183] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endoreduplication is a form of nuclear polyploidization that results in multiple, uniform copies of chromosomes. This process is common in plants and animals, especially in tissues with high metabolic activity, and it generally occurs in cells that are terminally differentiated. In plants, endoreduplication is well documented in the endosperm and cotyledons of developing seeds, but it also occurs in many tissues throughout the plant. It is thought that endoreduplication provides a mechanism to increase the level of gene expression, but the function of this process has not been thoroughly investigated. Numerous observations have been made of endoreduplication, or at least extra cycles of S-phase, as a consequence of mutations in genes controlling several aspects of cell cycle regulation. However, until recently there were few studies directed at the molecular mechanisms responsible for this specialized cell cycle. It is suggested that endoreduplication requires nothing more elaborate than a loss of M-phase cyclin-dependent kinase activity and oscillations in the activity of S-phase cyclin-dependent kinase.
Collapse
Affiliation(s)
- B A Larkins
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Yamano H, Kitamura K, Kominami K, Lehmann A, Katayama S, Hunt T, Toda T. The spike of S phase cyclin Cig2 expression at the G1-S border in fission yeast requires both APC and SCF ubiquitin ligases. Mol Cell 2000; 6:1377-87. [PMID: 11163211 DOI: 10.1016/s1097-2765(00)00135-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe a novel set of oscillation mechanisms for the fission yeast S phase cyclin Cig2, which contains an authentic destruction box and is destroyed at anaphase via the APC/cyclosome (APC/C). Unlike the mitotic cyclin Cdc13, however, Cig2 mRNA and protein peak at the G1/S boundary and decline to low levels in G2 and M phases. We show here that SCF(Pop1, Pop2) plays a role in transcriptional periodicity, as pop mutations result in constitutive cig2(+) transcripts. The instability of Cig2 during G2 and M is independent of either the APC/C or Pop1/Pop2, but requires Skp1, a core component of SCF. These data indicate that the APC/C and SCF control Cig2 levels differentially at different stages of the cell cycle.
Collapse
Affiliation(s)
- H Yamano
- Laboratory of Cell Cycle Control, Imperial Cancer Research Fund, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
62
|
Avedisov SN, Krasnoselskaya I, Mortin M, Thomas BJ. Roughex mediates G(1) arrest through a physical association with cyclin A. Mol Cell Biol 2000; 20:8220-9. [PMID: 11027291 PMCID: PMC86431 DOI: 10.1128/mcb.20.21.8220-8229.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiation in the developing Drosophila eye requires synchronization of cells in the G(1) phase of the cell cycle. The roughex gene product plays a key role in this synchronization by negatively regulating cyclin A protein levels in G(1). We show here that coexpressed Roughex and cyclin A physically interact in vivo. Roughex is a nuclear protein, while cyclin A was previously shown to be exclusively cytoplasmic during interphase in the embryo. In contrast, we demonstrate that in interphase cells in the eye imaginal disk cyclin A is present in both the nucleus and the cytoplasm. In the presence of ectopic Roughex, cyclin A becomes strictly nuclear and is later degraded. Nuclear targeting of both Roughex and cyclin A under these conditions is dependent on a C-terminal nuclear localization signal in Roughex. Disruption of this signal results in cytoplasmic localization of both Roughex and cyclin A, confirming a physical interaction between these molecules. Cyclin A interacts with both Cdc2 and Cdc2c, the Drosophila Cdk2 homolog, and Roughex inhibits the histone H1 kinase activities of both cyclin A-Cdc2 and cyclin A-Cdc2c complexes in whole-cell extracts. Two-hybrid experiments suggested that the inhibition of kinase activity by Roughex results from competition with the cyclin-dependent kinase subunit for binding to cyclin A. These findings suggest that Roughex can influence the intracellular distribution of cyclin A and define Roughex as a distinct and specialized cell cycle inhibitor for cyclin A-dependent kinase activity.
Collapse
Affiliation(s)
- S N Avedisov
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
63
|
Liu D, Liao C, Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388-400. [PMID: 10926775 DOI: 10.1006/dbio.2000.9776] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.
