51
|
Erickson FL, Nika J, Rippel S, Hannig EM. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 2001; 158:123-32. [PMID: 11333223 PMCID: PMC1461651 DOI: 10.1093/genetics/158.1.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
52
|
Yamaguchi H, Nakanishi H, Nishizawa NK, Mori S. Isolation and characterization of IDI2, a new Fe-deficiency-induced cDNA from barley roots, which encodes a protein related to the alpha subunit of eukaryotic initiation factor 2B (eIF2Balpha). JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:2001-2007. [PMID: 11141174 DOI: 10.1093/jexbot/51.353.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new Fe-deficiency-inducible cDNA, IDI2, was isolated from Fe-deficient barley roots using the cDNA MACRO Array Technique. Accumulation of IDI2 transcripts in barley roots was strongly correlated with iron nutritional status. IDI2 encoded a protein with a low similarity to the alpha subunit of eukaryotic initiation factor 2B (eIF2Balpha). In addition, many hypothetical proteins homologous to IDI2 were also found in a database search. These proteins had limited similarity to eIF2Balpha as well as IDI2. It has been reported that these eIF2Balpha-like proteins (eIF2Balpha-LPs) are a family that is distinct from the eIF2Balpha/beta/delta family and widely distributed in the archaea, bacteria, and eukarya. A phylogenic analysis revealed that IDI2 is the first member of the eIF2Balpha-LP family to be found in higher plants. A possible role of IDI2 protein in regulating protein synthesis in Fe-deficient barley roots is proposed.
Collapse
Affiliation(s)
- H Yamaguchi
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | |
Collapse
|
53
|
Bourdineaud JP, De Sampaïo G, Lauquin GJ. A Rox1-independent hypoxic pathway in yeast. Antagonistic action of the repressor Ord1 and activator Yap1 for hypoxic expression of the SRP1/TIR1 gene. Mol Microbiol 2000; 38:879-90. [PMID: 11115121 DOI: 10.1046/j.1365-2958.2000.02188.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxic SRP1/TIR1 gene expression depends on the absence of haem but is independent of Rox1-mediated repression. We have found a new hypoxic pathway involving an antagonistic interaction between the Ixr1/Ord1 repressor and the Yap1 factor, a transcriptional activator involved in oxidative stress response. Here, we show that Ord1 repressed SRP1 gene expression under normoxia and hypoxia, whereas Yap1 activated it. Ord1 and Yap1 have been shown to bind the SRP1 promoter in a region extending from -299 to -156 bp upstream of the start codon. A typical AP-1 responsive element lying from -247 to -240 bp allows Yap1 binding. Internal deletion of sequences within the SRP1 promoter were introduced. Two regions were characterized at positions -299/-251 and -218/-156 that, once removed, resulted in a constitutive expression of SRP1 in a wild-type strain under normoxic conditions. Deletion of both these two sequences allowed the bypass of YAP1 requirement in a Deltayap1 strain, whereas these two internal deletions did not yield increased expression in a Deltaord1 strain compared with the full-length promoter. Both a single Deltaord1 mutant and a doubly disrupted Deltayap1 Deltaord1 strain yielded normoxic constitutive SRP1 expression and increased hypoxic SRP1 induction, thereby demonstrating that ord1 is epistatic to yap1. Thus, Yap1 is not directly involved in SRP1 induction by hypoxia, but is necessary to counteract the Ord1 effect.
Collapse
Affiliation(s)
- J P Bourdineaud
- Faculté d'Oenologie, Université de Bordeaux II, 351 cours de la Libération, 33405 Talence Cedex, France.
| | | | | |
Collapse
|
54
|
Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P. Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 2000; 20:7192-204. [PMID: 10982836 PMCID: PMC86273 DOI: 10.1128/mcb.20.19.7192-7204.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, plasma concentration of amino acids is affected by nutritional or pathological conditions. It has been well established that nutrients, and particularly amino acids, are involved in the control of gene expression. Here we examined the molecular mechanisms involved in the regulation of CHOP (a CCAAT/enhancer-binding protein [C/EBP]-related gene) expression upon amino acid limitation. We have previously shown that regulation of CHOP mRNA expression by amino acid concentration has both transcriptional and posttranscriptional components. We report the analysis of cis- and trans-acting elements involved in the transcriptional activation of the human CHOP gene by leucine starvation. Using a transient expression assay, we show that a cis-positive element is essential for amino acid regulation of the CHOP promoter. This sequence is the first described that can regulate a basal promoter in response to starvation for several individual amino acids and therefore can be called an amino acid response element (AARE). In addition, we show that the CHOP AARE is related to C/EBP and ATF/CRE binding sites and binds in vitro the activating transcription factor 2 (ATF-2) in starved and unstarved conditions. Using ATF-2-deficient mouse embryonic fibroblasts and an ATF-2-dominant negative mutant, we demonstrate that expression of this transcription factor is essential for the transcriptional activation of CHOP by leucine starvation. Altogether, these results suggest that ATF-2 may be a member of a cascade of molecular events by which the cellular concentration of amino acids can regulate mammalian gene expression.
Collapse
MESH Headings
- Activating Transcription Factor 2
- Animals
- CCAAT-Enhancer-Binding Proteins
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Culture Media/pharmacology
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP Response Element-Binding Protein/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enhancer Elements, Genetic
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells/drug effects
- HeLa Cells/metabolism
- Humans
- Leucine/pharmacology
- Leucine/physiology
- Mice
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Regulatory Sequences, Nucleic Acid/drug effects
- Signal Transduction
- Transcription Factor CHOP
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- A Bruhat
- U.R. 238 de Nutrition Cellulaire et Moléculaire, INRA de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
55
|
Hemmings-Mieszczak M, Hohn T, Preiss T. Termination and peptide release at the upstream open reading frame are required for downstream translation on synthetic shunt-competent mRNA leaders. Mol Cell Biol 2000; 20:6212-23. [PMID: 10938098 PMCID: PMC86096 DOI: 10.1128/mcb.20.17.6212-6223.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown recently that a stable hairpin preceded by a short upstream open reading frame (uORF) promotes nonlinear ribosome migration or ribosome shunt on a synthetic mRNA leader (M. Hemmings-Mieszczak and T. Hohn, RNA 5:1149-1157, 1999). We have now used the model mRNA leader to study further the mechanism of shunting in vivo and in vitro. We show that a full cycle of translation of the uORF, including initiation, elongation, and termination, is a precondition for the ribosome shunt across the stem structure to initiate translation downstream. Specifically, AUG recognition and the proper release of the nascent peptide are necessary and sufficient for shunting. Furthermore, the stop codon context must not impede downstream reinitiation. Translation of the main ORF was inhibited by replacement of the uORF by coding sequences repressing reinitiation but stimulated by the presence of the virus-specific translational transactivator of reinitiation (cauliflower mosaic virus pVI). Our results indicate reinitiation as the mechanism of translation initiation on the synthetic shunt-competent mRNA leader and suggest that uORF-dependent shunting is more prevalent than previously anticipated. Within the above constraints, uORF-dependent shunting is quite tolerant of uORF and stem sequences and operates in systems as diverse as plants and fungi.
Collapse
|
56
|
Abstract
Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)α and C/EBPβ genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPβ and C/EBPα mRNAs by differential initiation of translation. These isoforms retain different parts of the amino terminus and therefore display different functions in gene regulation and proliferation control. We show that PKR and mTOR signaling pathways control the ratio of C/EBP isoform expression through the eukaryotic translation initiation factors eIF-2α and eIF-4E, respectively. An evolutionary conserved upstream open reading frame in C/EBPα and C/EBPβ mRNAs is a prerequisite for regulated initiation from the different translation initiation sites and integrates translation factor activity. Deregulated translational control leading to aberrant C/EBPα and C/EBPβ isoform expression or ectopic expression of truncated isoforms disrupts terminal differentiation and induces a transformed phenotype in 3T3-L1 cells. Our results demonstrate that the translational controlled ratio of C/EBPα and C/EBPβ isoform expression determines cell fate.
