51
|
Harsanyi K, Mangel SC. Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci U S A 1992; 89:9220-4. [PMID: 1357661 PMCID: PMC50097 DOI: 10.1073/pnas.89.19.9220] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the fish retina, interplexiform cells release dopamine onto cone-driven horizontal cells. Dopamine decreases the electrical coupling between horizontal cells by activating adenylate cyclase through dopamine D1 receptors. Using intracellular recording, we have studied the effect of dopamine D2 receptor activation on horizontal cell electrical coupling in the intact goldfish retina. Superfusion of the D2 agonist LY171555 (quinpirole; 0.2-10 microM) increased horizontal cell coupling, as indicated by a decrease in responses to centered spots or slits of light. The length constant of the horizontal cell network increased an average of 31%. Although dopamine (0.5-20 microM) uncoupled horizontal cells, lower concentrations (e.g., 0.2 microM) initially uncoupled and then subsequently increased coupling beyond initial control levels. The coupling effect of LY171555 (10 microM) was blocked completely by prior application of the D1 agonist SKF 38393 at saturating (20 microM) or nonsaturating (2.5-5.0 microM) doses. Prior treatment of the retinas with 6-hydroxydopamine, which destroyed dopaminergic neurons, eliminated the coupling effect of LY171555 but not the uncoupling effect of SKF 38393. These results suggest that goldfish horizontal cells contain D1, but not D2, receptors and that dopamine activation of D2 autoreceptors on interplexiform cells inhibits dopamine release onto horizontal cells so that the electrical coupling between horizontal cells increases.
Collapse
Affiliation(s)
- K Harsanyi
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham 35294
| | | |
Collapse
|
52
|
Wagner HJ, Behrens UD, Zaunreiter M, Douglas RH. The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system. Vis Neurosci 1992; 9:345-51. [PMID: 1390392 DOI: 10.1017/s0952523800010750] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During the light phase of a light/dark cycle, dendrites of teleost cone horizontal cells display numerous finger-like projections, called spinules, which are formed at dawn and degraded at dusk, and are thought to be involved in chromatic feedback processes. We have studied the oscillations of these spinules during a normal light/dark cycle and during 48 h of constant darkness in two groups of strongly rhythmic, diurnal fish, Aequidens pulcher. In one group the retinal dopaminergic system had been destroyed by the application of 6-OHDA, while in the other (control) group, the dopaminergic system was intact. In control fish, oscillations of spinule numbers were observed under both normal and constant dark conditions, indicating the presence of a robust circadian rhythm. However, spinule dynamics were severely affected by the absence of retinal dopamine. During the normal light phase, the number of spinules in 6-OHDA injected retinae was strongly reduced, and throughout continual darkness, spinule formation was almost completely suppressed. These results indicate that dopamine is essential for both light-evoked and circadian spinule formation; furthermore, we conclude that there is no circadian oscillator within horizontal cells controlling the formation of spinules.
Collapse
Affiliation(s)
- H J Wagner
- Institut für Anatomie und Zellbiologie, Philipps Universität, Marburg, Germany
| | | | | | | |
Collapse
|
53
|
Douglas RH, Wagner HJ, Zaunreiter M, Behrens UD, Djamgoz MB. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Vis Neurosci 1992; 9:335-43. [PMID: 1390391 DOI: 10.1017/s0952523800010749] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The retinae of lower vertebrates undergo a number of structural changes during light adaptation, including the photomechanical contraction of cone myoids and the dispersion of melanin granules within the epithelial pigment. Since the application of dopamine to dark-adapted retinae is known to produce morphological changes that are characteristic of light adaptation, dopamine is accepted as a casual mechanism for such retinomotor movements. However, we report here that in the teleost fish, Aequidens pulcher, the intraocular injection of 6-hydroxydopamine (6-OHDA), a substance known to destroy dopaminergic retinal cells, has no effect on the triggering of light-adaptive retinomotor movements of the cones and epithelial pigment and only slightly depresses the final level of light adaptation reached. Furthermore, the retina continues to show circadian retinomotor changes even after 48 h in continual darkness that are similar in both control and 6-OHDA injected fish. Biochemical assay and microscopic examination showed that 6-OHDA had destroyed dopaminergic retinal cells. We conclude, therefore, that although a dopaminergic mechanism is probably involved in the control of light-induced retinomotor movements, it cannot be the only control mechanism, nor can it be the cause of circadian retinomotor migrations. Interestingly, 6-OHDA injected eyes never reached full retinomotor dark adaptation, suggesting that dopamine has a role to play in the retina's response to darkness.