Collapse
Affiliation(s)
- D Liu
- The Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
64
|
Winston N, Bourgain-Guglielmetti F, Ciemerych MA, Kubiak JZ, Senamaud-Beaufort C, Carrington M, Bréchot C, Sobczak-Thépot J. Early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products. Dev Biol 2000; 223:139-53. [PMID: 10864467 DOI: 10.1006/dbio.2000.9721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progression through the mammalian cell cycle is regulated by the sequential activation and inactivation of the cyclin-dependent kinases. In adult cells, cyclin A2-dependent kinases are required for entry into S and M phases, completion of S phase, and centrosome duplication. However, mouse embryos lacking the cyclin A2 gene nonetheless complete preimplantation development, but die soon after implantation. In this report, we investigated whether a contribution of maternal cyclin A2 mRNA and protein to early embryonic cell cycles might explain these conflicting observations. Our data show that a maternal stock of cyclin A2 mRNA is present in the oocyte and persists after fertilization until the second mitotic cell cycle, when it is degraded to undetectable levels coincident with transcriptional activation of the zygotic genome. A portion of maternally derived cyclin A2 protein is stable during the first mitosis and persists in the cytoplasm, but is completely degraded at the second mitosis. The ability of cyclin A2-null mutants to develop normally from the four-cell to the postimplantation stage in the absence of detectable cyclin A2 gene product indicates therefore that cyclin A2 is dispensable for cellular progression during the preimplantation nongrowth period of mouse embryo development.
Collapse
Affiliation(s)
- N Winston
- Unité 370, Faculté Necker, Institut National de la Santé et de la Recherche Médicale, 156 Rue de Vaugirard, Paris, 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Lilly MA, de Cuevas M, Spradling AC. Cyclin A associates with the fusome during germline cyst formation in the Drosophila ovary. Dev Biol 2000; 218:53-63. [PMID: 10644410 DOI: 10.1006/dbio.1999.9570] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated changes in the cell cycle underlie many aspects of growth and differentiation. Prior to meiosis, germ cell cycles in many organisms become accelerated, synchronized, and modified to lack cytokinesis. These changes cause cysts of interconnected germ cells to form that typically contain 2(n) cells. In Drosophila, developing germ cells during this period contain a distinctive organelle, the fusome, that is required for normal cyst formation. We find that the cell cycle regulator Cyclin A transiently associates with the fusome during the cystocyte cell cycles, suggesting that fusome-associated Cyclin A drives the interconnected cells within each cyst synchronously into mitosis. In the presence of a normal fusome, overexpression of Cyclin A forces cysts through an extra round of cell division to produce cysts with 32 germline cells. Female sterile mutations in UbcD1, encoding an E2 ubiquitin-conjugating enzyme, have a similar effect. Our observations suggest that programmed changes in the expression and cytoplasmic localization of key cell cycle regulatory proteins control germline cyst production.
Collapse
Affiliation(s)
- M A Lilly
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland, 21210, USA
| | | | | |
Collapse
|
66
|
Abstract
The ordered execution of the two main events of cellular reproduction, duplication of the genome and cell division, characterize progression through the cell cycle. Cultured cells can be switched between cycling and non-cycling states by alteration of extracellular conditions and the notion that a critical cellular control mechanism presides on this decision, whose temporal location is known as the restriction point, has become the focus for the study of how extracellular mitogenic signalling impinges upon the cell cycle to influence proliferation. This review attempts to cover the disparate pathways of Ras-mediated mitogenic signal transduction that impact upon restriction point control.
Collapse
Affiliation(s)
- M E Ewen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
67
|
|
68
|
|
69
|
Intracellular proteolysis. Trends Genet 1999. [DOI: 10.1016/s0168-9525(99)01889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Porceddu A, Reale L, Lanfaloni L, Moretti C, Sorbolini S, Tedeschini E, Ferranti F, Pezzotti M. Cloning and expression analysis of a Petunia hybrida flower specific mitotic-like cyclin. FEBS Lett 1999; 462:211-5. [PMID: 10580121 DOI: 10.1016/s0014-5793(99)01484-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cyclin cDNA clone (Pethy;CycB1;1) was isolated from a Petunia hybrida ovary specific cDNA library. Sequence comparison revealed that Pethy;CYCB1;1 protein is highly homologous to mitotic B1 cyclins. Northern analysis and in situ hybridisation experiments showed that its expression is developmentally regulated and restricted to flower organs. We have attempted to define some of the cell division patterns which contribute to shaping each floral organ by analysing Pethy;CycB1;1 expression on Petunia flower sections. While in sepals, epidermis and parenchyma cell division patterns were comparable, there were two distinct cell division patterns in petals. In the epidermis, Pethy;CYCB1;1 expression was found both at the petal tip and along epidermis, whereas in the parenchyma only at the petal tips. In reproductive organs cell divisions were detected only in sporophytic tissues. No signals were detected inside meiotic cells.