Collapse
|
57
|
Davis CA, Grate L, Spingola M, Ares M. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res 2000; 28:1700-6. [PMID: 10734188 PMCID: PMC102823 DOI: 10.1093/nar/28.8.1700] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Revised: 03/01/2000] [Accepted: 03/01/2000] [Indexed: 11/15/2022] Open
Abstract
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/ MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/ MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/ SPO70 ) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.
Collapse
Affiliation(s)
- C A Davis
- Center for Molecular Biology of RNA, 423 Sinsheimer Laboratories, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
58
|
Rafie-Kolpin M, Chefalo PJ, Hussain Z, Hahn J, Uma S, Matts RL, Chen JJ. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem 2000; 275:5171-8. [PMID: 10671563 DOI: 10.1074/jbc.275.7.5171] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.
Collapse
Affiliation(s)
- M Rafie-Kolpin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Bartha T, Kim SW, Salvatore D, Gereben B, Tu HM, Harney JW, Rudas P, Larsen PR. Characterization of the 5'-flanking and 5'-untranslated regions of the cyclic adenosine 3',5'-monophosphate-responsive human type 2 iodothyronine deiodinase gene. Endocrinology 2000; 141:229-37. [PMID: 10614643 DOI: 10.1210/endo.141.1.7282] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Indexed: 11/19/2022]
Abstract
The type 2 iodothyronine deiodinase (D2) catalyzes T4 activation. In humans, unlike rodents, it is widely expressed, and its action probably contributes to both intracellular and plasma T3 pools. We have isolated the 6.5-kb 5'-flanking region (FR) and the previously uncloned 553 nucleotides (nt) of the 5'-untranslated region (UTR) of hdio2. The 5'-UTR is complex, with three transcription start sites (TSS) (708, 31, and approximately 24 nt 5' to the ATG), an alternatively spliced approximately 300-nt intron in the 5'-UTR, and three short open reading frames 5' to the initiator ATG. The previously reported approximately 7.5-kb D2 messenger RNA (mRNA) is actually an approximately 7-kb doublet that is present in thyroid, pituitary, cardiac and skeletal muscle, and possibly brain, but with only the longer transcript in placenta. A canonical cAMP response element-binding protein-binding site is present at about 90 bp 5' to the most 5'-TSS. It accounts for the robust response of the 6.8-kb hdio2 5'-FR to protein kinase A. Forskolin increases D2 mRNA in human thyroid cells, which may explain the high D2 mRNA in Graves' thyroid and thyroid adenomas. The hdio2 gene structure and Northern blot results suggest that D2 expression is tightly controlled and tissue specific.
Collapse
Affiliation(s)
- T Bartha
- Department of Physiology and Biochemistry, University of Veterinary Science, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Recent studies suggest that genotoxic and non-genotoxic stresses appear to invoke translational checkpoints in order to inhibit protein synthesis. Depending on the stress and/or cell type, this downregulation of protein synthesis may either (i) protect against the deleterious effects of noxious agents and ensure the conservation of resources that are needed to survive under adverse conditions or (ii) activate apoptosis. In this article, we have reviewed several lines of evidence which support the notion that regulation of translation initiation is an important component of the cellular stress response. While the stress-induced post-translational regulation of translation initiation factors (eIFs) has been well documented, stress-induced regulation of eIFs at the mRNA levels, as reviewed here, is only beginning to be elucidated. Thus, the stress-mediated regulation of eIFs occurs at multiple different levels involving, transcriptional, post-transcriptional and post-translational controls.
Collapse
Affiliation(s)
- M S Sheikh
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 37, Room 5CO9, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
61
|
Marten NW, Hsiang CH, Yu L, Stollenwerk NS, Straus DS. Functional activity of hepatocyte nuclear factor-1 is specifically decreased in amino acid-limited hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:160-74. [PMID: 10542313 DOI: 10.1016/s0167-4781(99)00165-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limitation of cultured rat hepatoma cells for an essential amino acid results in a specific decrease in expression of several genes that are preferentially expressed in the liver, including the serum albumin and transthyretin genes. In the work presented here, we examined whether the coordinate repression of these genes is caused by decreased activity of one or more of the liver-enriched transcription factors, hepatocyte nuclear factor-1 (HNF-1), HNF-3, HNF-4 or C/EBP. To address this question, HepG2 human hepatoma cells were transiently transfected with luciferase reporter constructs containing multiple copies of individual transcription factor binding sites. Limitation for an essential amino acid resulted in specific repression of a construct in which luciferase expression was directed by HNF-1. A single HNF-1 binding site located adjacent to the TATA box plays a major role in transcription directed by the serum albumin promoter in transient transfection assays. Amino acid limitation of cells transfected with an albumin promoter/luciferase reporter construct resulted in specific repression of promoter activity. In addition, bacterial methylation or site-directed mutagenesis of the HNF-1 binding site in the albumin proximal promoter region eliminated the regulation of an albumin promoter-luciferase reporter construct under conditions of amino acid limitation. These results demonstrated that the HNF-1 binding site played a major role in regulation of the albumin promoter by amino acid availability. Deletion analysis of the albumin promoter confirmed regulation through the HNF-1 binding site and also identified a second amino acid regulatory element in the upstream region of the albumin promoter, which has been shown previously to contain a functional binding site for HNF-3. The repression of albumin promoter and HNF-1 reporter constructs in amino acid-limited cells occurred without a change in the DNA binding activity of HNF-1. Moreover, HNF-3 DNA binding activity was also not decreased in amino acid-limited cells. These results suggest that the regulation of transcription by amino acids occurs at the level of transcriptional activation by HNF-1 and HNF-3, rather than by alteration of the DNA binding activity of either factor.
Collapse
Affiliation(s)
- N W Marten
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | |
Collapse
|
62
|
Czaplinski K, Ruiz-Echevarria MJ, González CI, Peltz SW. Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover. Bioessays 1999; 21:685-96. [PMID: 10440865 DOI: 10.1002/(sici)1521-1878(199908)21:8<685::aid-bies8>3.0.co;2-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Eukaryotes have evolved conserved mechanisms to rid cells of faulty gene products that can interfere with cell function. mRNA surveillance is an example of a pathway that monitors the translation termination process and promotes degradation of transcripts harboring premature translation termination codons. Studies on the mechanism of mRNA surveillance in yeast and humans suggest a common mechanism where a "surveillance complex" monitors the translation process and determines whether translation termination has occurred at the correct position within the mRNA. A model will be presented that suggests that the surveillance complex assesses translation termination by monitoring the transition of an RNP as it is converted from a nuclear to a cytoplasmic form during the initial rounds of translation.
Collapse
Affiliation(s)
- K Czaplinski
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
63
|
Abstract
In mammals, the plasma concentration of amino acids is affected by nutritional or pathological conditions. For example, an amino acid profile alteration has been reported as a result of a deficiency of any one of the essential amino acids, a dietary imbalance of amino acids or an insufficient intake of protein. Amino acid availability regulates the expression of several genes involved in the regulation of growth, cellular function or amino acid metabolism. A limitation of several amino acids strongly increases the expression of insulin-like growth factor binding protein CHOP and asparagine synthetase genes. Elevated messenger RNA levels result from both an increase in the rate of transcription and an increase in messenger RNA stability. DNA amino acid response elements have been characterized in the promoter of CHOP and asparagine synthetase genes. The underlying mechanisms of gene regulation by amino acid limitation are not yet completely understood. The results discussed in this review demonstrate that amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.