Collapse
Affiliation(s)
- R H Douglas
- Department of Optometry & Visual Science, City University, London, U.K
| | | | | | | | | |
Collapse
|
54
|
Critz SD, Marc RE. Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina. Vis Neurosci 1992; 9:271-8. [PMID: 1327088 DOI: 10.1017/s0952523800010683] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some neurochemical features of the neuronal circuitry regulating dopamine release were examined in the retina of the turtle, Pseudemys scripta elegans. Glutamate antagonists that block hyperpolarizing bipolar cells, such as 2,3 piperidine dicarboxylic acid (PDA), produced dose-dependent dopamine release. In contrast, the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), which blocks depolarizing bipolar cell responses with high specificity, had no effect on the release of dopamine. The gamma-aminobutyric acid (GABA) antagonist, bicuculline, also produced potent dose-dependent release of dopamine. The release of dopamine produced by PDA was blocked by exogenous GABA and muscimol, suggesting that the PDA-mediated release process was polysynaptic and involved a GABAergic synapse interposed between the bipolar and dopaminergic amacrine cells. The only other agents that produced dopamine release were chloride-free media and high extracellular K+; in particular, kainic acid and glutamate itself were ineffective. These results suggest that the primary neuronal chain mediating dopamine release in the turtle retina is: cone----hyperpolarizing bipolar cell----GABAergic amacrine cell----dopaminergic amacrine cell.
Collapse
Affiliation(s)
- S D Critz
- Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston 77030
| | | |
Collapse
|
55
|
Wagner HJ, Wulle I. Contacts of dopaminergic interplexiform cells in the outer retina of the blue acara. Vis Neurosci 1992; 9:325-33. [PMID: 1390390 DOI: 10.1017/s0952523800010737] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dopaminergic interplexiform cells in the retina of the blue acara were investigated using an antiserum against tyrosine hydroxylase and PAP visualization. In whole-mount preparations, we observed a homogeneous distribution of cell bodies throughout the retina without any indication of regional specialization. At the fine and ultrastructural level, we studied the morphology of labeled telodendria within the outer plexiform layer. Apart from contacts with horizontal cell perikarya and bipolar cell dendrites, we observed direct contacts, mostly in the form of close appositions, with cone pedicles and rod spherules. Quantitative evaluation and reconstruction of serial sections showed that all cone pedicles and most rod terminals were approached in this way. The dopaminergic pathway terminating on horizontal cells and photoreceptors is discussed with respect to the localization of dopamine receptors in the outer retina, and the control of adaptive changes such as retinomotor movements, spinule formation, and horizontal cell coupling.
Collapse
Affiliation(s)
- H J Wagner
- Institut für Anatomie und Zellbiologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
56
|
Jansen HG, Sanyal S. Synaptic plasticity in the rod terminals after partial photoreceptor cell loss in the heterozygous rds mutant mouse. J Comp Neurol 1992; 316:117-25. [PMID: 1573048 DOI: 10.1002/cne.903160110] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the retina of mice heterozygous for the retinal degeneration slow gene (rds/+) the photoreceptor cells, both rods and cones, develop abnormal outer segments but establish normal synaptic contacts. The other retinal layers also show normal structural organization. Starting from the age of 2 months, a very slow loss of photoreceptor cells progresses throughout life. As a result, the photoreceptor cell population in the retina of the affected mice is reduced to less than half at the age of 9-18 months. In some of the surviving rod terminals during this period, an increase in the number of synaptic ribbons is recorded. At the same time, the profiles of processes originating from the second order neurons and participating in these synapses are also increased in number so that the multiple ribbons appear as centres of multiple synaptic sites. Morphometric measurements of the perimeter of the synaptic profiles in rod terminals show a significant increase in the rds/+ retina over that of the control retina. Observations based on serial electron microscopy indicate that multiple synaptic sites are developed while the number of the second order neuronal processes, entering the terminals, remains unchanged. The frequency of terminals with multiple synapses in the rds/+ retina increases with progressive photoreceptor cell loss. Similar changes do not occur in the terminals of the cones. It is postulated that loss of some rod photoreceptor cells within a group that is presynaptic to common bipolars or horizontal cells results in partial deafferentation which in turn stimulates the growth of the remaining synaptic elements. The possible compensatory effect and functional significance of such synaptic growth are discussed.
