51
|
Kapoor N, Vanjak I, Rozzelle J, Berges A, Chan W, Yin G, Tran C, Sato AK, Steiner AR, Pham TP, Birkett AJ, Long CA, Fairman J, Miura K. Malaria Derived Glycosylphosphatidylinositol Anchor Enhances Anti-Pfs25 Functional Antibodies That Block Malaria Transmission. Biochemistry 2018; 57:516-519. [PMID: 29323879 PMCID: PMC5803671 DOI: 10.1021/acs.biochem.7b01099] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Malaria,
one of the most common vector borne human diseases, is a major world
health issue. In 2015 alone, more than 200 million people were infected
with malaria, out of which, 429 000 died. Even though artemisinin-based
combination therapies (ACT) are highly effective at treating malaria
infections, novel efforts toward development of vaccines to prevent
transmission are still needed. Pfs25, a postfertilization stage parasite
surface antigen, is a leading transmission-blocking vaccine (TBV)
candidate. It is postulated that Pfs25 anchors to the cell membrane
using a glycosylphosphatidylinositol (GPI) linker, which itself possesses
pro-inflammatory properties. In this study, Escherichia coli derived extract (XtractCF+TM) was used in cell free protein
synthesis [CFPS] to successfully express >200 mg/L of recombinant
Pfs25 with a C-terminal non-natural amino acid (nnAA), namely, p-azidomethyl phenylalanine (pAMF), which possesses a reactive
azide group. Thereafter, a unique conjugate vaccine (CV), namely,
Pfs25-GPI was generated with dibenzocyclooctyne (DBCO) derivatized
glycan core of malaria GPI using a simple but highly efficient copper
free click chemistry reaction. In mice immunized with Pfs25 or Pfs25-GPI,
the Pfs25-GPI group showed significantly higher titers compared to
the Pfs25 group. Moreover, only purified IgGs from Pfs25-GPI group
were able to significantly block transmission of parasites to mosquitoes,
as judged by a standard membrane feeding assay [SMFA]. To our knowledge,
this is the first report of the generation of a CV using Pfs25 and
malaria specific GPI where the GPI is shown to enhance the ability
of Pfs25 to elicit transmission blocking antibodies.
Collapse
Affiliation(s)
- Neeraj Kapoor
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - Ivana Vanjak
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - James Rozzelle
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - Aym Berges
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - Wei Chan
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - Gang Yin
- Sutro Biopharma , 310 Utah, South San Francisco, California 94080, United States
| | - Cuong Tran
- Sutro Biopharma , 310 Utah, South San Francisco, California 94080, United States
| | - Aaron K Sato
- Sutro Biopharma , 310 Utah, South San Francisco, California 94080, United States
| | - Alexander R Steiner
- Sutro Biopharma , 310 Utah, South San Francisco, California 94080, United States
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland 20852, United States
| | - Ashley J Birkett
- PATH's Malaria Vaccine Initiative (MVI) , Washington, D.C. 20001 United States
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland 20852, United States
| | - Jeff Fairman
- SutroVax, Inc. , 353 Hatch Drive, Foster City, California 94404, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland 20852, United States
| |
Collapse
|
52
|
Comparative functional potency of DNA vaccines encoding Plasmodium falciparum transmission blocking target antigens Pfs48/45 and Pfs25 administered alone or in combination by in vivo electroporation in rhesus macaques. Vaccine 2017; 35:7049-7056. [PMID: 29132995 DOI: 10.1016/j.vaccine.2017.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Antibodies recognizing conformational epitopes in Pfs48/45, an antigen expressed on the surface of Plasmodium falciparum gametes and zygotes, have firmly established Pfs48/45 as a promising transmission blocking vaccine (TBV) candidate. However, it has been difficult to reproducibly express Pfs48/45 in a variety of recombinant expression systems. The goal of our studies was to evaluate functional immunogenicity of Pfs48/45 using DNA vaccine format in rhesus macaques. An additional goal was to ensure that when used in combination with another malarial antigen, specific immunity to both antigens was not compromised. For testing combination vaccines, we employed Pfs25 DNA plasmids that have previously undergone evaluations in rodents and nonhuman primates. Pfs25 is expressed on the surface of parasites after fertilization and is also a lead TBV candidate. DNA plasmids based on codon-optimized sequences of Pfs48/45 and Pfs25 were administered by in vivo electroporation, followed by a final recombinant protein boost. Our studies demonstrate that Pfs48/45 encoded by DNA plasmids is capable of inducing potent transmission blocking antibody responses, and such transmission blocking immune potency of Pfs48/45 was not compromised when tested in combination with Pfs25, These findings provide the evidence in favor of further studies on Pfs48/45 and Pfs25, either alone or in combination with other known malaria vaccine candidates for developing effective vaccines capable of interrupting malaria transmission.