Collapse
Affiliation(s)
- C Jousse
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, Saint Genès Champanelle, France
| | | | | |
Collapse
|
64
|
Williams DD, Marin O, Pinna LA, Proud CG. Phosphorylated seryl and threonyl, but not tyrosyl, residues are efficient specificity determinants for GSK-3beta and Shaggy. FEBS Lett 1999; 448:86-90. [PMID: 10217415 DOI: 10.1016/s0014-5793(99)00342-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glycogen synthase kinase-3 is involved in diverse functions including insulin signalling and development. In a number of substrates, phosphorylation by glycogen synthase kinase-3 is known to require prior phosphorylation at a Ser in the +4 position relative to its own phosphorylation site. Here we have used synthetic peptides derived from a putative glycogen synthase kinase-3 site in the Drosophila translation initiation factor eIF2B epsilon to investigate the efficacy of residues other than Ser(P) as priming residues for glycogen synthase kinase-3beta and its Drosophila homologue Shaggy. Glycogen synthase kinase-3beta phosphorylated peptides with Ser(P) and Thr(P) in the priming position, but peptides with Tyr(P), Thr, Glu or Asp were not phosphorylated. The Vmax for the Thr(P) peptide was three times higher than that of the Ser(P) peptide. These data suggest that glycogen synthase kinase-3 is unique among phosphate-directed kinases. The priming site specificity of Shaggy is similar to that of mammalian glycogen synthase kinase-3beta. This unpredicted efficacy of Thr(P) in the priming position suggests that there may be other unidentified substrates for these kinases.
Collapse
Affiliation(s)
- D D Williams
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | | | |
Collapse
|
65
|
Abraham N, Stojdl DF, Duncan PI, Méthot N, Ishii T, Dubé M, Vanderhyden BC, Atkins HL, Gray DA, McBurney MW, Koromilas AE, Brown EG, Sonenberg N, Bell JC. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 1999; 274:5953-62. [PMID: 10026221 DOI: 10.1074/jbc.274.9.5953] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible, double-stranded RNA-dependent protein kinase PKR has been implicated in anti-viral, anti-tumor, and apoptotic responses. Others have attempted to examine the requirement of PKR in these roles by targeted disruption at the amino terminal-encoding region of the Pkr gene. By using a strategy that aims at disruption of the catalytic domain of PKR, we have generated mice that are genetically ablated for functional PKR. Similar to the other mouse model of Pkr disruption, we have observed no consequences of loss of PKR on tumor suppression. Anti-viral response to influenza and vaccinia also appeared to be normal in mice and in cells lacking PKR. Cytokine signaling in the type I interferon pathway is normal but may be compromised in the erythropoietin pathway in erythroid bone marrow precursors. Contrary to the amino-terminal targeted Pkr mouse, tumor necrosis factor alpha-induced apoptosis and the anti-viral apoptosis response to influenza is not impaired in catalytic domain-targeted Pkr-null cells. The observation of intact eukaryotic initiation factor-2alpha phosphorylation in these Pkr-null cells provides proof of rescue by another eukaryotic initiation factor-2alpha kinase(s).
Collapse
Affiliation(s)
- N Abraham
- Ottawa Regional Cancer Center Research Laboratories, Ottawa, Ontario K1H 8L6
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Hoffmann B, Mösch HU, Sattlegger E, Barthelmess IB, Hinnebusch A, Braus GH. The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation. Mol Microbiol 1999; 31:807-22. [PMID: 10048025 DOI: 10.1046/j.1365-2958.1999.01219.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CPC2 gene of the budding yeast Saccharomyces cerevisiae encodes a G beta-like WD protein which is involved in regulating the activity of the general control activator Gcn4p. The CPC2 gene encodes a premRNA which is spliced and constitutively expressed in the presence or absence of amino acids. Loss of CPC2 gene function suppresses a deletion of the GCN2 gene encoding the general control sensor kinase, but not a deletion in the GCN4 gene. The resulting phenotype has resistance against amino-acid analogues. The Neurospora crassa cpc-2 and the rat RACK1 genes are homologues of CPC2 that complement the yeast cpc2 deletion. The cpc2 delta mutation leads to increased transcription of Gcn4p-dependent genes under non-starvation conditions without increasing GCN4 expression or the DNA binding activity of Gcn4p. Cpc2p-mediated transcriptional repression requires the Gcn4p transcriptional activator and a Gcn4p recognition element in the target promoter. Frameshift mutations resulting in a shortened G beta-like protein cause a different phenotype that has sensitivity against amino-acid analogues similar to a gcn2 deletion. Cpc2p seems to be part of an additional control of Gcn4p activity, independent of its translational regulation.
Collapse
Affiliation(s)
- B Hoffmann
- Institute for Microbiology and Genetics, Georg August University, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
68
|
Abstract
The evolution, mobility and deleterious genetic effects of human Alus are fairly well understood. The complexity of regulated transcriptional expression of Alus is becoming apparent and insight into the mechanism of retrotransposition is emerging. Unresolved questions concern why mobile, highly repetitive short interspersed elements (SINEs) have been tolerated throughout evolution and why and how families of such sequences are periodically replaced. Either certain SINEs are more successful genomic parasites or positive selection drives their relative success and genomic maintenance. A complete understanding of the evolutionary dynamics and significance of SINEs requires determining whether or not they have a function(s). Recent evidence suggests two possibilities, one concerning DNA and the other RNA. Dispersed Alus exhibit remarkable tissue-specific differences in the level of their 5-methylcytosine content. Differences in Alu methylation in the male and female germlines suggest that Alu DNA may be involved in either the unique chromatin organization of sperm or signaling events in the early embryo. Alu RNA is increased by cellular insults and stimulates protein synthesis by inhibiting PKR, the eIF2 kinase that is regulated by double-stranded RNA. PKR serves other roles potentially linking Alu RNA to a variety of vital cell functions. Since Alus have appeared only recently within the primate lineage, this proposal provokes the challenging question of how Alu RNA could have possibly assumed a significant role in cell physiology.
Collapse
Affiliation(s)
- C W Schmid
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
69
|
Bergamini G, Reschke M, Battista MC, Boccuni MC, Campanini F, Ripalti A, Landini MP. The major open reading frame of the beta2.7 transcript of human cytomegalovirus: in vitro expression of a protein posttranscriptionally regulated by the 5' region. J Virol 1998; 72:8425-9. [PMID: 9733897 PMCID: PMC110236 DOI: 10.1128/jvi.72.10.8425-8429.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta2.7 is the major early transcript produced during human cytomegalovirus infection. This abundantly expressed RNA is polysome associated, but no protein product has ever been detected. In this study, a stable peptide of 24 kDa was produced in vitro from the major open reading frame (ORF), TRL4. Following transient transfection, the intracellular localization was nucleolar and the expression was posttranscriptionally inhibited by the 5' sequence of the transcript, which harbors two short upstream ORFs.
