51
|
Bradley ST, Lee YS, Gurel Z, Kimple RJ. Autophagy awakens-the myriad roles of autophagy in head and neck cancer development and therapeutic response. Mol Carcinog 2022; 61:243-253. [PMID: 34780672 PMCID: PMC8799495 DOI: 10.1002/mc.23372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Autophagy is an evolutionarily conserved cell survival mechanism that degrades damaged proteins and organelles to generate cellular energy during times of stress. Recycling of these cellular components occurs in a series of sequential steps with multiple regulatory points. Mechanistic dysfunction can lead to a variety of human diseases and cancers due to the complexity of autophagy and its ability to regulate vital cellular functions. The role that autophagy plays in both the development and treatment of cancer is highly complex, especially given the fact that most cancer therapies modulate autophagy. This review aims to discuss the balance of autophagy in the development, progression, and treatment of head and neck cancer, as well as highlighting the need for a deeper understanding of what is still unknown about autophagy.
Collapse
Affiliation(s)
- Samantha T Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
52
|
Jiang J, Ren Y, Xu C, Lin X. NUT midline carcinoma as a primary lung tumor treated with anlotinib combined with palliative radiotherapy: a case report. Diagn Pathol 2022; 17:4. [PMID: 34996489 PMCID: PMC8742416 DOI: 10.1186/s13000-021-01188-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Background NUT (nuclear protein in testis) midline carcinoma (NMC) is a rapidly progressive tumor arising from midline structures. Recent cases have reported that the poor prognosis with a median survival of 6.7 months and a 2 years overall survival of 19% due to limited treatment. Based on the effect of arotinib on inhibiting tumor growth and angiogenesis. We present one patient case treated with anlotinib and radiotherapy. Case presentation Here, we describe a 33-year old patient who complained of cough and chest pain and was diagnosed as a pulmonary NMC through CT scan, FISH and immunohistochemistry. In addition, we initially demonstrated that anlotinib combined with palliative radiotherapy could significantly prevent the tumor growth in a pulmonary NMC. Conclusion The report indicated that anlotinib combined with palliative radiotherapy could inhibit the tumor progression in a pulmonary NMC, which may provide a combined therapy to pulmonary NMC in the future.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yikun Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengping Xu
- Department of Pathology, The Southwest Hospital, the Southwest Hospital of Army Medical University, Chongqing, 400038, China
| | - Xing Lin
- Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
53
|
Liu Q, Li Y, Zhi Y, Liu B, Sun J. Design, synthesis and bioactivity evaluation of novel quinazoline based KRAS G12C inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d1nj06226c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
KRAS is a member of the RAS gene family, which is involved in the regulation of human life activitie. A series of new quinazoline compounds were designed and synthesized, and their KRAS inhibition ability was verified by activity assay.
Collapse
Affiliation(s)
- Qingxu Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yan Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, China
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, China
| |
Collapse
|
54
|
Yang T, Xiong Y, Zeng Y, Wang Y, Zeng J, Liu J, Xu S, Li LS. Current status of immunotherapy for non-small cell lung cancer. Front Pharmacol 2022; 13:989461. [PMID: 36313314 PMCID: PMC9606217 DOI: 10.3389/fphar.2022.989461] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
Nowadays, lung cancer is still the deadliest oncological disease in the world. Among them, non-small cell lung cancer (NSCLC) accounts for 80%∼85% of all lung cancers, and its 5-year survival rate is less than 15%, making the situation critical. In the past decades, despite some clinical advances in conventional treatments, the overall survival rate of NSCLC is still not optimistic due to its unique physiological conditions and the frequent occurrence of tumor escape. In recent years, immunotherapy has become a new hot spot in lung cancer research, including antibody therapy and cell therapy, which have been developed and utilized one after another, especially immune checkpoint inhibitor (ICI). These approaches have effectively improved the overall survival rate and objective response rate of NSCLC patients by enhancing the immune capacity of the body and targeting tumor cells more effectively, which is more specific and less toxic compared with conventional chemotherapy, and providing more strategies for NSCLC treatment. In this paper, we reviewed the relevant targets, clinical progress and adverse reaction in monoclonal antibodies, antibody-drug conjugates, ICI, bispecific antibodies, T-cell receptor engineered T cell therapy (TCR-T), Chimeric antigen receptor T-cell immunotherapy (CAR-T), and also report on their combination therapy from the immune-related background to provide better NSCLC treatment and prospective.