Collapse
Affiliation(s)
- H G Jansen
- Department of Anatomy, Faculty of Medicine, Erasmus University, Rotterdam, The Netherlands
| | | |
Collapse
|
57
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
58
|
Baldridge WH, Ball AK. Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas. Vis Neurosci 1991; 7:441-50. [PMID: 1764414 DOI: 10.1017/s0952523800009731] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of background illumination on horizontal cell receptive-field size and dye coupling was investigated in isolated superfused goldfish retinas. Background illumination reduced both horizontal cell receptive-field size and dye coupling. The effect of light on horizontal cell receptive-field size was mimicked by treating the retina with 20 microM dopamine. To test the hypothesis that the effects of light were due to endogenous dopamine release, the effect of light was studied in goldfish retinas in which dopaminergic interplexiform cells were lesioned using 6-hydroxydopamine treatment. In lesioned retinas, background illumination reduced both horizontal cell receptive-field size and dye coupling. Furthermore, the effect of background illumination on unlesioned animals could not be blocked by prior treatment with the D1 dopamine receptor antagonist SCH-23390. These results suggest that, in goldfish retina, dopamine release is not the only mechanism by which horizontal cell receptive-field size could be reduced by light.
Collapse
Affiliation(s)
- W H Baldridge
- Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
59
|
Cahill GM, Grace MS, Besharse JC. Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol 1991; 11:529-60. [PMID: 1742771 DOI: 10.1007/bf00734814] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Current knowledge of the mechanisms of circadian and photic regulation of retinal melatonin in vertebrates is reviewed, with a focus on recent progress and unanswered questions. 2. Retinal melatonin synthesis is elevated at night, as a result of acute suppression by light and rhythmic regulation by a circadian oscillator, or clock, which has been localized to the eye in some species. 3. The development of suitable in vitro retinal preparations, particularly the eyecup from the African clawed frog, Xenopus laevis, has enabled identification of neural, cellular, and molecular mechanisms of retinal melatonin regulation. 4. Recent findings indicate that retinal melatonin levels can be regulated at multiple points in indoleamine metabolic pathways, including synthesis and availability of the precursor serotonin, activity of the enzyme serotonin N-acetyltransferase, and a novel pathway for degradation of melatonin within the retina. 5. Retinal dopamine appears to act through D2 receptors as a signal for light in this system, both in the acute suppression of melatonin synthesis and in the entrainment of the ocular circadian oscillator. 6. A recently developed in vitro system that enables high-resolution measurement of retinal circadian rhythmicity for mechanistic analysis of the circadian oscillator is described, along with preliminary results that suggest its potential for elucidating general circadian mechanisms. 7. A model describing hypothesized interactions among circadian, neurochemical, and cellular mechanisms in regulation of retinal melatonin is presented.