Collapse
Affiliation(s)
- A Porceddu
- Istituto di Miglioramento Genetico Vegetale, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang H, Adl SM, Berger JD. Two distinct classes of mitotic cyclin homologues, Cyc1 and Cyc2, are involved in cell cycle regulation in the ciliate Paramecium tetraurelia. J Eukaryot Microbiol 1999; 46:585-96. [PMID: 10568031 DOI: 10.1111/j.1550-7408.1999.tb05134.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic cell cycle is regulated by the sequential activation of different CDK/cyclin complexes. Two distinct classes of mitotic cyclin homologues, CYC1 and CYC2, have been identified and cloned for the first time in the ciliate Paramecium. Cyc1 is 324 amino acids long with a predicted molecular mass of 38 kDa, whereas Cyc2 is 336 amino acids long with a predicted molecular mass of 40 kDa. They display 42-51% sequence identity to other eukaryotic mitotic cyclins within the 'cyclin box' region. The conserved 'cyclin box' and 'destruction box' elements can be identified within each of the sequences. Genomic Southern blot analysis indicated that the CYC1 gene has two isoforms, with 92.3% and 85.9% identify at the amino acid level and at the nucleotide level, respectively. Both Cyc1 and Cyc2 proteins showed characteristic patterns of accumulation and destruction during the vegetative cell cycle, with Cyc1 peaking at the point of commitment to division (PCD), and Cyc2 reaching the maximal level late in the cell cycle. Immunoprecipitation experiments with antibodies specific to Cyc1 and Cyc2 indicated that Cyc1 and Cyc2 associate with distinct CDK homologues. Both immunoprecipitates exhibited histone H1 kinase activity that oscillated in the cell cycle in parallel with the respective amount of cyclins present. Histone H1 kinase activity associated with Cyc1 reached a peak at PCD while Cyc2 showed maximal activity when about 75% cells have completed cytokinesis. We propose that Cyc1 may be involved in commitment to division, in association with the CDK that binds to p13suc1, Cdk3, and that the Cyc2/Cdk2 complex may regulate cytokinesis. PCR-amplification revealed similar sequences in Tetrahymena, Sterkiella, Colpoda and Blepharisma, suggesting the conservation of the cyclin genes within ciliates. Although cell cycle regulation in ciliates differs in some respects from that of other eukaryotes, the cyclin motifs have clearly been conserved during evolution.
Collapse
Affiliation(s)
- H Zhang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
72
|
Abstract
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.
Collapse
Affiliation(s)
- Nobuaki Furuno
- Wellcome/Cancer Research Campaign Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Nicole den Elzen
- Wellcome/Cancer Research Campaign Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jonathon Pines
- Wellcome/Cancer Research Campaign Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
73
|
Abstract
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| |
Collapse
|
74
|
|
75
|
de Moor CH, Richter JD. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J 1999; 18:2294-303. [PMID: 10205182 PMCID: PMC1171312 DOI: 10.1093/emboj/18.8.2294] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
76
|
Ravnik SE, Wolgemuth DJ. Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol 1999; 207:408-18. [PMID: 10068472 DOI: 10.1006/dbio.1998.9156] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To begin to examine the function of the A-type cyclins during meiosis in the male, we have examined the developmental and cellular distribution of the cyclin A1 and cyclin A2 proteins, as well as their candidate cyclin-dependent kinase partners, Cdk1 and Cdk2, in the spermatogenic lineage. Immunohistochemical localization revealed that cyclin A1 is present only in male germ cells just prior to or during the first, but not the second, meiotic division. By contrast, cyclin A2 was expressed in spermatogonia and was most abundant in preleptotene spermatocytes, cells which will enter the meiotic pathway. Immunohistochemical detection of Cdk1 was most apparent in early pachytene spermatocytes, while staining intensity diminished in diplotene and meiotically dividing spermatocytes, the cells in which cyclin A1 expression was strongest. Cdk2 was highly expressed in all spermatocytes. Notably, in cells undergoing the meiotic reduction divisions, Cdk2 appeared to localize specifically to the chromatin. This was not the case for spermatogonia undergoing mitotic divisions. In the testis, cyclin A1 has been shown to bind both Cdk1 and Cdk2 but we show here that cyclin A2 binds only Cdk2. These results indicate that the A-type cyclins and their associated kinases have different functions in the initiation and passage of male germ cells through meiosis.
Collapse
Affiliation(s)
- S E Ravnik
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | | |
Collapse
|
77
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
78
|
Affiliation(s)
- P Nurse
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
79
|
Ihara J, Yoshida N, Tanaka T, Mita K, Yamashita M. Either cyclin B1 or B2 is necessary and sufficient for inducing germinal vesicle breakdown during frog (Rana japonica) oocyte maturation. Mol Reprod Dev 1998; 50:499-509. [PMID: 9669534 DOI: 10.1002/(sici)1098-2795(199808)50:4<499::aid-mrd14>3.0.co;2-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation.