Collapse
|
55
|
Bera H, Abosheasha MA, Ito Y, Ueda M. Hypoxia-responsive pullulan-based nanoparticles as erlotinib carriers. Int J Biol Macromol 2021; 191:764-774. [PMID: 34600326 DOI: 10.1016/j.ijbiomac.2021.09.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/06/2023]
Abstract
A hypoxia-responsive pullulan-based co-polymer was developed to assess its efficacy to deliver erlotinib (ERL) to the cervical cancer cells. Upon exposure to hypoxic condition, the synthesized and structurally characterized co-polymer i.e. succinyl pullulan-g-6-(2-nitroimidazole) hexylamine (Pull-SA-HA-NI) exhibited a hypochromic shift in the UV spectra and alteration in its self-assembled structures as compared to the control co-polymer, succinyl pullulan-g-hexylamine (Pull-SA-HA). Its corresponding ERL-loaded nanoparticles (NPs) displayed an attenuated crystallinity of pure ERL with excellent drug-trapping capacity (DEE, 94.23 ± 1.36%) and acceptable zeta potential (+39.21 ± 1.09 mV) and diameter (84.10 ± 2.10 nm) values. These also evidenced a faster drug release profile under hypoxic condition relative to the normoxic condition. The cellular internalization of the NPs was mediated through the energy-dependent endocytic process, which could utilize its multiple pathways (i.e., macropinocytosis, clathrin- and caveolae-mediated endocytosis). The ERL-loaded NPs suppressed HeLa cell proliferation and induced apoptosis more efficiently than the pristine drug.
Collapse
Affiliation(s)
- Hriday Bera
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Mohammed A Abosheasha
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
56
|
Singh S, Utreja D, Kumar V. Pyrrolo[2,1-f][1,2,4]triazine: a promising fused heterocycle to target kinases in cancer therapy. Med Chem Res 2021; 31:1-25. [PMID: 34803342 PMCID: PMC8590428 DOI: 10.1007/s00044-021-02819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide responsible for about 10 million deaths per year. To date several approaches have been developed to treat this deadly disease including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy, and synthetic lethality. The targeted therapy refers to targeting only specific proteins or enzymes that are dysregulated in cancer rather than killing all rapidly dividing cells, has gained much attention in the recent past. Kinase inhibition is one of the most successful approaches in targeted therapy. As of 30 March 2021, FDA has approved 65 small molecule protein kinase inhibitors and most of them are for cancer therapy. Interestingly, several kinase inhibitors contain one or more fused heterocycles as part of their structures. Pyrrolo[2,1-f][1,2,4]triazine is one the most interesting fused heterocycle that is an integral part of several kinase inhibitors and nucleoside drugs viz. avapritinib and remdesivir. This review articles focus on the recent advances made in the development of kinase inhibitors containing pyrrolo[2,1-f][1,2,4]triazine scaffold. ![]()
Collapse
Affiliation(s)
- Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Vimal Kumar
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144011 Punjab India
| |
Collapse
|
57
|
Du J, Yan H, Xu Z, Yang B, He Q, Wang X, Luo P. Cutaneous toxicity of FDA-approved small-molecule kinase inhibitors. Expert Opin Drug Metab Toxicol 2021; 17:1311-1325. [PMID: 34743659 DOI: 10.1080/17425255.2021.2004116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION By 1 January 2021, the FDA has approved a total of 62 small-molecule kinase inhibitors (SMKIs). The increasing clinical use of small-molecule kinase inhibitors has led to some side effects, the most common of which is cutaneous toxicity, as reflected by approximately 90% (57 of 62) of the FDA-approved SMKIs have reported treatment-related cutaneous toxicities. Since these cutaneous toxicities may have a crucial influence on the emotional, physical and psychosocial health of the patients, it is of great importance for doctors, patients, oncologists and interrelated researchers to be aware of the cutaneous side effects of these drugs in order to make the diagnosis accurate and the treatment appropriate. AREAS COVERED This review aims to summarize the potential cutaneous toxicities and the frequency of occurrence of FDA-approved 62 SMKIs, and provide a succinct overview of the potential mechanisms of certain cutaneous toxicities. The literature review was performed based on PubMed database and FDA official website. EXPERT OPINION It is significant to determine the risk factors for SMKI-induced cutaneous toxicity. The mechanisms underlying SMKI-induced cutaneous toxicities remain unclear at present. Future research should focus on the mechanisms of SMKI-induced cutaneous toxicities to find out mechanistically driven therapies.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohong Wang