Collapse
Affiliation(s)
- G M Cahill
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|
60
|
Weiler R, Kohler K, Janssen U. Protein kinase C mediates transient spinule-type neurite outgrowth in the retina during light adaptation. Proc Natl Acad Sci U S A 1991; 88:3603-7. [PMID: 2023908 PMCID: PMC51500 DOI: 10.1073/pnas.88.9.3603] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Light and dark adaptation of the teleost retina is accompanied by a remarkable morphological rearrangement of the synaptic connections between photoreceptors and second-order neurons: during light adaptation, numerous new neurites, the so-called spinules, arise from the terminal dendrites of horizontal cells invaginating the cone pedicle, and during dark adaptation, these spinules are retracted. The formation of these spinules is paralleled by the appearance of color opponency in horizontal and ganglion cells, which led to the suggestion that these spinules are the site of the inhibitory synapses in the negative feedback loop between cones and horizontal cells. The formation of the spinules in the light and their disappearance in darkness have a time course of minutes and are modulated by the neurotransmitters dopamine and glutamate, respectively. Neurotransmitters can modulate neuronal processing through a variety of second messengers that activate protein kinases, resulting most commonly in protein phosphorylation. Herein we report that activation of protein kinase C by phorbol esters promotes the formation of new horizontal-cell spinules in animals kept in the dark. Partial inhibition of protein kinase C activation with sphingosines prevents the formation of new spinules during light adaptation but does not affect established spinules. The spinule-forming effect of phorbol esters is not mediated by dopaminergic neurons, since the effect is also seen in retinas depleted of dopaminergic neurons. Phorbol esters also initiate the formation of spinules in synaptically isolated horizontal cells, demonstrating that they have a direct action on these cells. In addition, isolated horizontal cells have substrate proteins that are phosphorylated in a protein kinase C-dependent manner.
Collapse
Affiliation(s)
- R Weiler
- Department of Neurobiology, University of Oldenburg, Federal Republic of Germany
| | | | | |
Collapse
|
61
|
Witkovsky P, Dearry A. Chapter 10 Functional roles of dopamine in the vertebrate retina. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90031-v] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
62
|
Kirsch M, Wagner HJ, Djamgoz MB. Dopamine and plasticity of horizontal cell function in the teleost retina: regulation of a spectral mechanism through D1-receptors. Vision Res 1991; 31:401-12. [PMID: 1843751 DOI: 10.1016/0042-6989(91)90093-k] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The negative feed-back interaction between horizontal cells (HCs) and cones in the cyprinid fish retina is thought to be mediated by horizontal cell spinules. These are "plastic" structures, largely absent from the dark-adapted retina and formed anew during light adaptation. We have previously shown that horizontal cell feed-back is similarly enhanced by light adaptation. The role of the interplexiform cell transmitter dopamine in both processes has been studied in the roach retina. Application of dopamine to dark-adapted retinae induced spinule formation in a dose-dependent way. The effect of dopamine was mimicked by dibutyryl-cAMP and suppressed selectively by D1 receptor antagonists. The effect of light in inducing spinule formation was lost in retinae depleted of endogenous dopamine. However, application of exogenous dopamine to these retinae triggered normal spinule formation. For all pharmacological treatments used, there was a strong correlation between spinule number and degree of feed-back activity in biphasic horizontal cells. Thus, when the spinule content of the cone pedicles was high, biphasic horizontal cell responses exhibited strong depolarizing components and vice versa. It is concluded that light-evoked formation of spinules in HC dendrites involves the action of dopamine upon D1 receptors. Spinules, in turn, are likely to be presynaptic terminals mediating the dynamic negative feed-back effect of horizontal cells upon cones.
Collapse
Affiliation(s)
- M Kirsch
- Department of Anatomy and Cell Biology, University of Marburg, F.R.G
| | | | | |
Collapse
|
63
|
Abstract
The action of tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine, the most abundant catecholamine in vertebrate retinas. I have examined the activation and regulation of this enzyme in isolated retinas of green sunfish, Lepomis cyanellus. Exposing previously dark-adapted retinas to constant illumination for a period of 10 min increased enzymatic activity 2.2-fold over that present in retinas incubated in darkness. Thus, light onset activates tyrosine hydroxylase in teleost retinas. Stimulation of the activity of tyrosine hydroxylase under these conditions was associated with a decrease in the apparent Km of the enzyme for its pteridine cofactor without a change in the apparent Vmax of the reaction. This result suggests that short-term exposure to light increases dopamine synthesis by enhancing the affinity of the enzyme for its naturally occurring cofactor. These findings are consistent with the idea that light activates dopaminergic neurons in teleost retinas.