Collapse
Affiliation(s)
- G Bergamini
- Department of Clinical and Experimental Medicine, Division of Microbiology, University of Bologna, St. Orsola Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
70
|
Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 1998; 334 ( Pt 1):261-7. [PMID: 9693128 PMCID: PMC1219687 DOI: 10.1042/bj3340261] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Incubation of Chinese hamster ovary cells without amino acids for up to 60 min caused a rapid marked decrease in p70 S6 kinase activity and increased binding of initiation factor eIF4E to its inhibitory regulator protein 4E-BP1. This was associated with dephosphorylation of 4E-BP1 and eIF4E and dissociation of eIF4E from eIF4G. All these effects were rapidly reversed by resupplying a mixture of amino acids and this was blocked by rapamycin and by inhibitors of phosphatidylinositol 3-kinase, implying a role for phosphatidylinositol 3-kinase in the signalling pathway linking amino acids with the control of p70 S6 kinase activity and the phosphorylation of these translation factors. Amino acid withdrawal also led to changes in the phosphorylation of other translation factors; phosphorylation of eIF4E decreased whereas elongation factor eEF2 became more heavily phosphorylated, each of these changes being associated with decreased activity of the factor in question. Earlier studies have suggested that protein kinase B (PKB) may act upstream of p70 S6 kinase. However, amino acids did not affect the activity of PKB, indicating that amino acids activate p70 S6 kinase through a pathway independent of this enzyme. Studies with individual amino acids suggested that the effects on p70 S6 kinase activity and translation-factor phosphorylation were independent of cell swelling. The data show that amino acid supply regulates multiple translation factors in mammalian cells.
Collapse
Affiliation(s)
- X Wang
- Department of Anatomy and Physiology, University of Dundee, Dundee DD1 4HN, U.K
| | | | | | | |
Collapse
|
71
|
Kimball SR, Fabian JR, Pavitt GD, Hinnebusch AG, Jefferson LS. Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eiF2b. J Biol Chem 1998; 273:12841-5. [PMID: 9582312 DOI: 10.1074/jbc.273.21.12841] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The guanine nucleotide exchange activity of eIF2B plays a key regulatory role in the translation initiation phase of protein synthesis. The activity is markedly inhibited when the substrate, i. e. eIF2, is phosphorylated on Ser51 of its alpha-subunit. Genetic studies in yeast implicate the alpha-, beta-, and delta-subunits of eIF2B in mediating the inhibition by substrate phosphorylation. However, the mechanism involved in the inhibition has not been defined biochemically. In the present study, we have coexpressed the five subunits of rat eIF2B in Sf9 cells using the baculovirus system and have purified the recombinant holoprotein to >90% homogeneity. We have also expressed and purified a four-subunit eIF2B complex lacking the alpha-subunit. Both the five- and four-subunit forms of eIF2B exhibit similar rates of guanine nucleotide exchange activity using unphosphorylated eIF2 as substrate. The five-subunit form is inhibited by preincubation with phosphorylated eIF2 (eIF2(alphaP)) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. In contrast, eIF2B lacking the alpha-subunit is insensitive to inhibition by eIF2(alphaP) and is able to exchange guanine nucleotide using eIF2(alphaP) as substrate at a faster rate compared with five-subunit eIF2B. Finally, a double point mutation in the delta-subunit of eIF2B has been identified that results in insensitivity to inhibition by eIF2(alphaP) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. The results provide the first direct biochemical evidence that the alpha- and delta-subunits of eIF2B are involved in mediating the effect of substrate phosphorylation.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
72
|
Bender J, Fink GR. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci U S A 1998; 95:5655-60. [PMID: 9576939 PMCID: PMC20434 DOI: 10.1073/pnas.95.10.5655] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Arabidopsis thaliana, tryptophan pathway genes are induced in response to starvation, wounding, and pathogen attack, resulting in increased production of tryptophan and secondary metabolites important for development and defense. The Arabidopsis tryptophan pathway therefore provides an ideal system for elucidating how environmental stimuli are transduced into changes in plant gene expression. To characterize the factors that regulate the first gene in the pathway, ASA1, which is the key point of control, we have isolated altered tryptophan regulation (atr) mutants with deregulated expression of ASA1. One of these mutants, atr1D is dominant for increased transcription of ASA1 in specific seedling tissues. We have used atr1D to clone the ATR1 gene based on its map position. ATR1 encodes a Myb-like transcription factor that modulates ASA1 expression. The ATR1 transcript also includes a 5' regulatory region with three short ORFs, one of which is prematurely terminated by the atr1D mutation. Thus, ATR1 defines the first characterized tryptophan gene regulator in plants, and the atr1D mutation defines a sequence important for ATR1 expression.
Collapse
Affiliation(s)
- J Bender
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
73
|
Lukaszewicz M, Jérouville B, Boutry M. Signs of translational regulation within the transcript leader of a plant plasma membrane H(+)-ATPase gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:413-23. [PMID: 9670558 DOI: 10.1046/j.1365-313x.1998.00139.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transcripts of most plant plasma membrane H(+)-ATPase genes possess a leader (5' untranslated region) that is unusually long and that contains a short upstream open reading frame (uORF), two features which suggest post-transcriptional regulation. To investigate the putative role of the transcript leader, we have placed the leader of pma3, one of the Nicotiana plumbaginifolia H(+)-ATPase genes, between the CaMV 35S promoter and the sequence coding for the beta-glucuronidase (GUS) reporter gene. Transient expression of this chimeric gene and of derived mutants was analysed in electroporated tobacco protoplasts. The whole leader had a positive effect on translation, since deletion of most of its sequence reduced GUS activity. Suppression of the uORF by point mutation of its initiating AUG increased GUS activity by about 55%. Analysis of various deletions and mutations suggested that the uORF is translated by at least two-thirds of scanning ribosomes, half of which subsequently reinitiate downstream translation under our experimental conditions. Reinitiation did not depend on the nucleotide sequence of the uORF, nor on that separating the uORF and the main open reading frame. We conclude that the pma3 transcript possesses features of translational regulation, whose mode of functioning has yet to be discovered.
Collapse
MESH Headings
- Base Sequence
- Caulimovirus/genetics
- Cell Membrane/enzymology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Enzyme Repression
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Glucuronidase/biosynthesis
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Open Reading Frames
- Plants, Toxic
- Promoter Regions, Genetic
- Protein Biosynthesis
- Proton-Translocating ATPases/biosynthesis
- Proton-Translocating ATPases/genetics
- Protoplasts/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Ribosomes/metabolism
- Sequence Alignment
- Sequence Deletion
- Nicotiana/enzymology
- Nicotiana/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- M Lukaszewicz
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
74
|
Lincoln AJ, Monczak Y, Williams SC, Johnson PF. Inhibition of CCAAT/enhancer-binding protein alpha and beta translation by upstream open reading frames. J Biol Chem 1998; 273:9552-60. [PMID: 9545285 DOI: 10.1074/jbc.273.16.9552] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) alpha is a bZIP transcription factor whose expression is restricted to specific cell types. Analysis of C/EBPalpha mRNA and protein levels in various mammalian cells indicates that expression of this gene is controlled both transcriptionally and post-transcriptionally. We report here that C/EBPalpha translation is repressed in several cell lines by an evolutionarily conserved upstream open reading frame (uORF), which acts in cis to inhibit C/EBPalpha translation. Mutations that disrupt the uORF completely abolished translational repression of C/EBPalpha. The related c/ebpbeta gene also contains an uORF that suppresses translation. The length of the spacer sequence between the uORF terminator and the ORF initiator codon (7 bases in all c/ebpalpha genes and 4 bases in c/ebpbeta homologs) is precisely conserved. The effects of insertions, deletions, and base substitutions in the C/EBPalpha spacer showed that both the length and nucleotide sequence of the spacer are important for efficient translational repression. Our data indicate that the uORFs regulate translation of full-length C/EBPalpha and C/EBPbeta and do not play a role in generating truncated forms of these proteins, as has been suggested by start site multiplicity models.
Collapse
Affiliation(s)
- A J Lincoln
- Advanced BioScience Laboratories-Basic Research Program, NCI-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
75
|
Vilela C, Linz B, Rodrigues-Pousada C, McCarthy JE. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res 1998; 26:1150-9. [PMID: 9469820 PMCID: PMC147385 DOI: 10.1093/nar/26.5.1150] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs.
