51
|
Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 2013; 538:6-15. [DOI: 10.1016/j.abb.2013.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
|
52
|
Rodgers TL, Townsend PD, Burnell D, Jones ML, Richards SA, McLeish TCB, Pohl E, Wilson MR, Cann MJ. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol 2013; 11:e1001651. [PMID: 24058293 PMCID: PMC3769225 DOI: 10.1371/journal.pbio.1001651] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
Allostery in bacterial transcription factors arises from changes in global low-frequency protein dynamics. Amino acids that regulate low-frequency dynamics are identified and seen to be evolutionarily conserved. Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein “design space” that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to occupy a dynamic space that fine-tunes biological activity and thus establishes the means to engineer allosteric mechanisms driven by low-frequency dynamics. Allostery is a process by which a molecule binding to one site of a protein alters the activity of the protein at another site. Allostery is typically thought to occur through a change in protein structure, but there is now clear evidence that the dynamic properties of a protein can also regulate allostery without a change in overall conformation. Here we examine two members of a large family of bacterial transcription factors and provide a mechanism to describe the allosteric binding of their activating ligands. We demonstrate, in these systems, that allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding. We further demonstrate that the higher dimensional parameter space that describes all potential variant transcription factors can be reduced to a two-dimensional free energy landscape that determines the key molecular parameters that predominantly regulate allostery. We additionally show that the amino acids we determine as contributing sensitively to allosteric control tend to be conserved in diverse bacteria; thus we identify a link between residues that contribute to low-frequency fluctuations and evolutionary selection pressures.
Collapse
Affiliation(s)
- Thomas L. Rodgers
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Philip D. Townsend
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - David Burnell
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Matthew L. Jones
- Department of Physics, Durham University, Durham, United Kingdom
| | - Shane A. Richards
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Tom C. B. McLeish
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
- Department of Physics, Durham University, Durham, United Kingdom
| | - Ehmke Pohl
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Mark R. Wilson
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Martin J. Cann
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
53
|
Abstract
Protein kinase A (PKA) is a prototype of multidomain signaling proteins functioning as allosteric conformational switches. Allosteric transitions have been the subject of extensive structural and dynamic investigations focusing mainly on folded domains. However, the current understanding of the allosteric role of partially unstructured linkers flanking globular domains is limited. Here, we show that a dynamic linker in the regulatory subunit (R) of PKA serves not only as a passive covalent thread, but also as an active allosteric element that controls activation of the kinase subunit (C) by tuning the inhibitory preequilibrium of a minimally populated intermediate (apo R). Apo R samples both C-binding competent (inactive) and incompetent (active) conformations within a nearly degenerate free-energy landscape and such degeneracy maximally amplifies the response to weak (∼2RT), but conformation-selective interactions elicited by the linker. Specifically, the R linker that in the R:C complex docks in the active site of C in apo R preferentially interacts with the C-binding incompetent state of the adjacent cAMP-binding domain (CBD). These unanticipated findings imply that the formation of the intermolecular R:C inhibitory interface occurs at the expense of destabilizing the intramolecular linker/CBD interactions in R. A direct implication of this model, which was not predictable solely based on protein structure, is that the disruption of a linker/CBD salt bridge in the R:C complex unexpectedly leads to increased affinity of R for C. The linker includes therefore sites of R:C complex frustration and frustration-relieving mutations enhance the kinase inhibitory potency of R without compromising its specificity.
Collapse
|
54
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|
55
|
Su JG, Du HJ, Hao R, Xu XJ, Li CH, Chen WZ, Wang CX. Identification of functionally key residues in AMPA receptor with a thermodynamic method. J Phys Chem B 2013; 117:8689-96. [PMID: 23822189 DOI: 10.1021/jp402290t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AMPA receptor mediates the fast excitatory synaptic transmission in the central nervous system, and it is activated by the binding of glutamate that results in the opening of the transmembrane ion channel. In the present work, the thermodynamic method developed by our group was improved and then applied to identify the functionally key residues that regulate the glutamate-binding affinity of AMPA receptor. In our method, the key residues are identified as those whose perturbation largely changes the ligand binding free energy of the protein. It is found that besides the ligand binding sites, other residues distant from the binding cleft can also influence the glutamate binding affinity through a long-range allosteric regulation. These allosteric sites include the hinge region of the ligand binding cleft, the dimer interface of the ligand binding domain, the linkers between the ligand binding domain and the transmembrane domain, and the interface between the N-terminal domain and the ligand binding domain. Our calculation results are consistent with the available experimental data. The results are helpful for our understanding of the mechanism of long-range allosteric communication in the AMPA receptor and the mechanism of channel opening triggered by glutamate binding.