Collapse
Affiliation(s)
- J Ihara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
80
|
Dong F, Agrawal D, Bagui T, Pledger WJ. Cyclin D3-associated kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. Mol Biol Cell 1998; 9:2081-92. [PMID: 9693368 PMCID: PMC25461 DOI: 10.1091/mbc.9.8.2081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1996] [Accepted: 05/21/1998] [Indexed: 11/11/2022] Open
Abstract
We report that cyclin D3/cdk4 kinase activity is regulated by p27(kip1) in BALB/c 3T3 cells. The association of p27(kip1) was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27(kip1)/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27(kip1)-specific antibodies. The association of p27(kip1) with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27(kip1) protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27(kip1) kinase activity was present throughout the cell cycle. Since we found that the p27(kip1) activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27(kip1) and the active cyclin D3 lacking p27(kip1) by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27(kip1)/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27(kip1) has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.
Collapse
Affiliation(s)
- F Dong
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
81
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, UK.
| |
Collapse
|
82
|
Okano-Uchida T, Sekiai T, Lee K, Okumura E, Tachibana K, Kishimoto T. In vivo regulation of cyclin A/Cdc2 and cyclin B/Cdc2 through meiotic and early cleavage cycles in starfish. Dev Biol 1998; 197:39-53. [PMID: 9578617 DOI: 10.1006/dbio.1998.8881] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In starfish, fertilization occurs naturally at late meiosis I. In the absence of fertilization, however, oocytes complete meiosis I and II, resulting in mature eggs arrested at the pronucleus stage, which are still fertilizable. In this study, we isolated cDNAs of starfish cyclin A and Cdc2, and monitored extensively the cell cycle dynamics of cyclin A and cyclin B levels and their associated Cdc2 kinase activity, Tyr phosphorylation of Cdc2, and Cdc25 phosphorylation states throughout meiotic and early embryonic cleavage cycles in vivo. In meiosis I, cyclin A was undetectable and cyclin B/Cdc2 alone exhibited histone H1 kinase activity, while thereafter both cyclin A/Cdc2 and cyclin B/Cdc2 kinase activity oscillated along with the cell cycle. Cyclin B-, but not cyclin A-, associated Cdc2 was subjected to regulation via Tyr phosphorylation, and phosphorylation states of Cdc25 correlated with cyclin B/Cdc2 kinase activity with some exceptions. Between meiosis I and II and at the pronucleus stage, cyclin A and B levels remained low, Cdc2 Tyr phosphorylation was undetectable, and Cdc25 remained phosphorylated depending on MAP kinase activity, showing a good correlation between these two stages. Upon fertilization of mature eggs, Cdc2 Tyr phosphorylation reappeared and Cdc25 was dephosphorylated. In the first cleavage cycle, under conditions which prevented Cdc25 activity, cyclin A/Cdc2 was activated with a normal time course and then cyclin B/Cdc2 was activated with a significant delay, resulting in the delayed completion of M-phase. Thus, in contrast to meiosis I, both cyclin A and cyclin B appear to be involved in the embryonic cleavage cycles. We propose that regulation of cyclin A/Cdc2 and cyclin B/Cdc2 is characteristic of meiotic and early cleavage cycles.
Collapse
Affiliation(s)
- T Okano-Uchida
- Faculty of Biosciences and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Masui Y. A quest for cytoplasmic factors that control the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 2:1-13. [PMID: 9552378 DOI: 10.1007/978-1-4615-5873-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Between 1966 and 1986 the author and his former students carried out an investigation into the cytoplasmic factors that regulate nuclear behaviour during meiotic maturation of oocytes. This anecdotal chronicle traces the development of the problems and the direction in which their solutions were attempted in the course of this investigation. The author examines why he decided to study oocyte maturation, how he discovered progesterone as a maturation-inducing hormone and maturation promoting factor (MPF) and cytostatic factor (CSF) as meiosis-controlling factors, how the idea of the cell cycle without the cell occurred to him, and how it was materialised by invention of a cell-free system.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, Ontario, Canada
| |
Collapse
|
84
|
Abstract
Usually, oocyte meiosis reinitiation appears as a two step process during which release from the prophase block is followed by a second arrest in metaphase I or II. In this review, we will examine the mechanisms required to maintain the metaphase arrest and stabilize MPF activity at this stage. Then, we will analyse the processes required to exit from the metaphase block. These may drive the cells forward to the metaphase-anaphase transition, as a result of fertilization, activation or protein synthesis inhibition. Instead, inhibiting protein phosphorylation drives the oocyte back to interphase. All these treatments result in derepression of DNA synthesis.
Collapse
Affiliation(s)
- P Colas
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
85
|
Jessus C, Ozon R. Function and regulation of cdc25 protein phosphate through mitosis and meiosis. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:215-28. [PMID: 9552365 DOI: 10.1007/978-1-4615-1809-9_17] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the cyclin B-cdc2 kinase mitotic inducer involves dephosphorylation of two inhibitory residues, tyrosine 15 and threonine 14, cdc25 is the specific phosphatase that directly dephosphorylates and activates the cdc2 kinase, cdc25 activity is regulated by phosphorylation. Both phosphatases 1 and 2A could act as cdc25-specific inhibitory phosphatases. Although the cyclin B-cdc2 complex plays a role in activating cdc25, it is highly probable that a distinct protein kinase is involved as a trigger in cdc25 activation. The implication of raf kinase as a cdc25-specific activating kinase in human cells and Xenopus oocytes is discussed.