Collapse
Affiliation(s)
- C Vilela
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
76
|
Cuesta R, Hinnebusch AG, Tamame M. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 1998; 148:1007-20. [PMID: 9539420 PMCID: PMC1460055 DOI: 10.1093/genetics/148.3.1007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the transcriptional activator GCN4 increases at the translational level in response to starvation for an amino acid. The products of multiple GCD genes are required for efficient repression of GCN4 mRNA translation under nonstarvation conditions. The majority of the known GCD genes encode subunits of the general translation initiation factor eIF-2 or eIF-2B. To identify additional initiation factors in yeast, we characterized 65 spontaneously arising Gcd- mutants. In addition to the mutations that were complemented by known GCD genes or by GCN3, we isolated mutant alleles of two new genes named GCD14 and GCD15. Recessive mutations in these two genes led to highly unregulated GCN4 expression and to derepressed transcription of genes in the histidine biosynthetic pathway under GCN4 control. The derepression of GCN4 expression in gcd14 and gcd15 mutants occurred with little or no increase in GCN4 mRNA levels, and it was dependent on upstream open reading frames (uORFs) in GCN4 mRNA that regulate its translation. We conclude that GCD14 and GCD15 are required for repression of GCN4 mRNA translation by the uORFs under conditions of amino acid sufficiency. The gcd14 and gcd15 mutations confer a slow-growth phenotype on nutrient-rich medium, and gcd15 mutations are lethal when combined with a mutation in gcd13. Like other known GCD genes, GCD14 and GCD15 are therefore probably required for general translation initiation in addition to their roles in GCN4-specific translational control.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Aminohydrolases
- Cloning, Molecular
- DNA-Binding Proteins
- Epistasis, Genetic
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Dominant
- Genes, Fungal
- Genes, Recessive
- Genes, Regulator
- Genetic Complementation Test
- Meiosis
- Mutagenesis
- Phenotype
- Protein Biosynthesis
- Protein Kinases/genetics
- Pyrophosphatases
- RNA, Fungal
- RNA, Messenger
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Cuesta
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
77
|
Pavitt GD, Ramaiah KV, Kimball SR, Hinnebusch AG. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 1998; 12:514-26. [PMID: 9472020 PMCID: PMC316533 DOI: 10.1101/gad.12.4.514] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023]
Abstract
eIF2B is a heteropentameric guanine-nucleotide exchange factor essential for protein synthesis initiation in eukaryotes. Its activity is inhibited in response to starvation or stress by phosphorylation of the alpha subunit of its substrate, translation initiation factor eIF2, resulting in reduced rates of translation and cell growth. We have used an in vitro nucleotide-exchange assay to show that wild-type yeast eIF2B is inhibited by phosphorylated eIF2 [eIF2(alphaP)] and to characterize eIF2B regulatory mutations that render translation initiation insensitive to eIF2 phosphorylation in vivo. Unlike wild-type eIF2B, eIF2B complexes with mutated GCN3 or GCD7 subunits efficiently catalyzed GDP exchange using eIF2(alphaP) as a substrate. Using an affinity-binding assay, we show that an eIF2B subcomplex of the GCN3, GCD7, and GCD2 subunits binds to eIF2 and has a higher affinity for eIF2(alphaP), but it lacks nucleotide-exchange activity. In contrast, the GCD1 and GCD6 subunits form an eIF2B subcomplex that binds equally to eIF2 and eIF2(alphaP). Remarkably, this second subcomplex has higher nucleotide-exchange activity than wild-type eIF2B that is not inhibited by eIF2(alphaP). The identification of regulatory and catalytic eIF2B subcomplexes leads us to propose that binding of eIF2(alphaP) to the regulatory subcomplex prevents a productive interaction with the catalytic subcomplex, thereby inhibiting nucleotide exchange.
Collapse
Affiliation(s)
- G D Pavitt
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
78
|
Dominguez DI, Ryabova LA, Pooggin MM, Schmidt-Puchta W, Fütterer J, Hohn T. Ribosome shunting in cauliflower mosaic virus. Identification of an essential and sufficient structural element. J Biol Chem 1998; 273:3669-78. [PMID: 9452497 DOI: 10.1074/jbc.273.6.3669] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wheat germ cell-free system was used to study details of ribosome shunting promoted by the cauliflower mosaic virus 35 S RNA leader. By testing a dicistronic construct with the leader placed between two coding regions, we confirmed that the 35 S RNA leader does not include an internal ribosome entry site of the type observed with picornavirus RNAs. A reporter gene fused to the leader was shown to be expressed by ribosomes that had followed the bypass route (shunted) and, with lower efficiency, by ribosomes that had scanned through the whole region. Stem section 1, the most stable of the three stem sections of the leader, was shown to be an important structural element for shunting. Mutations that abolished formation of this stem section drastically reduced reporter gene expression, whereas complementary mutations that restored stem section 1 also restored shunting. A micro-leader capable of shunting consisting of stem section 1 and flanking sequences could be defined. A small open reading frame preceding stem section 1 enhances shunting.
Collapse
Affiliation(s)
- D I Dominguez
- Friedrich-Miescher-Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
79
|
Skrzypek MS, Nagiec MM, Lester RL, Dickson RC. Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 1998; 273:2829-34. [PMID: 9446592 DOI: 10.1074/jbc.273.5.2829] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sphingoid long chain bases have many effects on cells including inhibition or stimulation of growth. The physiological significance of these effects is unknown in most cases. To begin to understand how these compounds inhibit growth, we have studied Saccharomyces cerevisiae cells. Growth of tryptophan (Trp-) auxotrophs was more strongly inhibited by phytosphingosine (PHS) than was growth of Trp+ strains, suggesting that PHS diminishes tryptophan uptake and starves cells for this amino acid. This hypothesis is supported by data showing that growth inhibition is relieved by increasing concentrations of tryptophan in the culture medium and by multiple copies of the TAT2 gene, encoding a high affinity tryptophan transporter. Measurement of tryptophan uptake shows that it is inhibited by PHS. Finally, PHS treatment induces the general control response, indicating starvation for amino acids. Multiple copies of TAT2 do not protect cells against two other cationic lipids, stearylamine, and sphingosine, indicating that the effect of PHS on tryptophan utilization is specific. Other data demonstrate that PHS reduces uptake of leucine, histidine, and proline by specific transporters. Our data suggest that PHS targets proteins in the amino acid transporter family but not other distantly related membrane transporters, including those necessary for uptake of adenine and uracil.