Collapse
|
53
|
Eldering M, Bompard A, Miura K, Stone W, Morlais I, Cohuet A, van Gemert GJ, Brock PM, Rijpma SR, van de Vegte-Bolmer M, Graumans W, Siebelink-Stoter R, Da DF, Long CA, Morin MJ, Sauerwein RW, Churcher TS, Bousema T. Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens. Parasit Vectors 2017; 10:489. [PMID: 29041962 PMCID: PMC5646129 DOI: 10.1186/s13071-017-2414-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background With the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa. Methods Using human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission-reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes. Results In the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An. stephensi than for An. gambiae. Conclusion Our findings support the use of An. stephensi in the SMFA for target prioritization. As a vaccine moves through product development, better estimates of TRA and transmission-blocking activity (TBA) may need to be obtained in epidemiologically relevant parasite-species combination. Electronic supplementary material The online version of this article (10.1186/s13071-017-2414-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maarten Eldering
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anaïs Bompard
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Kazutoyo Miura
- National Institute of Allergy and Infectious Diseases, Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | - Will Stone
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, UMR MIVEGEC UM-CNRS 5290-IRD 224, Montpellier, France
| | - Anna Cohuet
- Institut de Recherche pour le Développement, UMR MIVEGEC UM-CNRS 5290-IRD 224, Montpellier, France
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick M Brock
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sanna R Rijpma
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne Siebelink-Stoter
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Carole A Long
- National Institute of Allergy and Infectious Diseases, Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
54
|
Heidari Z, Arora JS, Datta D, John VT, Kumar N, Bansal GP. Impact of the Charge Ratio on the In Vivo Immunogenicity of Lipoplexes. Pharm Res 2017; 34:1796-1804. [PMID: 28560696 PMCID: PMC10601992 DOI: 10.1007/s11095-017-2187-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/22/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE The present study investigated the immunogenic potential of different cationic liposome formulations with a DNA plasmid encoding Pfs25, a malaria transmission-blocking vaccine candidate. METHODS Pfs25 plasmid DNA was complexed with cationic liposomes to produce lipoplexes at different charge ratios of the cationic lipid head group to the nucleotide phosphate (N:P). The formation of lipoplexes was visualized by Cryogenic-TEM. Confocal microscopy of lipoplexes formed with GFP encoding plasmid DNA, and flow cytometry was used to determine their in vitro transfection capability. Two different lipoplex formulations using plasmid DNA encoding Pfs25 were evaluated for in vivo immunogenicity after intramuscular administration in Balb/c mice. Immune sera were analyzed by ELISA. RESULTS The results demonstrated that the cationic liposome-mediated DNA immunization with an N:P charge ratio of 1:3 (anionic lipoplexes) is more effective than the use of naked plasmid DNA alone. No antibody response was observed when lipoplexes with a higher N:P charge ratio of 10:3 (cationic lipoplexes) were used. Trehalose was added to some lipoplex formulations as a cryoprotectant and adjuvant, but it did not yield any further improvement of immunogenicity in vivo. CONCLUSIONS The results suggest that Pfs25 plasmid DNA delivered as lipoplexes at a charge ratio of 1:3 elicited strong immunogenicity in mice and may be improved further to match the immune responses of DNA vaccines administered by in vivo electroporation.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Jaspreet S Arora
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Dibyadyuti Datta
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Vijay T John
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Geetha P Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.
- Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
55
|
Abstract
Evidence accumulated through the years clearly indicates that antiparasite immune responses can efficiently control malaria parasite infection at all development stages, and under certain circumstances they can prevent parasite infection. Translating these findings into vaccines or immunotherapeutic interventions has been difficult in part because of the extraordinary biological complexity of this parasite, which has several developmental stages expressing unique sets of stage-specific genes and multiple antigens, most of which are antigenically diverse. Nevertheless, in the last 30 years major advances have resulted in characterization of a number of vaccine candidates, exploration of the repertoire of host immune responses to the various parasite stages, and also identification of significant hurdles that need to be overcome. Most important, these advances strengthened the concept that the induction of host immune responses that target all developmental stages of Plasmodium can efficiently control or abrogate Plasmodium infections and strongly support the notion that an effective vaccine can be developed. This vaccine would be a critical component for programs aimed at controlling or eradicating malaria.
Collapse
Affiliation(s)
- Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland 20852
| | - Fidel Zavala
- Departmentof Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
56
|
Lempereur L, Larcombe SD, Durrani Z, Karagenc T, Bilgic HB, Bakirci S, Hacilarlioglu S, Kinnaird J, Thompson J, Weir W, Shiels B. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites. BMC Genomics 2017; 18:438. [PMID: 28583072 PMCID: PMC5460460 DOI: 10.1186/s12864-017-3788-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023] Open
Abstract
Background Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. Results A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Conclusions Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3788-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Lempereur
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: Laboratory of Parasitology and Parasitic Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Stephen D Larcombe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Zeeshan Durrani
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: School of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE,, UK
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Serkan Bakirci
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Selin Hacilarlioglu
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Jane Kinnaird
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - William Weir
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Brian Shiels
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
57
|
Matuschewski K. Vaccines against malaria-still a long way to go. FEBS J 2017; 284:2560-2568. [DOI: 10.1111/febs.14107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Matuschewski
- Department of Molecular Parasitology; Institute of Biology; Humboldt University Berlin; Germany
| |
Collapse
|
58
|
Bechtsi D, Waters A. Genomics and epigenetics of sexual commitment in Plasmodium. Int J Parasitol 2017; 47:425-434. [DOI: 10.1016/j.ijpara.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
|
59
|
Demanga CG, Eng JWL, Gardiner DL, Roth A, Butterworth A, Adams JH, Trenholme KR, Dalton JP. The development of sexual stage malaria gametocytes in a Wave Bioreactor. Parasit Vectors 2017; 10:216. [PMID: 28464929 PMCID: PMC5414375 DOI: 10.1186/s13071-017-2155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2017] [Indexed: 11/14/2022] Open
Abstract
Background Blocking malaria gametocyte development in RBCs or their fertilization in the mosquito gut can prevent infection of the mosquito vector and passage of disease to the human host. A ‘transmission blocking’ strategy is a component of future malaria control. However, the lack of robust culture systems for producing large amounts of Plasmodium falciparum gametocytes has limited our understanding of sexual-stage malaria biology and made vaccine or chemotherapeutic discoveries more difficult. Methods The Wave BioreactorTM 20/50 EHT culture system was used to develop a convenient and low-maintenance protocol for inducing commitment of P. falciparum parasites to gametocytogenesis. Culture conditions were optimised to obtain mature stage V gametocytes within 2 weeks in a large-scale culture of up to a 1 l. Results We report a simple method for the induction of gametocytogenesis with N-acetylglucosamine (10 mM) within a Wave Bioreactor. By maintaining the culture for 14–16 days as many as 100 million gametocytes (stage V) were produced in a 1 l culture. Gametocytes isolated using magnetic activated cell sorting (MACS) columns were frozen in aliquots for storage. These were revitalised by thawing and shown to retain their ability to exflagellate and infect mosquitoes (Anopheles stephansi). Conclusions The production of gametocytes in the Wave Bioreactor under GMP-compliant conditions will not only facilitate cellular, developmental and molecular studies of gametocytes, but also the high-throughput screening for new anti-malarial drugs and, possibly, the development of whole-cell gametocyte or sporozoite-based vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corine G Demanga
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada
| | - Jenny W L Eng
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada
| | - Donald L Gardiner
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Alison Roth
- Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, FL, USA
| | - Alice Butterworth
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia
| | - John H Adams
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111, QLD, Australia
| | - Katharine R Trenholme
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia.,School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111, QLD, Australia
| | - John P Dalton
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada. .,School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, 97 Lisburn Road, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
60
|
Favuzza P, Guffart E, Tamborrini M, Scherer B, Dreyer AM, Rufer AC, Erny J, Hoernschemeyer J, Thoma R, Schmid G, Gsell B, Lamelas A, Benz J, Joseph C, Matile H, Pluschke G, Rudolph MG. Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. eLife 2017; 6. [PMID: 28195038 PMCID: PMC5349852 DOI: 10.7554/elife.20383] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/06/2017] [Indexed: 12/02/2022] Open
Abstract
Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here, we present the crystal structures of PfCyRPA and its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. PfCyRPA adopts a 6-bladed β-propeller structure with similarity to the classic sialidase fold, but it has no sialidase activity and fulfills a purely non-enzymatic function. Characterization of the epitope recognized by protective antibodies may facilitate design of peptidomimetics to focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines. DOI:http://dx.doi.org/10.7554/eLife.20383.001 Malaria is one of the deadliest infectious diseases worldwide, killing over 400,000 people a year. About 200 million people are infected every year, placing a huge social and medical burden especially on developing countries. Microscopic parasites known as Plasmodium are responsible for causing this disease. Plasmodium parasites have a complex life cycle involving both mosquito and mammal hosts. This includes a stage where the parasites infect the mammal’s red blood cells, which causes the symptoms of the disease. In 2012, a team of researchers discovered that a protein called CyRPA forms a group (or ‘complex’) with several other proteins to allow the parasites to enter red blood cells. Developing a vaccine is one of the most promising approaches to prevent malaria. Vaccines help the body to recognise and fight an invading microbe by triggering an immune response that results in the production of proteins called antibodies, which can bind to specific molecules on the surface of the microbe. If the microbe later enters the body, these antibodies can be produced quickly to eliminate the microbe before it causes disease. However, efforts to develop a highly effective vaccine against malaria have so far been unsuccessful. Favuzza et al. – including some of the researchers involved in the 2012 work – used a technique called X-ray crystallography to investigate the three-dimensional structure of the CyRPA protein. The experiments show that an antibody is able to bind to a region of CyRPA – a designated ‘protective epitope’ – that is similar in the CyRPA proteins of all Plasmodium falciparum strains. These antibodies can prevent the parasite from entering the red blood cells, and vaccines containing CyRPA may therefore be effective at protecting individuals from malaria. The findings of Favuzza et al. also suggest that using CyRPA in combination with another protein in the complex called RH5 could make the vaccine more powerful as it would make it harder for the parasite to become resistant. The next step following on from this work is to design a vaccine containing protective CyRPA epitopes that triggers an immune response in mammals that is strong enough to reduce the numbers of parasites in the blood. A future challenge will be to develop a vaccine that combines several proteins involved in different stages of the parasite’s life cycle to provide full protection against malaria. DOI:http://dx.doi.org/10.7554/eLife.20383.002
Collapse
Affiliation(s)
- Paola Favuzza
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Elena Guffart
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marco Tamborrini
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Bianca Scherer
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anita M Dreyer
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Arne C Rufer
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Johannes Erny
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joerg Hoernschemeyer
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ralf Thoma
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Georg Schmid
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Bernard Gsell
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Araceli Lamelas
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Joerg Benz
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Catherine Joseph
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hugues Matile
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
61
|
Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate. Sci Rep 2017; 7:40312. [PMID: 28091576 PMCID: PMC5238395 DOI: 10.1038/srep40312] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins.