Collapse
Affiliation(s)
- Ji Guo Su
- College of Science, Yanshan University, Qinhuangdao, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Gagné D, Doucet N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 2013; 280:5596-607. [PMID: 23763751 DOI: 10.1111/febs.12371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between protein structure and flexibility is of utmost importance for deciphering the tremendous rates of reactions catalyzed by enzyme biocatalysts. It has been postulated that protein homologs have evolved similar dynamic fluctuations to promote catalytic function, a property that would presumably be encoded in their structural fold. Using one of the best-characterized enzyme systems of the past century, we explore this hypothesis by comparing the numerous and diverse flexibility reports available for a number of structural and functional homologs of the pancreatic-like RNase A superfamily. Using examples from the literature and from our own work, we cover recent and historical evidence pertaining to the highly dynamic nature of this important structural fold, as well as the presumed importance of local and global concerted motions on the ribonucleolytic function. This minireview does not pretend to cover the overwhelming RNase A literature in a comprehensive manner; rather, efforts have been made to focus on the characterization of multiple timescale motions observed in the free and/or ligand-bound structural homologs as they proceed along the reaction coordinates. Although each characterized enzyme of this architectural fold shows unique motional features on a local scale, accumulating evidence from X-ray crystallography, NMR spectroscopy and molecular dynamics simulations suggests that global dynamic fluctuations, such as the functionally relevant hinge-bending motion observed in the prototypical RNase A, are shared between homologs of the pancreatic-like RNase superfamily. These observations support the hypothesis that analogous dynamic residue clusters are evolutionarily conserved among structural and functional homologs catalyzing similar enzymatic reactions.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | |
Collapse
|
57
|
Protein mechanics: how force regulates molecular function. Biochim Biophys Acta Gen Subj 2013; 1830:4762-8. [PMID: 23791949 DOI: 10.1016/j.bbagen.2013.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 05/26/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Regulation of proteins is ubiquitous and vital for any organism. Protein activity can be altered chemically, by covalent modifications or non-covalent binding of co-factors. Mechanical forces are emerging as an additional way of regulating proteins, by inducing a conformational change or by partial unfolding. SCOPE We review some advances in experimental and theoretical techniques to study protein allostery driven by mechanical forces, as opposed to the more conventional ligand driven allostery. In this respect, we discuss recent single molecule pulling experiments as they have substantially augmented our view on the protein allostery by mechanical signals in recent years. Finally, we present a computational analysis technique, Force Distribution Analysis, that we developed to reveal allosteric pathways in proteins. MAJOR CONCLUSIONS Any kind of external perturbation, being it ligand binding or mechanical stretching, can be viewed as an external force acting on the macromolecule, rendering force-based experimental or computational techniques, a very general approach to the mechanics involved in protein allostery. GENERAL SIGNIFICANCE This unifying view might aid to decipher how complex allosteric protein machineries are regulated on the single molecular level.
Collapse
|
58
|
Colocalization of fast and slow timescale dynamics in the allosteric signaling protein CheY. J Mol Biol 2013; 425:2372-81. [PMID: 23648838 DOI: 10.1016/j.jmb.2013.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
Abstract
It is now widely recognized that dynamics are important to consider for understanding allosteric protein function. However, dynamics occur over a wide range of timescales, and how these different motions relate to one another is not well understood. Here, we report an NMR relaxation study of dynamics over multiple timescales at both backbone and side-chain sites upon an allosteric response to phosphorylation. The response regulator, Escherichia coli CheY, allosterically responds to phosphorylation with a change in dynamics on both the microsecond-to-millisecond (μs-ms) timescale and the picosecond-to-nanosecond (ps-ns) timescale. We observe an apparent decrease and redistribution of μs-ms dynamics upon phosphorylation (and accompanying Mg(2+) saturation) of CheY. Additionally, methyl groups with the largest changes in ps-ns dynamics localize to the regions of conformational change measured by μs-ms dynamics. The limited spread of changes in ps-ns dynamics suggests a distinct relationship between motions on the μs-ms and ps-ns timescales in CheY. The allosteric mechanism utilized by CheY highlights the diversity of roles dynamics play in protein function.
Collapse
|
59
|
An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 2013; 151:1296-307. [PMID: 23217711 DOI: 10.1016/j.cell.2012.11.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/10/2012] [Accepted: 10/23/2012] [Indexed: 01/18/2023]
Abstract
The allosteric mechanism of Hsp70 molecular chaperones enables ATP binding to the N-terminal nucleotide-binding domain (NBD) to alter substrate affinity to the C-terminal substrate-binding domain (SBD) and substrate binding to enhance ATP hydrolysis. Cycling between ATP-bound and ADP/substrate-bound states requires Hsp70s to visit a state with high ATPase activity and fast on/off kinetics of substrate binding. We have trapped this "allosterically active" state for the E. coli Hsp70, DnaK, and identified how interactions among the NBD, the β subdomain of the SBD, the SBD α-helical lid, and the conserved hydrophobic interdomain linker enable allosteric signal transmission between ligand-binding sites. Allostery in Hsp70s results from an energetic tug-of-war between domain conformations and formation of two orthogonal interfaces: between the NBD and SBD, and between the helical lid and the β subdomain of the SBD. The resulting energetic tension underlies Hsp70 functional properties and enables them to be modulated by ligands and cochaperones and "tuned" through evolution.