Collapse
Affiliation(s)
- M S Skrzypek
- Department of Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
80
|
Kimball SR, Heinzinger NK, Horetsky RL, Jefferson LS. Identification of interprotein interactions between the subunits of eukaryotic initiation factors eIF2 and eIF2B. J Biol Chem 1998; 273:3039-44. [PMID: 9446619 DOI: 10.1074/jbc.273.5.3039] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modulation of protein/protein interaction is an important mechanism involved in regulation of translation initiation. Specifically, regulation of the interaction of eIF2 with the guanine nucleotide exchange factor, eIF2B, is a key mechanism for controlling translation under a variety of conditions. Phosphorylation of the alpha-subunit of eIF2 converts the protein into a competitive inhibitor of eIF2B by causing an increase in the binding affinity of eIF2B for eIF2. Consequently, it has been assumed that the alpha-subunit of eIF2 is directly involved in binding to eIF2B. In the present study, eIF2 was found to bind only to the delta- and epsilon-subunits of eIF2B, and eIF2B was shown to bind only to the beta-subunit of eIF2 by far-Western blot analysis. The binding site on eIF2beta for either the eIF2B holoprotein, or the isolated delta- or epsilon-subunits of eIF2B was shown to be located within approximately 70 amino acids of the C terminus of the protein. Phosphorylation of the alpha-subunit of eIF2 did not promote binding of eIF2B to the isolated subunit. However, it did cause an increase in the affinity of eIF2B for eIF2. Finally, phosphorylation by protein kinase A of the beta-subunit of eIF2 in the C-terminal portion of the protein increased the guanine nucleotide exchange activity of eIF2B, whereas phosphorylation by casein kinase II or protein kinase C was without effect.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
81
|
Studying Protein Synthesis Factors in Yeast: Structure, Function and Regulation. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
18 Identifying Stress Genes. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
83
|
Abstract
Insulin acutely stimulates protein synthesis in mammalian cells, and this involves activation of the process of mRNA translation. mRNA translation is a complex multi-step process mediated by proteins termed translation factors. Several translation factors are regulated in response to insulin, often as a consequence of changes in their states of phosphorylation. The initiation factor eIF4E binds to the cap structure at the 5'-end of the mRNA and mediates assembly of an initiation-factor complex termed eIF4F. Assembly of this complex can be regulated by eIF4E-binding proteins (4E-BPs), which inhibit eIF4F complex assembly. Insulin induces phosphorylation of the 4E-BPs, resulting in alleviation of the inhibition. This regulatory mechanism is likely to be especially important for the control of the translation of specific mRNAs whose 5'-untranslated regions (5'-UTRs) are rich in secondary structure. Translation of another class of mRNAs, those with 5'-UTRs containing polypyrimidine tracts is also activated by insulin and this, like phosphorylation of the 4E-BPs, appears to involve the rapamycin-sensitive signalling pathway which leads to activation of the 70 kDa ribosomal protein S6 kinase (p70 S6 kinase) and the phosphorylation of the ribosomal protein S6. Overall stimulation of translation may involve activation of initiation factor eIF2B, which is required for all initiation events. This effect is dependent upon phosphatidylinositol 3-kinase and may involve the inactivation of glycogen synthase kinase-3 and consequent dephosphorylation of eIF2B, leading to its activation. Peptide-chain elongation can also be activated by insulin, and this is associated with the dephosphorylation and activation of elongation factor eEF2, probably as a consequence of the insulin-induced reduction in eEF2 kinase activity. Thus multiple signalling pathways acting on different steps in translation are involved in the activation of this process by insulin and lead both to general activation of translation and to the selective regulation of specific mRNAs.
Collapse
Affiliation(s)
- C G Proud
- Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, U.K
| | | |
Collapse
|
84
|
Nika J, Erickson FL, Hannig EM. Ribosomal protein L9 is the product of GRC5, a homolog of the putative tumor suppressor QM in S. cerevisiae. Yeast 1997; 13:1155-66. [PMID: 9301022 DOI: 10.1002/(sici)1097-0061(19970930)13:12<1155::aid-yea166>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5' sequences of the yeast GRC5 gene.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | |
Collapse
|
85
|
Eisinger DP, Dick FA, Denke E, Trumpower BL. SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Mol Cell Biol 1997; 17:5146-55. [PMID: 9271392 PMCID: PMC232365 DOI: 10.1128/mcb.17.9.5146] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
QSR1 is an essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein required for joining of 40S and 60S subunits. Truncations of QSR1 predicted to encode C-terminally truncated forms of Qsr1p do not substitute for QSR1 but do act as dominant negative mutations, inhibiting the growth of yeast when expressed from an inducible promoter. The dominant negative mutants exhibit a polysome profile characterized by 'half-mer' polysomes, indicative of a subunit joining defect like that seen in other qsr1 mutants (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997.) By screening a high-copy yeast genomic library, we isolated several clones containing overlapping inserts of a novel gene that rescues the slow-growth phenotype of the dominant negative qsr1 truncations. The suppressor of qsr1 truncation mutants, SQT1, is an essential gene, which encodes a 47.1-kDa protein containing multiple WD repeats and which interacts strongly with Qsr1p in a yeast two-hybrid system. SQT1 restores growth and the "half-mer" polysome profile of the dominant negative qsr1 mutants to normal, but it does not rescue temperature-sensitive qsr1 mutants or the original qsr1-1 missense allele. In yeast cell lysates, Sqt1p fractionates as part of an oligomeric protein complex that is loosely associated with ribosomes but is distinct from known eukaryotic initiation factor complexes. Loss of SQT1 function by down regulation from an inducible promoter results in formation of half-mer polyribosomes and decreased Qsr1p levels on free 60S subunits. Sqt1p thus appears to be involved in a late step of 60S subunit assembly or modification in the cytoplasm.
Collapse
Affiliation(s)
- D P Eisinger
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
86
|
Eisinger DP, Dick FA, Trumpower BL. Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol Cell Biol 1997; 17:5136-45. [PMID: 9271391 PMCID: PMC232364 DOI: 10.1128/mcb.17.9.5136] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S subunits that lack Qsr1p. In vitro subunit-joining assays and analysis of a mutant conditional for the synthesis of Qsr1p demonstrate that 60S subunits devoid of Qsr1p are unable to join with 40S subunits whereas 60S subunits that contain either wild-type or mutant forms of the protein are capable of subunit joining. The defective 60S subunits result from a reduced association of mutant Qsr1p with 60S subunits. These results indicate that Qsr1p is required for ribosomal subunit joining.
Collapse
Affiliation(s)
- D P Eisinger
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
87
|
Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 1997; 272:21661-4. [PMID: 9268289 DOI: 10.1074/jbc.272.35.21661] [Citation(s) in RCA: 437] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- A G Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
88
|
Kawagishi-Kobayashi M, Silverman JB, Ung TL, Dever TE. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 1997; 17:4146-58. [PMID: 9199350 PMCID: PMC232268 DOI: 10.1128/mcb.17.7.4146] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.
Collapse
Affiliation(s)
- M Kawagishi-Kobayashi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
89
|
Bashaw GJ, Baker BS. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 1997; 89:789-98. [PMID: 9182767 DOI: 10.1016/s0092-8674(00)80262-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Drosophila, dosage compensation occurs by increasing the transcription of the single male X chromosome. Four trans-acting factors encoded by the male-specific lethal genes are required for this process. Dosage compensation is restricted to males by the splicing regulator Sex-lethal, which functions to prevent the production of the MSL-2 protein in females by an unknown mechanism. In this report, we provide evidence that Sex-lethal acts synergistically through sequences in both the 5' and 3' untranslated regions of MSL-2 to mediate repression. We also provide evidence that the repression of MSL-2 is directly regulated by Sex-lethal at the level of translation.
Collapse
Affiliation(s)
- G J Bashaw
- Department of Biological Sciences, Stanford University, California 94305, USA
| | | |
Collapse
|
90
|
Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M, Hentze MW. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell 1997; 89:597-606. [PMID: 9160751 DOI: 10.1016/s0092-8674(00)80241-x] [Citation(s) in RCA: 401] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although LOX mRNA accumulates early during differentiation, a differentiation control element in its 3' untranslated region confers translational silencing until late stage erythropoiesis. We have purified two proteins from rabbit reticulocytes that specifically mediate LOX silencing and identified them as hnRNPs K and E1. Transfection of hnRNP K and hnRNP E1 into HeLa cells specifically silenced the translation of reporter mRNAs bearing a differentiation control element in their 3' untranslated region. Silenced LOX mRNA in rabbit reticulocytes specifically coimmunoprecipitated with hnRNP K. In a reconstituted cell-free translation system, addition of recombinant hnRNP K and hnRNP E1 recapitulates this regulation via a specific inhibition of 80S ribosome assembly on LOX mRNA. Both proteins can control cap-dependent and internal ribosome entry site-mediated translation by binding to differentiation control elements. Our data suggest a specific cytoplasmic function for hnRNPs as translational regulatory proteins.