- Department of Chemotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
58
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
59
|
Lin Z, Lu S, Xie X, Yi X, Huang H. Noncoding RNAs in drug-resistant pancreatic cancer: A review. Biomed Pharmacother 2020; 131:110768. [PMID: 33152930 DOI: 10.1016/j.biopha.2020.110768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths and is expected to be the second-leading cause of cancer-related deaths in Europe and the United States by 2030. The high fatality rate of pancreatic cancer is ascribed to untimely diagnosis, early metastasis and limited responses to both chemotherapy and radiotherapy. Although gemcitabine, 5-fluorouracil and some other drugs can profoundly improve patient prognosis, most pancreatic cancer patients eventually develop drug resistance, leading to poor clinical outcomes. The underlying mechanisms of pancreatic cancer drug resistance are complicated and inconclusive. Interestingly, accumulating evidence has demonstrated that different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play a crucial role in pancreatic cancer resistance to chemotherapy reagents. In this paper, we systematically summarize the molecular mechanism underlying the influence of ncRNAs on the generation and development of drug resistance in pancreatic cancer and discuss the potential role of ncRNAs as prognostic markers and new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xuyang Yi
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/ Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
60
|
Yin Z, Wang Q, Yan X, Zhang L, Tang K, Cao Z, Qiu T. Reveal the Regulation Patterns of Prognosis-Related miRNAs and lncRNAs Across Solid Tumors in the Cancer Genome Atlas. Front Cell Dev Biol 2020; 8:368. [PMID: 32523951 PMCID: PMC7261917 DOI: 10.3389/fcell.2020.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The dysregulation of non-coding RNAs (ncRNAs) such as miRNAs and lncRNAs are associated with the pathogenesis and progression in multiple cancers including solid tumors. Comprehensive investigations of prognosis-related ncRNA markers could promote the development of therapeutic strategies for solid tumors, but rarely reported. METHODS By taking advantage of The Cancer Genome Atlas (TCGA), pan-cancer prognosis analysis (PCPA) models were firstly constructed based on miRNA and lncRNA expression profiles of 8,450 samples in 19 solid tumors. Further, the co-occurrence and exclusivity among ncRNA markers were systematically analyzed for different cancers. RESULTS In identified ncRNA makers, 71% of the miRNA markers were shared in multiple cancers, whereas 96% of the lncRNA markers were cancer-specific. Moreover, to analyze the regulation patterns of prognosis-related ncRNAs at the pan-cancer level, miRNA markers were further annotated into eight carcinogenic pathways. Results represented that approximately 86% of these miRNA markers could regulate the PI3K-Akt signaling pathway, while only 48% for the Notch signaling pathway. Finally, among 126 common genes that participated in eight carcinogenic pathways, BCL2, CSNK2A1, EGFR, PDGFRA, and VEGFA were proposed as potential drug targets for multiple cancers. CONCLUSION The prognosis analysis and regulation characteristics of ncRNAs presented in this study may help to facilitate the discovery of anti-cancer drugs for multiple solid tumors.
Collapse
Affiliation(s)
- Zuojing Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiming Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinmiao Yan
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lu Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|