Collapse
|
62
|
Malaria: Biology and Disease. Cell 2016; 167:610-624. [PMID: 27768886 DOI: 10.1016/j.cell.2016.07.055] [Citation(s) in RCA: 503] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/17/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022]
Abstract
Malaria has been a major global health problem of humans through history and is a leading cause of death and disease across many tropical and subtropical countries. Over the last fifteen years renewed efforts at control have reduced the prevalence of malaria by over half, raising the prospect that elimination and perhaps eradication may be a long-term possibility. Achievement of this goal requires the development of new tools including novel antimalarial drugs and more efficacious vaccines as well as an increased understanding of the disease and biology of the parasite. This has catalyzed a major effort resulting in development and regulatory approval of the first vaccine against malaria (RTS,S/AS01) as well as identification of novel drug targets and antimalarial compounds, some of which are in human clinical trials.
Collapse
|
63
|
Abstract
This article attempts to draw together current knowledge on the biology of Plasmodium and experience gained from past control campaigns to interpret and guide current efforts to discover and develop exciting new strategies targeting the parasite with the objective of interrupting transmission. Particular note is made of the advantages of targeting often unappreciated small, yet vital, bottleneck populations to enhance both the impact and the useful lifetime of hard-won interventions. A case is made for the standardization of methods to measure transmission blockade to permit the rational comparison of how diverse interventions (drugs, vaccines, insecticides, Genetically Modified technologies) targeting disparate aspects of parasite biology may impact upon the commonly used parameter of parasite prevalence in the human population.
Collapse
Affiliation(s)
- R E Sinden
- The Jenner Institute, Oxford, United Kingdom.
| |
Collapse
|
64
|
Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, Healy SA, Durbin AP, Narum DL, Wu Y, Duffy PE. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PLoS One 2016; 11:e0163144. [PMID: 27749907 PMCID: PMC5066979 DOI: 10.1371/journal.pone.0163144] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. Pfs25 is a leading TBV candidate, and previous studies conducted in animals demonstrated an improvement of its functional immunogenicity after conjugation to EPA, a recombinant, detoxified ExoProtein A from Pseudomonas aeruginosa. In this report, we describe results of an open-label, dose-escalating Phase 1 trial to assess the safety and immunogenicity of Pfs25-EPA conjugates formulated with Alhydrogel®. Thirty malaria-naïve healthy adults received up to four doses of the conjugate vaccine, with 8, 16, or 47 μg of conjugated Pfs25 mass, at 0, 2, 4, and 10 months. Vaccinations were generally well tolerated. The majority of solicited adverse events were mild in severity with pain at the injection site the most common complaint. Anemia was the most common laboratory abnormality, but was considered possibly related to the study in only a minority of cases. No vaccine-related serious adverse events occurred. The peak geometric mean anti-Pfs25 antibody level in the highest dose group was 88 (95% CI 53, 147) μg/mL two weeks after the 4th vaccination, and declined to near baseline one year later. Antibody avidity increased over successive vaccinations. Transmission blocking activity demonstrated in a standard membrane feeding assay (SMFA) also increased from the second to the third dose, and correlated with antibody titer and, after the final dose, with antibody avidity. These results support the further evaluation of Pfs25-EPA/Alhydrogel® in a malaria-endemic population.