Collapse
Affiliation(s)
- A Dearry
- Department of Physiology-Anatomy, University of California, Berkeley 94720
| |
Collapse
|
64
|
Kohler K, Kolbinger W, Kurz-Isler G, Weiler R. Endogenous dopamine and cyclic events in the fish retina, II: Correlation of retinomotor movement, spinule formation, and connexon density of gap junctions with dopamine activity during light/dark cycles. Vis Neurosci 1990; 5:417-28. [PMID: 2288893 DOI: 10.1017/s0952523800000547] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the fish retina, retinomotor movement, spinule formation, and alteration of connexon density within gap junctions occur in response to changes in ambient light conditions. All of these morphological parameters can also be influenced by the application of dopamine. This study examines whether the morphological alterations of these structures are correlated with the activity of endogenous dopamine during an entrained 12-h light/12-h dark cycle and after 1-h sort-term adaptation periods. The two measured parameters of retinomotor movement, cone inner segment length and pigment dispersion, were well-correlated with endogenous cyclic dopamine activity. However, retinomotor movement was initiated already at the end of the entrained dark period, before the onset of light and before the onset of dopamine turnover. Furthermore, a 1-h dark-adaptation period in the middle of the light phase reduced dopamine activity but did not affect retinomotor movement. At the switch from light to dark and after a 1-h light period at midnight retinomotor movement correlated exactly with dopamine turnover and illumination conditions. The formation of spinules was correlated with dopaminergic activity during all phases of the light/dark cycle and during short-term adaptation periods. Spinules were expressed in the light when dopamine activity was high and they were retracted when dopamine activity was reduced during darkness. Connexon density of horizontal cell gap junctions showed a weaker correlation with the endogenous dopamine turnover. In this case, a high activity of endogenous dopamine was paralleled by a high density of connexons. Our results suggest that endogenous dopamine is involved in the cyclic regulation of the observed morphological alterations and that dopamine is part of the light signal for these mechanisms.
Collapse
Affiliation(s)
- K Kohler
- Department of Neurobiology, University of Oldenburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
65
|
Abstract
In teleost retinas, the somata of same-type cone horizontal cells are electrically coupled via extensive gap junctions, as are the axon terminals of same-type cells. This coupling persists throughout the animal's life and is modulated by dopamine and conditions of light- vs. dark-adaptation. Gap junction particle density in goldfish horizontal cell somata has also been shown to change under these conditions, indicating that these junctions are dynamic. We have used electron microscopy to examine gap junctions in bass horizontal cells with a fixation method that facilitates detection of gap junctions. Annular gap junction profiles were observed in the somatic cytoplasm of all cone horizontal cell types in both light- and dark-adapted animals. Serial sections showed that most profiles represented gap junction vesicles free within the cytoplasm; the remainder represented vesicles still attached to extensive plasma membrane gap junctions by a thin cytoplasmic neck, suggestive of an intermediate stage in endocytosis. Observations of gap junction vesicles containing fragments of gap junctional membrane and/or fused with lysosomal bodies further supported this hypothesis. Because gap junctions persist between the horizontal cells, we propose that gap junction endocytosis and lysosomal degradation are balanced by addition of new junctions. While endocytosis has been widely demonstrated to serve in programmed removal of gap junctions (without subsequent replacement), from both nonneuronal cells and developing neurons, this study indicates that it can also function in the renewal of electrical synapses in the adult teleost retina, where gap junction elimination is not the goal.