Collapse
Affiliation(s)
- D H Ostareck
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Santoyo J, Alcalde J, Méndez R, Pulido D, de Haro C. Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology To yeast GCN2 protein kinase. J Biol Chem 1997; 272:12544-50. [PMID: 9139706 DOI: 10.1074/jbc.272.19.12544] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF-2alpha) is one of the best-characterized mechanisms for downregulating protein synthesis in mammalian cells in response to various stress conditions. In Drosophila, such a regulatory mechanism has not been elucidated. We report the molecular cloning and characterization of DGCN2, a Drosophila eIF-2alpha kinase related to yeast GCN2 protein kinase. DGCN2 contains all of the 12 catalytic subdomains characteristic of eukaryotic Ser/Thr protein kinases and the conserved sequence of eIF-2alpha kinases in subdomain V. A large insert of 94 amino acids, which is characteristic of eIF-2alpha kinases, is also present between subdomains IV and V. It is particularly notable that DGCN2 possesses an amino acid sequence related to class II aminoacyl-tRNA synthetases, a unique feature of yeast GCN2 protein kinase. DGCN2 expression is developmentally regulated. During embryogenesis, DGCN2 mRNA is dynamically expressed in several tissues. Interestingly, at later stages this expression becomes restricted to a few cells of the central nervous system. Affinity-purified antibodies, raised against a synthetic peptide based on the predicted DGCN2 sequence, specifically immunoprecipitated an eIF-2alpha kinase activity and recognized an approximately 175 kDa phosphoprotein in Western blots of Drosophila embryo extracts.
Collapse
Affiliation(s)
- J Santoyo
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
92
|
Fabian JR, Kimball SR, Heinzinger NK, Jefferson LS. Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J Biol Chem 1997; 272:12359-65. [PMID: 9139680 DOI: 10.1074/jbc.272.19.12359] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic initiation factor-2B (eIF-2B) is a guanine nucleotide exchange factor (GEF) that plays a key role in the regulation of protein synthesis. In this study, we have used the baculovirus-infected Sf9 insect cell system to express and characterize the five dissimilar subunits of rat eIF-2B. GEF activity was detected in extracts of Sf9 cells expressing the epsilon-subunit alone and was greatly increased when all five subunits were coexpressed. In addition, high GEF activity was observed in extracts containing a four-subunit complex lacking the alpha-subunit. Assembly of an eIF-2B holoprotein was confirmed by coimmunoprecipitation of all five subunits. Gel filtration chromatography revealed that recombinant eIF-2B had the same molecular mass as eIF-2B purified from rat liver and that it did indeed possess GEF activity. Phosphorylation of the substrate eIF-2 inhibited the GEF activity of the five-subunit eIF-2B; this inhibition required the eIF-2B alpha-subunit. The results demonstrate that eIF-2Balpha functions as a regulatory subunit that is not required for GEF activity, but instead mediates the regulation of eIF-2B by substrate phosphorylation. Furthermore, eIF-2Bepsilon is necessary and is perhaps sufficient for GEF activity in vitro.
Collapse
Affiliation(s)
- J R Fabian
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
93
|
Linz B, Koloteva N, Vasilescu S, McCarthy JE. Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translational initiation per se, modulates the stability of nonaberrant mRNAs in the yeast Saccharomyces cerevisiae. J Biol Chem 1997; 272:9131-40. [PMID: 9083042 DOI: 10.1074/jbc.272.14.9131] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation and mRNA decay constitute key players in the post-transcriptional control of gene expression. We examine the mechanisms by which the 5'-untranslated region (UTR) of nonaberrant mRNAs acts to modulate both these processes in Saccharomyces cerevisiae. Two classes of functional relationship between ribosome-5'-UTR interactions and mRNA decay are identifiable. In the first of these, elements in the main open reading frame (ORF) dictate how the decay process reacts to inhibitory structures in the 5'-UTR. The same types of stability modulation can be elicited by trans-regulation of translation via inducible binding of the iron-regulatory protein to an iron-responsive element located 9 nucleotides from the 5' cap. A eukaryotic translational repressor can therefore modulate mRNA decay via the 5'-UTR. In contrast, translational regulation mediated via changes in the activity of the cap-binding eukaryotic translation initiation factor eIF-4E bypasses translation-dependent pathways of mRNA degradation. Thus modulation of mRNA stability via the 5'-UTR depends on disruption of the scanning process, rather than changes in translational initiation efficiency per se. In the second class of pathway, an upstream ORF (uORF) functions as a powerful destabilizing element, inducing termination-dependent degradation that is apparently independent of any main ORF determinants but influenced by the efficiencies of ribosomal recognition of the uORF start and stop codons. This latter mechanism provides a regulatable means to modulate the stability of nonaberrant mRNAs via a UPF-dependent pathway.
Collapse
Affiliation(s)
- B Linz
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
94
|
Dever TE. Using GCN4 as a reporter of eIF2 alpha phosphorylation and translational regulation in yeast. Methods 1997; 11:403-17. [PMID: 9126554 DOI: 10.1006/meth.1996.0437] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Molecular genetic analyses in yeast are a powerful method to study gene regulation. Conservation of the mechanism and regulation of protein synthesis between yeast and mammalian cells makes yeast a good model system for the analysis of translation. One of the most common mechanisms of translational regulation in mammalian cells is the phosphorylation of serine-51 on the alpha subunit of the translation initiation factor elF2, which causes an inhibition of general translation. In contrast, in the yeast Saccharomyces cerevisiae phosphorylation of elF2 alpha on serine-51 by the GCN2 protein kinase mediates the translational induction of GCN4 expression. The unique structure of the GCN4 mRNA makes GCN4 expression especially sensitive to elF2 alpha phosphorylation, and the simple microbiological tests developed in yeast to analyze GCN4 expression serve as good reporters of elF2 alpha phosphorylation. It is relatively simple to express heterologous proteins in yeast, and it has been shown that the mammalian elF2 alpha kinases will functionally substitute for GCN2. Structure-function analyses of translation factors or translational regulators can also be performed by assaying for effects on general and GCN4-specific translation. Three tests can be used to study elF2 alpha phosphorylation and/or translational activity in yeast. First, general translation can be monitored by simple growth tests, while GCN4 expression can be analyzed using sensitive replicaplating tests. Second, GCN4 translation can be quantitated by measuring expression from GCN4-lacZ reporter constructs. Finally, isoelectric focusing gels can be used to directly monitor in vivo phosphorylation of elF2 alpha in yeast.
Collapse
Affiliation(s)
- T E Dever
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
95
|
Pavitt GD, Yang W, Hinnebusch AG. Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 1997; 17:1298-313. [PMID: 9032257 PMCID: PMC231855 DOI: 10.1128/mcb.17.3.1298] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
eIF2B is a five-subunit guanine nucleotide exchange factor that is negatively regulated by phosphorylation of the alpha subunit of its substrate, eIF2, leading to inhibition of translation initiation. To analyze this regulatory mechanism, we have characterized 29 novel mutations in the homologous eIF2B subunits encoded by GCD2, GCD7, and GCN3 that reduce or abolish inhibition of eIF2B activity by eIF2 phosphorylated on its alpha subunit [eIF2(alphaP)]. Most, if not all, of the mutations decrease sensitivity to eIF2(alphaP) without excluding GCN3, the nonessential subunit, from eIF2B; thus, all three proteins are critical for regulation of eIF2B by eIF2(alphaP). The mutations are clustered at both ends of the homologous region of each subunit, within two segments each of approximately 70 amino acids in length. Several mutations alter residues at equivalent positions in two or all three subunits. These results imply that structurally similar segments in GCD2, GCD7, and GCN3 perform related functions in eIF2B regulation. We propose that these segments form a single domain in eIF2B that makes multiple contacts with the alpha subunit of eIF2, around the phosphorylation site, allowing eIF2B to detect and respond to phosphoserine at residue 51. Most of the eIF2 is phosphorylated in certain mutants, suggesting that these substitutions allow eIF2B to accept phosphorylated eIF2 as a substrate for nucleotide exchange.