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Janet Hurd
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Autumn Hentrich
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erin Gabriel
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Noreen A. Hynes
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sarah Brockley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Nicholas J. MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaowei Wang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
65
|
Miura K, Stone WJR, Koolen KM, Deng B, Zhou L, van Gemert GJ, Locke E, Morin M, Bousema T, Sauerwein RW, Long CA, Dechering KJ. An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines. Malar J 2016; 15:463. [PMID: 27612458 PMCID: PMC5016893 DOI: 10.1186/s12936-016-1515-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a "gold standard" assay to measure transmission-blocking activity of test antibodies, and has been utilized widely in both non-clinical and clinical studies. While several studies have discussed the inherent variability of SMFA within a study group, there has been no assessment of inter-laboratory variation. Therefore, there is currently no assurance that SMFA results are comparable between different studies. METHODS Mouse anti-Pfs25 monoclonal antibody (mAb, 4B7 mAb), rat anti-Pfs48/45 mAb (85RF45.1 mAb) and a human polyclonal antibody (pAb) collected from a malaria-exposed adult were tested at the same concentrations (6-94 μg/mL for 4B7, 1.2-31.3 μg/mL for 85RF45.1 and 23-630 μg/mL for human pAb) in two laboratories following their own standardized SMFA protocols. The mAbs and pAb, previously shown to have strong inhibition activities in the SMFA, were tested at three or four concentrations in two or three independent assays in each laboratory, and percent inhibition in mean oocyst intensity relative to a control in the same feed was determined in each feeding experiment. RESULTS Both monoclonal and polyclonal antibodies dose-dependently reduced oocyst intensity in all experiments performed at the two test sites. In both laboratories, the inter-assay variability in percent inhibition in oocyst intensity decreased at higher levels of inhibition, regardless of which antibody was tested. At antibody concentrations that led to a >80 % reduction in oocyst numbers, the inter-laboratory variations were in the same range compared with the inter-assay variation observed within a single laboratory, and the differences in best estimates from multiple feeds between the two laboratories were <5 percentage points. CONCLUSIONS This study confirms previous reports that the precision of the SMFA increases with increasing percent inhibition. Moreover, the variation between the two laboratories is not greater than the variation observed within a laboratory. The findings of this study provide guidance for comparison of SMFA data from different laboratories.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA.
| | - Will J R Stone
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Karin M Koolen
- TropIQ Health Science, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Emily Locke
- PATH Malaria Vaccine Initiative, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Merribeth Morin
- PATH Malaria Vaccine Initiative, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Koen J Dechering
- TropIQ Health Science, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands.
| |
Collapse
|
66
|
Lee SM, Wu CK, Plieskatt J, McAdams DH, Miura K, Ockenhouse C, King CR. Assessment of Pfs25 expressed from multiple soluble expression platforms for use as transmission-blocking vaccine candidates. Malar J 2016; 15:405. [PMID: 27515826 PMCID: PMC4982271 DOI: 10.1186/s12936-016-1464-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery. METHODS While the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay. RESULTS Through numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichia pastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production. CONCLUSIONS In this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.
Collapse
Affiliation(s)
- Shwu-Maan Lee
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA.
| | - Chia-Kuei Wu
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - Jordan Plieskatt
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - David H McAdams
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Chris Ockenhouse
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - C Richter King
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| |
Collapse
|
67
|
Long CA, Zavala F. Malaria vaccines and human immune responses. Curr Opin Microbiol 2016; 32:96-102. [PMID: 27262417 PMCID: PMC4983510 DOI: 10.1016/j.mib.2016.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission.
Collapse
Affiliation(s)
- Carole A. Long
- Laboratory of Malaria and Vector Research, 12735 Twinbrook Parkway, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, Phone 301-761-5058, FAX 301-443-5778,
| | - Fidel Zavala
- Dept. of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, Phone 443-287-1769, FAX 410-955-0105,
| |
Collapse
|
68
|
Hien DFDS, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, Yameogo BK, Gouagna LC, Hopkins RJ, Ouedraogo GA, Simard F, Ouedraogo JB, Ignell R, Lefevre T. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS Pathog 2016; 12:e1005773. [PMID: 27490374 PMCID: PMC4973987 DOI: 10.1371/journal.ppat.1005773] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/27/2016] [Indexed: 01/25/2023] Open
Abstract
The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.