Collapse
Affiliation(s)
- C Jessus
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
86
|
Lu KP, Hunter T. The NIMA kinase: a mitotic regulator in Aspergillus nidulans and vertebrate cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:187-205. [PMID: 9552363 DOI: 10.1007/978-1-4615-1809-9_15] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CDC2 has been shown to regulate entry into mitosis in eukaryotic cells. However, in Aspergillus nidulans, activation of CDC2 itself is not sufficient to trigger mitosis if another mitotic protein kinase, NIMA, is not activated. Superficially, NIMA and CDC2 have analogous functions and are regulated in a similar manner. NIMA activity is tightly regulated during the cell cycle. Overexpression of NIMA induces germinal vesicle breakdown in Xenopus oocytes and promotes premature entry into mitosis in all eukaryotic cells examined, whereas dominant-negative mutant NIMA causes a specific G2 arrest in Aspergillus nidulans and human cells, as is the case for CDC2. However, NIMA and CDC2 have quite distinct primary sequence substrate specificities. Furthermore, the regulatory mechanisms that govern the cell cycle-dependent abundance, activity and localization are largely intramolecular for NIMA but intermolecular for CDC2. More importantly, a NIMA-like pathway is also required for the G2/M transition in vertebrate cells. Thus, NIMA may represent a new essential eukaryotic cell cycle regulator, although its homologues in other species are yet to be identified.
Collapse
Affiliation(s)
- K P Lu
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
87
|
Norbury C. Principles of Cell Cycle Control. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
88
|
Abstract
Oocyte and egg are suitable model systems for studying cell division since meiotic maturation resembles a G2/M transition and early embryonic divisions are precisely timed and occur without zygotic transcription. The analysis of oocytes and eggs from different species provides the opportunity to understand the roles of proteins that the critical to the progression and maintenance of the cell cycle. Among them, cyclins are certainly worthy of investigation. Mitotic cyclins (cyclins A and B) are clearly implicated in meiosis and early embryonic cell cycles. More recent studies have revealed that G1-type cyclins (cyclins E and D) could also play a role in both processes and cyclin H has been suggesed to participate to CAK activity (cdc2-activating kinase) in oocytes. The study of cyclins in oocytes and eggs clearly offer insights into their roles during the cell cycle.
Collapse
Affiliation(s)
- F Taieb
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
89
|
Kondo T, Yanagawa T, Yoshida N, Yamashita M. Introduction of cyclin B induces activation of the maturation-promoting factor and breakdown of germinal vesicle in growing zebrafish oocytes unresponsive to the maturation-inducing hormone. Dev Biol 1997; 190:142-52. [PMID: 9331337 DOI: 10.1006/dbio.1997.8673] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When treated with 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP), a natural maturation-inducing hormone in fishes, fully grown zebrafish oocytes are induced to mature via the activation of the maturation-promoting factor (MPF), which consists of cdc2 (a catalytic subunit) and cyclin B (a regulatory subunit). In contrast, 17alpha,20beta-DP is unable to induce growing (previtellogenic and vitellogenic) oocytes to mature. To know the reason growing oocytes fail to mature upon 17alpha,20beta-DP treatment, we investigated changes in the components of machinery responsible for MPF activation during zebrafish oogenesis. Immunoblotting experiments using monoclonal antibodies against cdc2, cyclin B, and cdk7 (an activator of cdc2) have revealed that the concentrations of cdc2 and cdk7 are almost constant during oogenesis. Cyclin B was present in mature oocytes but absent in growing and fully grown immature oocytes. These results, which are identical to those in goldfish, strongly suggest that cyclin B is synthesized from stored (masked) mRNA after 17alpha,20beta-DP stimulation and that its binding to the preexisting cdc2 allows cdk7 to activate MPF. Microinjection of cyclin B protein induced MPF activation and germinal vesicle breakdown in growing oocytes, as well as in fully grown oocytes, indicating that cdk7 present in growing oocytes is already active. Northern blot analysis revealed the presence of cyclin B mRNA in both previtellogenic and fully grown oocytes. These results indicate that, as in fully grown oocytes, growing oocytes are already equipped with the catalytic subunit of MPF (cdc2) and its activator (cdk7) and that the appearance of the regulatory subunit of MPF (cyclin B) is sufficient for initiating maturation. Therefore, the unresponsiveness of growing oocytes to 17alpha,20beta-DP is attributable to a deficiency in the processes leading to cyclin B synthesis, which include 17alpha,20beta-DP reception on the oocyte surface, subsequent signal transduction pathways, and unmasking the stored cyclin B mRNA.