Collapse
Affiliation(s)
- G D Pavitt
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
96
|
Affiliation(s)
- C F Semenkovich
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
97
|
Gallie DR, Le H, Caldwell C, Tanguay RL, Hoang NX, Browning KS. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 1997; 272:1046-53. [PMID: 8995401 DOI: 10.1074/jbc.272.2.1046] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several translation initiation factors in mammals and yeast are regulated by phosphorylation. The phosphorylation state of these factors is subject to alteration during development, environmental stress (heat shock, starvation, or heme deprivation), or viral infection. The phosphorylation state and the effect of changes in phosphorylation of the translation initiation factors of higher plants have not been previously investigated. We have determined the isoelectric states for the wheat translation initiation factors eIF-4A, eIF-4B, eIF-4F, eIF-iso4F, and eIF-2 and the poly(A)-binding protein in the seed, during germination, and following heat shock of wheat seedlings using two-dimensional gel electrophoresis and Western analysis. We found that the developmentally induced changes in isoelectric state observed during germination or the stress-induced changes were consistent with changes in phosphorylation. Treatment of the phosphorylated forms of the factors with phosphatases confirmed that the nature of the modification was due to phosphorylation. The isoelectric states of eIF-4B, eIF-4F (eIF-4E, p26), eIF-iso4F (eIF-iso4E, p28), and eIF-2alpha (p42) were altered during germination, suggesting that phosphorylation of these factors is developmentally regulated and correlates with the resumption of protein synthesis that occurs during germination. The phosphorylation of eIF-2beta (p38) or poly(A)-binding protein did not change either during germination or following a thermal stress. Only the phosphorylation state of two factors, eIF-4A and eIF-4B, changed following a heat shock, suggesting that plants may differ significantly from animals in the way in which their translational machinery is modified in response to a thermal stress.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside 92521-0129, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Hutson RG, Warskulat U, Häussinger D, Kilberg MS. An example of nutrient control of gene expression: amino acid-dependent regulation of asparagine synthetase. Clin Nutr 1996; 15:327-31. [PMID: 16844066 DOI: 10.1016/s0261-5614(96)80009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amino acid deprivation of mammalian cells causes a significant enhancement in gene expression for a number of important cellular activities, among these is included asparagine synthetase (AS). A full length cDNA clone for rat AS was isolated previously from a subtracted cDNA library enriched for amino acid-regulated sequences. The present report summarizes the use of the AS cDNA to investigate the amino acid-dependent regulation of AS mRNA in normal rat liver and Fao hepatoma cells. In response to complete amino acid starvation, there was an increase in steady state AS mRNA content. Three species of mRNA, approximately 2.0, 2.5 and 4.0 kb, were detected and each was simultaneously regulated to the same degree. In hepatoma cells the increased AS mRNA content was prevented by either actinomycin D or cycloheximide. Partial repression of the AS mRNA content was maintained by the presence of a single amino acid in the culture medium, but the effectiveness varied. Glutamine effectively repressed the AS mRNA content, even at a concentration 10 times below its plasma level. Conversely, depletion of selected single amino acids from complete culture medium also caused up-regulation. A role for tRNA charging in the signalling mechanism was suggested by the observation that the addition of histidinol, an inhibitor of histidinyl tRNA synthetase, caused an increase in AS mRNA content when added to complete medium. The increased AS mRNA is associated with polysomes and is actively translated. The data indicate that nutrient regulation of the rat AS gene occurs by a general control mechanism that is responsive to the availability of selected individual amino acids.
Collapse
Affiliation(s)
- R G Hutson
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Box 100245, JHMHC,Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
99
|
Yang W, Hinnebusch AG. Identification of a regulatory subcomplex in the guanine nucleotide exchange factor eIF2B that mediates inhibition by phosphorylated eIF2. Mol Cell Biol 1996; 16:6603-16. [PMID: 8887689 PMCID: PMC231662 DOI: 10.1128/mcb.16.11.6603] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a five-subunit complex that catalyzes guanine nucleotide exchange on eIF2. Phosphorylation of the alpha subunit of eIF2 [creating eIF2(alphaP]) converts eIF2 x GDP from a substrate to an inhibitor of eIF2B. We showed previously that the inhibitory effect of eIF2(alphaP) can be decreased by deletion of the eIF2B alpha subunit (encoded by GCN3) and by point mutations in the beta and delta subunits of eIF2B (encoded by GCD7 and GCD2, respectively). These findings, plus sequence similarities among GCD2, GCD7, and GCN3, led us to propose that these proteins comprise a regulatory domain that interacts with eIF2(alphaP) and mediates the inhibition of eIF2B activity. Supporting this hypothesis, we report here that overexpression of GCD2, GCD7, and GCN3 specifically reduced the inhibitory effect of eIF2(alphaP) on translation initiation in vivo. The excess GCD2, GCD7, and GCN3 were coimmunoprecipitated from cell extracts, providing physical evidence that these three proteins can form a stable subcomplex. Formation of this subcomplex did not compensate for a loss of eIF2B function by mutation and in fact lowered eIF2B activity in strains lacking eIF2(alphaP). These findings indicate that the trimeric subcomplex does not possess guanine nucleotide exchange activity; we propose, instead, that it interacts with eIF2(alphaP) and prevents the latter from inhibiting native eIF2B. Overexpressing only GCD2 and GCD7 also reduced eIF2(alphaP) toxicity, presumably by titrating GCN3 from eIF2B and producing the four-subunit form of eIF2B that is less sensitive to eIF2(alphaP). This interpretation is supported by the fact that overexpressing GCD2 and GCD7 did not reduce eIF2(alphaP) toxicity in a strain lacking GCN3; however, it did suppress the impairment of eIF2B caused by the gcn3c-R104K mutation. An N-terminally truncated GCD2 protein interacted with other eIF2B subunits only when GCD7 and GCN3 were overexpressed, in accordance with the idea that the portion of GCD2 homologous to GCD7 and GCN3 is sufficient for complex formation by these three proteins. Together, our results provide strong evidence that GCN3, GCD7, and the C-terminal half of GCD2 comprise the regulatory domain in eIF2B.
Collapse
Affiliation(s)
- W Yang
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2785, USA
| | | |
Collapse
|
100
|
Zhu S, Sobolev AY, Wek RC. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J Biol Chem 1996; 271:24989-94. [PMID: 8798780 DOI: 10.1074/jbc.271.40.24989] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In yeast, starvation for amino acids stimulates GCN2 phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2). Phosphorylation of eIF-2alpha induces the translational expression of GCN4, a transcriptional activator of the general amino acid control pathway. It has been proposed that GCN2 sequences containing homology to histidyl-tRNA synthetases (HisRS) bind uncharged tRNA that accumulate during amino acid limitation and stimulate the activity of GCN2 kinase. In this report we address whether the HisRS-related sequences are required for GCN2 phosphorylation of eIF-2alpha in an in vitro assay. To measure the activity of GCN2 kinase in cellular extracts, we expressed and purified a truncated form of yeast eIF-2alpha. Phosphorylation of the recombinant eIF-2alpha substrate was dependent on both GCN2 kinase activity and the eIF-2alpha phosphorylation site, serine 51. Mutations in the HisRS-related domain of GCN2, which have been shown to block phosphorylation of eIF-2alpha in vivo and the subsequent stimulation of the general control pathway, also greatly reduced eIF-2alpha phosphorylation in the in vitro assay. These results indicate that the HisRS-related sequences are required for activation of GCN2 kinase function.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|