Collapse
Affiliation(s)
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Benjamin Roche
- UMISCO lab (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Bienvenue K. Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Richard J. Hopkins
- University of Greenwich, Natural Resource Institute–Department of Agriculture Health and Environment, Chatham Maritime, Kent, United Kingdom
| | | | - Frédéric Simard
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Thierry Lefevre
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| |
Collapse
|
69
|
Miura K, Swihart BJ, Deng B, Zhou L, Pham TP, Diouf A, Burton T, Fay MP, Long CA. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine 2016; 34:4145-4151. [PMID: 27372156 PMCID: PMC4958521 DOI: 10.1016/j.vaccine.2016.06.066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/27/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Malaria transmission-blocking vaccines (TBVs) are potentially helpful tools for malaria eradication. The standard membrane-feeding assay (SMFA) is considered one of the "gold standard" assays for TBV development. However, lack of consensus in reporting results from SMFA has made it very challenging to compare results from different studies. Two main readouts, % inhibition in mean oocyst count per mosquito (TRA) and % inhibition in prevalence of infected mosquitoes (TBA), have been used widely. In this study, we statistically modeled the oocyst data in SMFA using data from 105 independent feeding experiments including 9804 mosquitoes. The model was validated using an independent data set that included 10,790 mosquitoes from 110 feeding studies. The model delineates a relationship between TRA, the mean oocyst count in the control mosquitoes (mo-contl), and TBA. While TRA was independent from mo-contl, TBA values changed depending on mo-contl. Regardless of monoclonal or polyclonal antibodies tested, there were strong concordances between observed TBA and predicted TBA based on the model using mo-contl and observed TRA. Simulations showed that SMFA with lower true control means had increased uncertainty in TRA estimates. The strong linkage between TBA, TRA and mo-contl inspired creation of a standardized TBA, a model-based TBA standardized to a target control mean, which allows comparison across multiple feeds regardless of mo-contl. This is the first study showing that the observed TBA can be reasonably predicted by mo-contl and the TRA of the test antibody using independent experimental data. This study indicates that TRA should be used to compare results from multiple feeds with different levels of mo-contl. If a measure of TBA is desired, it is better to report standardized TBA rather than observed TBA. These recommendations support rational comparisons of results from different studies, thus benefiting future TBV development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Bruce J. Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Thao P. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Timothy Burton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
70
|
Chaurio RA, Pacheco MA, Cornejo OE, Durrego E, Stanley CE, Castillo AI, Herrera S, Escalante AA. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Negl Trop Dis 2016; 10:e0004786. [PMID: 27347876 PMCID: PMC4922550 DOI: 10.1371/journal.pntd.0004786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/28/2016] [Indexed: 11/23/2022] Open
Abstract
Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. Plasmodium vivax is the most prevalent human malarial parasite outside Africa. The fact that patients can relapse due to the parasite dormant liver stages, among other biologic and epidemiologic characteristics of vivax malaria, facilitates the persistence of the disease in many endemic areas. These challenges have fueled the search for new control tools, including transmission blocking (TB) vaccines targeting the parasite sexual stages. Here we study the genetic diversity of two major TB vaccine antigens, Pvs25 and Pvs28. We show that these genes are relatively conserved worldwide but still harbor diversity that is not evenly distributed across the genes. These patterns are shared by the same proteins in closely related parasite species suggesting their functional importance. We also identify strong geographic differentiation between the circulating variants found in Asia and the Americas. Finally, evolutionary genetic analyses indicate that the observed variation in both genes could be maintained by natural selection. Thus, these polymorphisms may confer an adaptive advantage to the parasite. These results indicate that the genetic variation found in these genes and their geographic distribution should be considered by vaccine developers.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ester Durrego
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Craig E Stanley
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andreína I Castillo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
71
|