Collapse
Affiliation(s)
- T Kondo
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
90
|
Abstract
Cyclins are the regulatory subunits of cyclin-dependent protein kinases. In investigations of the expression of a cyclin gene during maize endosperm development, we detected a cyclin transcript with a 63-bp deletion in the region encoding the conserved 'cyclin box' where cyclin interacts with p34cdc2, the catalytic domain of the cyclin-dependent protein kinase. Analysis of cDNA and genomic sequences, and other observations, indicated that the deletion was caused by alternative splicing of a retained intron in the normally spliced transcript. Whereas the normally spliced cyclin RNA was mitotically functional, as indicated by its ability to promote maturation of Xenopus oocytes, the alternatively spliced transcript was unable to promote maturation. In addition to maize endosperm, the alternatively spliced cyclin was detected in apical meristem, mature leaf, root tip and mature root.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Cycle/genetics
- Cloning, Molecular
- Cyclins/genetics
- Cyclins/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Humans
- Introns
- Molecular Sequence Data
- Oocytes/metabolism
- Plant Leaves/metabolism
- Plant Roots/metabolism
- Plant Stems/metabolism
- Polymerase Chain Reaction
- RNA Processing, Post-Transcriptional
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Xenopus/genetics
- Zea mays/genetics
Collapse
Affiliation(s)
- Y Sun
- Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
91
|
Ballantyne S, Daniel DL, Wickens M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol Biol Cell 1997; 8:1633-48. [PMID: 9285830 PMCID: PMC276181 DOI: 10.1091/mbc.8.8.1633] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During oocyte maturation and early development, mRNAs receive poly(A) in the cytoplasm at distinct times relative to one another and to the cell cycle. These cytoplasmic polyadenylation reactions do not occur during oogenesis, but begin during oocyte maturation and continue throughout early development. In this report, we focus on the link between cytoplasmic polyadenylation and control of the cell cycle during meiotic maturation. Activation of maturation promoting factor, a complex of CDK1 and cyclin, is required for maturation and dependent on c-mos protein kinase. We demonstrate here that two classes of polyadenylation exist during oocyte maturation, defined by their dependence of c-mos and CDK1 protein kinases. Polyadenylation of the first class of mRNAs (class I) is independent of c-mos and CDK1 kinase activities, whereas polyadenylation of the second class (class II) requires both of these activities. Class I polyadenylation, through its effects on c-mos mRNA, is required for class II polyadenylation. cis-acting elements responsible for this distinction reside in the 3'-untranslated region, upstream of the polyadenylation signal AAUAAA. Cytoplasmic polyadenylation elements (CPEs) are sufficient to specify class I polyadenylation, and subtle changes in the CPE can substantially, though not entirely, shift an RNA from class I to class II. Activation of class I polyadenylation events is independent of hyperphosphorylation of CPE-binding protein or poly(A) polymerase, and requires cellular protein synthesis. The two classes of polyadenylation and of mRNA define a dependent pathway, in which polyadenylation of certain mRNAs requires the prior polyadenylation of another. We propose that this provides one method of regulating the temporal order of polyadenylation events, and links polyadenylation to the control of the meiotic cell cycle.
Collapse
Affiliation(s)
- S Ballantyne
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
92
|
Sprenger F, Yakubovich N, O'Farrell PH. S-phase function of Drosophila cyclin A and its downregulation in G1 phase. Curr Biol 1997; 7:488-99. [PMID: 9210381 PMCID: PMC2754254 DOI: 10.1016/s0960-9822(06)00220-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cyclin E is the normal inducer of S phase in G1 cells of Drosophila embryos. Stable G1 quiescence requires the downregulation both of cyclin E and of other factors that can bypass the normal regulation of cell cycle progression. RESULTS High-level expression of cyclin A triggered the G1/S transition in wild-type embryos and in mutant embryos lacking cyclin E. Three types of control downregulated this activity of cyclin A. First, cyclin destruction limited the accumulation of cyclin A protein in G1. Second, inhibitory phosphorylation of cdc2, the kinase partner of cyclin A, reduced the S-phase promoting activity of cyclin A in G1. Third, rux, a protein with unknown biochemical function, limited cyclin A function in G1. Overexpression of rux blocked S phase induction by coexpressed cyclin A and promoted the degradation of cyclin A. Rux also prevented a stable cyclin A mutant from inducing S phase, indicating that inhibition does not require cyclin destruction, and drove the nuclear localization of cyclin A. CONCLUSIONS Cyclin A can drive the G1/S transition, but this function is suppressed by three types of control: cyclin A destruction, inhibitory phosphorylation of cdc2, and inhibition by rux. The partly redundant contributions of these three inhibitory mechanisms safeguard the stability of G1 quiescence until the induction of cyclin E. The action of rux during G1 resembles the action of inhibitors of mitotic kinases present during G1 in yeast, although no obvious sequence similarity exists.