Collapse
Affiliation(s)
- D K Vaughan
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | |
Collapse
|
66
|
Wagner HJ, Wulle I. Dopaminergic interplexiform cells contact photoreceptor terminals in catfish retina. Cell Tissue Res 1990. [DOI: 10.1007/bf00318678] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Sclerally directed processes of dopaminergic interplexiform cells reach the outer nuclear layer in rat and monkey retina. Vis Neurosci 1990; 4:547-53. [PMID: 1980605 DOI: 10.1017/s0952523800005757] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tyrosine hydroxylase-immunolabeled wholemounts and sections of rat and monkey retina were observed at both the light- and electron-microscopic level. Small processes derived from sclerally directed processes of dopaminergic interplexiform cells were observed ascending to the outer nuclear layer where they were distributed between photoreceptor cells. A role in the regulation of disc shedding and/or melatonin biosynthesis is proposed for dopamine released at this level.
Collapse
|
68
|
Douglas RH, Djamgoz MB. Retinal dopamine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 4:425-9. [PMID: 2111387 DOI: 10.1016/1011-1344(90)85021-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
69
|
Massey SC. Chapter 11 Cell types using glutamate as a neurotransmitter in the vertebrate retina. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0278-4327(90)90013-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
70
|
Negishi K, Teranishi T, Kato S. Chapter 1 The dopamine system of the teleost fish retina. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0278-4327(90)90003-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Djamgoz MB, Kirsch M, Wagner HJ. Haloperidol suppresses light-induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina. Neurosci Lett 1989; 107:200-4. [PMID: 2616031 DOI: 10.1016/0304-3940(89)90817-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In retinae of lower vertebrates, negative feed-back interactions between horizontal cells (second-order neurones), and cone photoreceptors lead to generation of spectrally multi-phasic light-evoked responses (S-potentials) in horizontal cells. Spinules (finger-like extensions of horizontal cell dendrites) have been suggested to mediate these interactions in retinae of teleost fish. We have studied whether prevention of light-dependent spinule formation would indeed affect an S-potential component (the red-sensitive depolarization in H2 horizontal cells), known to depend on such negative feed-back. Haloperidol was used as a dopamine antagonist to suppress light-induced formation of spinules in retinae of the cyprinid fish, the roach. In normal (untreated) retinae, biphasic S-potentials were strongly depolarizing and horizontal cell dendrites possessed abundant spinules. However, following application of haloperidol to the vitreous prior to light adaptation, spinule formation was suppressed, and concomitantly, red-sensitive depolarizing S-potentials remained significantly under-developed. The results are consistent, therefore, with the idea that spinules mediate the negative feed-back interaction between horizontal cells and cones.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Pure and Applied Biology, Imperial College of Science, Technology and Medicine, London, U.K
| | | | | |
Collapse
|
72
|
Guarnieri T, Villani L, Fasolo A. Tyrosine hydroxylase immunohistochemistry in the normal and 1-methyl-4-phenyl-tetrahydropyridine (MPP+)-treated retina of goldfish. Neurosci Lett 1989; 106:269-74. [PMID: 2574839 DOI: 10.1016/0304-3940(89)90175-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dopaminergic interplexiform neurons have been identified in the inner nuclear layer of goldfish retina, with tyrosine hydroxylase (TH) immunocytochemistry in whole-mounted retinae and in cryosections. The neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+), which selectively damages dopaminergic neurons in mammals, caused a marked depletion of TH immunoreactivity in goldfish retina. Three days after intravitreal injection, retinae showed no significant decrease in the number of TH-positive neurons. However most of the TH-immunoreactive cell bodies showed an evident depletion of TH immunoreactivity and their processes, ramified in the inner and outer plexiform layers, disappeared almost completely.