Zheng W, Kou X, Du Y, Liu F, Yu C, Tsuboi T, Fan Q, Luo E, Cao Y, Cui L. Identification of three ookinete-specific genes and evaluation of their transmission-blocking potentials in Plasmodium berghei. Vaccine 2016; 34:2570-8. [PMID: 27083421 DOI: 10.1016/j.vaccine.2016.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/12/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
With a renewed hope for malaria elimination, interventions that prevent transmission of parasites from humans to mosquitoes have received elevated attention. Transmission-blocking vaccines (TBVs) targeting the sexual stages are well suited for this task. Here, through bioinformatic analysis, we selected two putative Plasmodium berghei ookinete-stage proteins (PBANKA_111920, and PBANKA_145770) and a previously characterized ookinete protein PBANKA_135340 (PSOP7) for evaluation of their transmission-blocking potentials. Fragments of these predicted proteins were expressed in bacteria and purified recombinant proteins were used to immunize mice. Antisera against these recombinant proteins recognized proteins of predicted sizes from ookinete lysates and localized their expression on the surface of ookinetes. Inclusion of these antisera in in vitro ookinete culture significantly inhibited ookinete formation. Mosquitoes fed on mice immunized with the recombinant proteins also showed significantly reduced oocyst densities (60.0-70.7%) and modest reductions of oocyst prevalence (10.7-37.4%). These data, together with the conservation of these genes in Plasmodium, suggest that these three ookinete proteins could be new promising targets for TBVs and are worth of future investigations in the human malaria parasites.
Collapse
Affiliation(s)
- Wenqi Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Kou
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China; College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Yunting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Chunyun Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, China.
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
72
|
Abstract
Gametocytes are the specialized form of Plasmodium parasites that are responsible for human-to-mosquito transmission of malaria. Transmission of gametocytes is highly effective, but represents a biomass bottleneck for the parasite that has stimulated interest in strategies targeting the transmission stages separately from those responsible for clinical disease. Studying targets of naturally acquired immunity against transmission-stage parasites may reveal opportunities for novel transmission reducing interventions, particularly the development of a transmission blocking vaccine (TBV). In this review, we summarize the current knowledge on immunity against the transmission stages of Plasmodium. This includes immune responses against epitopes on the gametocyte-infected erythrocyte surface during gametocyte development, as well as epitopes present upon gametocyte activation in the mosquito midgut. We present an analysis of historical data on transmission reducing immunity (TRI), as analysed in mosquito feeding assays, and its correlation with natural recognition of sexual stage specific proteins Pfs48/45 and Pfs230. Although high antibody titres towards either one of these proteins is associated with TRI, the presence of additional, novel targets is anticipated. In conclusion, the identification of novel gametocyte-specific targets of naturally acquired immunity against different gametocyte stages could aid in the development of potential TBV targets and ultimately an effective transmission blocking approach.
Collapse
|
73
|
Evaluation of the Impact of Codon Optimization and N-Linked Glycosylation on Functional Immunogenicity of Pfs25 DNA Vaccines Delivered by In Vivo Electroporation in Preclinical Studies in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1013-9. [PMID: 26135972 DOI: 10.1128/cvi.00185-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Plasmodium falciparum sexual stage surface antigen Pfs25 is a well-established candidate for malaria transmission-blocking vaccine development. Immunization with DNA vaccines encoding Pfs25 has been shown to elicit potent antibody responses in mice and nonhuman primates. Studies aimed at further optimization have revealed improved immunogenicity through the application of in vivo electroporation and by using a heterologous prime-boost approach. The goal of the studies reported here was to systematically evaluate the impact of codon optimization, in vivo electroporation, and N-linked glycosylation on the immunogenicity of Pfs25 encoded by DNA vaccines. The results from this study demonstrate that while codon optimization and in vivo electroporation greatly improved functional immunogenicity of Pfs25 DNA vaccines, the presence or absence of N-linked glycosylation did not significantly impact vaccine efficacy. These findings suggest that N-glycosylation of Pfs25 encoded by DNA vaccines is not detrimental to overall transmission-blocking efficacy.
Collapse
|