Collapse
Affiliation(s)
- Frank Sprenger
- Department of Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | - Patrick H. O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| |
Collapse
|
93
|
de Vantéry C, Stutz A, Vassalli JD, Schorderet-Slatkine S. Acquisition of meiotic competence in growing mouse oocytes is controlled at both translational and posttranslational levels. Dev Biol 1997; 187:43-54. [PMID: 9224673 DOI: 10.1006/dbio.1997.8599] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Full-grown mouse oocytes spontaneously resume meiosis in vitro when released from their follicular environment. By contrast, growing oocytes are not competent to resume meiosis; the molecular basis of meiotic competence is not known. Entry into M phase of the eukaryotic cell cycle is controlled by MPF, a catalytically active complex comprising p34cdc2 kinase and cyclin B. Incompetent oocytes contain levels of cyclin B comparable to those in competent oocytes, while their level of p34cdc2 is markedly lower; p34cdc2 accumulates abruptly at the end of oocyte growth, at the time of meiotic competence acquisition. We show here that this change in p34cdc2 concentration is not secondary to a corresponding change in the concentration of the cognate mRNA, indicating that translational control may be involved. Microinjection of translatable p34cdc2 mRNA into incompetent oocytes yielded high levels of the protein, but it did not lead to resumption of meiosis. Similarly, microinjection of cyclin B1 mRNA resulted in accumulation of the protein, but not in the acquisition of meiotic competence. By contrast, the microinjection of both p34cdc2 and cyclin B1 mRNAs in incompetent oocytes induced histone H1 and MAP kinase activation, germinal vesicle breakdown, and entry into M-phase including the translational activation of a dormant mRNA. Thus, endogenous cyclin B1 in incompetent oocytes is not available for interaction with p34cdc2, suggesting that a posttranslational event must occur to achieve meiotic competence. Microinjection of either p34cdc2 or cyclin B1 mRNAs accelerated meiotic reinitiation of okadaic acid-treated incompetent oocytes. Taken together, these results suggest that acquisition of meiotic competence by mouse oocytes is regulated at both translational and posttranslational levels.
Collapse
Affiliation(s)
- C de Vantéry
- Clinique de Stérilité et d'Endocrinologie Gynécologique, Département de Gynécologie et Obstétrique, Maternité, Hôpital Cantonal Universitaire de Geneve, Genèva, Switzerland
| | | | | | | |
Collapse
|
94
|
Thomas BJ, Zavitz KH, Dong X, Lane ME, Weigmann K, Finley RL, Brent R, Lehner CF, Zipursky SL. roughex down-regulates G2 cyclins in G1. Genes Dev 1997; 11:1289-98. [PMID: 9171373 DOI: 10.1101/gad.11.10.1289] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell cycle arrest in G1 at the onset of patterning in the Drosophila eye is mediated by roughex. In roughex mutants, cells accumulate Cyclin A protein in early G1 and progress into S phase precociously. When Roughex is overexpressed in S/G2 cells, Cyclin A is mislocalized to the nucleus and degraded, preventing mitosis. Whereas Roughex inhibits Cyclin A accumulation, Cyclin E down-regulates Roughex protein in vivo. Roughex binds to Cyclin E and is a substrate for a Cyclin E-Cdk complex in vitro. These data argue that Roughex inhibits Cyclin A accumulation in early G1 by targeting Cyclin A for destruction. In late G1, Roughex is destabilized in a Cyclin E-dependent process, releasing Cyclin A for its role in S/G2.