Collapse
Affiliation(s)
- T Guarnieri
- Department of Biology, University of Bologna, Italy
| | | | | |
Collapse
|
73
|
Baldridge WH, Ball AK, Miller RG. Gap junction particle density of horizontal cells in goldfish retinas lesioned with 6-OHDA. J Comp Neurol 1989; 287:238-46. [PMID: 2507595 DOI: 10.1002/cne.902870207] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The I1 dopaminergic interplexiform cells of the fish retina are believed to modulate horizontal cell coupling by increasing gap junction resistance. Dopamine also modulates the morphology of horizontal cell gap junctions and mimics the effects of light adaptation. To determine whether the light-dependent changes in gap junction morphology are due to endogenous dopamine release, horizontal cell gap junctions were studied in goldfish retinas lacking dopaminergic neurons. Dopaminergic interplexiform cells were destroyed by intraocular injections of 6-hydroxydopamine in both eyes. After lesioning, fish were treated in one of four ways: (1) light-adapted, (2) dark-adapted (1 hour), (3) light-adapted and given an intraocular injection of dopamine, or (4) dark-adapted (1 hour) and injected with dopamine. The effectiveness of lesioning was evaluated by autoradiographic detection of [3H]-dopamine uptake in the retina of one eye. Retinas in which lesioning of the contralateral eye was deemed effective were processed for freeze-fracture electron microscopy and the particle density of horizontal cell gap junctions determined. Lesioned retinas, whether light- or dark-adapted, had elevated horizontal cell soma gap junction particle densities compared to lesioned retinas treated with dopamine. These results demonstrate that high soma gap junction particle densities can be correlated with the absence of dopamine and low densities associated with the presence of dopamine. The differences in gap junction particle density between lesioned and lesioned + dopamine-treatment were similar to differences between nonlesioned dark-adapted (1 hour) and light-adapted retinas, respectively. Therefore, the particle density of light- and dark-adapted soma gap junctions suggests a greater release of dopamine in light-adapted fish than in 1 hour dark-adapted fish.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W H Baldridge
- Division of Anatomy and Experimental Morphology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
74
|
Dearry A, Burnside B. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. J Neurochem 1989; 53:870-8. [PMID: 2547905 DOI: 10.1111/j.1471-4159.1989.tb11785.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules migrate in and out of the cells' long apical projections in response to changes in light condition. When the RPE is in its normal association with the retina, light onset induces pigment granules to disperse into the apical projections; dark onset induces pigment granules to aggregate into the cell bodies. However, when the RPE is separated from the retina, pigment granule movement in the isolated RPE is insensitive to light onset. It thus seems likely that a signal from the retina communicates light onset to the RPE to initiate pigment dispersion. We have examined the nature of this retina-to-RPE signal in green sunfish, Lepomis cyanellus. In isolated retinas with adherent RPE, light-induced pigment dispersion in the RPE is blocked by treatments known to block Ca2+-dependent transmitter release in the retina. In addition, the medium obtained from incubating previously dark-adapted retinas in the light induces light-adaptive pigment dispersion when added to isolated RPE. In contrast, the medium obtained from incubating dark-adapted retinas in constant darkness does not affect pigment distribution when added to isolated RPE. These results are consistent with the idea that RPE pigment dispersion is triggered by a substance that diffuses from the retina at light onset. The capacity of the conditioned medium from light-incubated retinas to induce pigment dispersion in isolated RPE is inhibited by a D2 dopamine antagonist, but not by D1 or alpha-adrenergic antagonists. Light-induced pigment dispersion in whole RPE-retinas is also blocked by a D2 dopamine antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Dearry
- Department of Physiology-Anatomy, University of California, Berkeley
| | | |
Collapse
|
75
|
Kirsch M, Wagner HJ. Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Res 1989; 29:147-54. [PMID: 2800344 DOI: 10.1016/0042-6989(89)90120-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The release of endogenous dopamine from teleost retinae was studied using high-performance-liquid-chromatography and electrochemical detection. Dopamine was measured in superfusates of isolated retinae after stimulation with flickering light as well as in the presence of GABA, L-glutamate, kainate or taurine. The effect of the receptor antagonists bicuculline, picrotoxin and kynurenic acid was also tested in retinae kept in the dark. We report a low level, basal release of dopamine in the dark (20 pg x 10 min-1/retina), which is transiently increased by stimulation with flickering light. This light evoked release of dopamine is inhibited by GABA and L-glutamate, whilst antagonists of these retinal transmitters stimulate release in the dark.
Collapse
Affiliation(s)
- M Kirsch
- Institut für Anatomie und Zellbiologie der Universitaet Marburg, F.R.G
| | | |
Collapse
|