Collapse
Affiliation(s)
- B J Thomas
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Geum D, Sun W, Paik SK, Lee CC, Kim K. Estrogen-induced cyclin D1 and D3 gene expressions during mouse uterine cell proliferation in vivo: differential induction mechanism of cyclin D1 and D3. Mol Reprod Dev 1997; 46:450-8. [PMID: 9094091 DOI: 10.1002/(sici)1098-2795(199704)46:4<450::aid-mrd2>3.0.co;2-n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
D-type cyclins are involved in the regulation of the G1/S transition of the cell cycle in various cell types cultured in vitro. Little is, however, known about the expression pattern and functional role of D-type cyclins in physiological processes in vivo. In this report, we studied whether the expression of murine D-type cyclins correlates with the states of mouse uterine cell proliferation in vivo. Time-course changes in cyclin D1 and D3 mRNA levels in the uterine tissues of immature mice primed with 17 beta-estradiol (E2) were examined by Northern blot hybridization. c-fos and thymidine kinase (TK) mRNA levels were also examined as markers for the transition from G0 to G1 and the onset of S phase, respectively. Cyclin D1 and D3 mRNAs were induced 2.5-fold between c-fos and TK mRNA peaks. The E2-induced cyclin D1 and D3 gene expressions were blocked by antiestrogens tamoxifen and ICI 182,780. We also investigated the effects of cycloheximide (CHX), a protein synthesis inhibitor, on cyclin D1 and D3 gene expressions. When CHX was treated alone, cyclin D3, but not cyclin D1, mRNA was immediately superinduced. The E2-induced cyclin D3 gene expression was shifted by approximately 6 h when CHX was pretreated 1 hr before E2 administration. Interestingly, the 3H-thymidine incorporation experiment showed that the mouse uterine cell cycle progression also shifted by 6 hr with pretreatment of CHX. The overall results suggest that both cyclin D1 and D3 mRNAs are constitutively expressed in uterine tissues and induced by E2 at G1 phase of the mouse uterine cell cycle. However, the superinducibility and temporal shift of cyclin D3 by CHX suggest that there is a different regulatory mechanism underlying cyclin D1 and D3 gene expressions in the mouse uterine cell cycle progression.
Collapse
Affiliation(s)
- D Geum
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
96
|
Ruderman JV, Sudakin V, Hershko A. Preparation of clam oocyte extracts for cell cycle studies. Methods Enzymol 1997; 283:614-22. [PMID: 9251052 DOI: 10.1016/s0076-6879(97)83048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J V Ruderman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
97
|
Osborne HB, Richter JD. Translational control by polyadenylation during early development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:173-98. [PMID: 8994265 DOI: 10.1007/978-3-642-60471-3_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
98
|
Affiliation(s)
- M S Murakami
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | |
Collapse
|
99
|
Desrivières S, Volarević S, Merćep L, Ferrari S. Evidence for Different Mechanisms of Growth Inhibition of T-cell Lymphoma by Phorbol Esters and Concanavalin A. J Biol Chem 1997. [DOI: 10.1074/s0021-9258(19)78528-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
100
|
Strassburg CP, Alex B, Zindy F, Gerken G, Lüttig B, Meyer zum Büschenfelde KH, Bréchot C, Manns MP. Identification of cyclin A as a molecular target of antinuclear antibodies (ANA) in hepatic and non-hepatic autoimmune diseases. J Hepatol 1996; 25:859-66. [PMID: 9007714 DOI: 10.1016/s0168-8278(96)80290-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS Antinuclear antibodies (ANA) are a diagnostic hallmark of various autoimmune diseases and also of autoimmune hepatitis type 1. The designation ANA describes a heterogeneous group of autoantibodies. In liver diseases, only a few nuclear target antigens have been molecularly identified and characterized. Cyclins play a central role in cell cycle regulation, DNA transcription, and cell proliferation. Cyclin A was also identified as an integration site of the hepatitis B virus in a patient with hepatocellular carcinoma. In this study we identify cyclin A as a novel nuclear target protein of ANA. METHODS Sera of patients with autoimmune hepatitis (AIH) type 1 (n = 61), type 2 (n = 21), and type 3 (n = 39), primary biliary cirrhosis (PBC) (n = 107), rheumatic diseases (systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), mixed connective tissue disease (MCTD)) (n = 42) and normal controls (n = 100) were evaluated for ANA by indirect immunofluorescence. Baculovirus-generated recombinant human cyclin A protein was used for immunoblotting to study the prevalence of anti-cyclin A autoantibodies in these sera. RESULTS Sera of patients with AIH type 1 and rheumatic diseases had ANA detected by indirect immunofluorescence. In AIH type 1 12/61 (20%) and in rheumatic diseases 6/42 (14%) were immunoblot positive for autoantibodies against human cyclin A. In PBC, AIH type 3 and normal control sera negative for ANA by immunofluorescence, anti-cyclin A autoantibodies were present in 7-9%; in AIH type 2 and SLE they were undetectable by immunoblot. In some sera a typical cyclin A immunofluorescence was observed. Anti-cyclin A antibodies recognize a 45 and 50 kDa recombinant protein species, providing evidence for the recognition of at least two molecular epitopes. CONCLUSIONS This study has identified cyclin A as a human autoantigen in hepatic and non-hepatic autoimmune diseases. More studies are required to evaluate the clinical and pathophysiological significance of anti-cyclin A autoantibodies. The identification of human anti-cyclin A autoantibodies may additionally become a valuable tool for studying the function and regulation of cyclin A in mammalian and human cells.
Collapse
Affiliation(s)
- C P Strassburg
- Department of Gastroenterology and Hepatology, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|