Collapse
|
60
|
Axe JM, Boehr DD. Long-range interactions in the α subunit of tryptophan synthase help to coordinate ligand binding, catalysis, and substrate channeling. J Mol Biol 2013; 425:1527-45. [PMID: 23376097 DOI: 10.1016/j.jmb.2013.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
The α-subunit of tryptophan synthase (αTS) catalyzes the conversion of indole-3-glycerol phosphate to d-glyceraldehyde-3-phosphate and indole. We propose that allosteric networks intrinsic to αTS are modulated by the binding of the β-subunit to regulate αTS function. Understanding these long-range amino acid networks in αTS thus gives insight into the coordination of the two active sites within TS. In this study, we have used Ala residues as probes for structural and dynamic changes of αTS throughout its catalytic cycle, in the absence of the β-subunit. Projection analysis of the chemical shift changes by site-specific amino acid substitutions and ligand titrations indicates that αTS has three important conformational states: ligand-free, glyceraldehyde-3-phosphate-bound(like), and the active states. The amino acid networks within these conformations are different, as suggested by chemical shift correlation analysis. In particular, there are long-range connections, only in the active state, between Ala47, which reports on structural and dynamic changes associated with the general acid/base Glu49, and residues within the β2α2 loop, which contains the catalytically important Asp60 residue. These long-range interactions are likely important for coordinating chemical catalysis. In the free state, but not in the active state, there are connections between the β2α2 and β6α6 loops that likely help to coordinate substrate binding. Changes in the allosteric networks are also accompanied by protein dynamic changes. During catalytic turnover, the protein becomes more rigid on the millisecond timescale and the active-site dynamics are driven to a faster nanosecond timescale.
Collapse
Affiliation(s)
- Jennifer M Axe
- Department of Chemistry, Pennsylvania State University, 240 Chemistry Building, University Park, PA 16802, USA
| | | |
Collapse
|
61
|
Unusual biophysics of intrinsically disordered proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:932-51. [PMID: 23269364 DOI: 10.1016/j.bbapap.2012.12.008] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Research of a past decade and a half leaves no doubt that complete understanding of protein functionality requires close consideration of the fact that many functional proteins do not have well-folded structures. These intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered protein regions (IDPRs) are highly abundant in nature and play a number of crucial roles in a living cell. Their functions, which are typically associated with a wide range of intermolecular interactions where IDPs possess remarkable binding promiscuity, complement functional repertoire of ordered proteins. All this requires a close attention to the peculiarities of biophysics of these proteins. In this review, some key biophysical features of IDPs are covered. In addition to the peculiar sequence characteristics of IDPs these biophysical features include sequential, structural, and spatiotemporal heterogeneity of IDPs; their rough and relatively flat energy landscapes; their ability to undergo both induced folding and induced unfolding; the ability to interact specifically with structurally unrelated partners; the ability to gain different structures at binding to different partners; and the ability to keep essential amount of disorder even in the bound form. IDPs are also characterized by the "turned-out" response to the changes in their environment, where they gain some structure under conditions resulting in denaturation or even unfolding of ordered proteins. It is proposed that the heterogeneous spatiotemporal structure of IDPs/IDPRs can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and unfoldons. They may lose their function when folded, and activation of some IDPs is associated with the awaking of the dormant disorder. It is possible that IDPs represent the "edge of chaos" systems which operate in a region between order and complete randomness or chaos, where the complexity is maximal. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
62
|
Gagné D, Charest LA, Morin S, Kovrigin EL, Doucet N. Conservation of flexible residue clusters among structural and functional enzyme homologues. J Biol Chem 2012; 287:44289-300. [PMID: 23135272 DOI: 10.1074/jbc.m112.394866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility between structural ensembles is an essential component of enzyme function. Although the broad dynamical landscape of proteins is known to promote a number of functional events on multiple time scales, it is yet unknown whether structural and functional enzyme homologues rely on the same concerted residue motions to perform their catalytic function. It is hypothesized that networks of contiguous and flexible residue motions occurring on the biologically relevant millisecond time scale evolved to promote and/or preserve optimal enzyme catalysis. In this study, we use a combination of NMR relaxation dispersion, model-free analysis, and ligand titration experiments to successfully capture and compare the role of conformational flexibility between two structural homologues of the pancreatic ribonuclease family: RNase A and eosinophil cationic protein (or RNase 3). In addition to conserving the same catalytic residues and structural fold, both homologues show similar yet functionally distinct clusters of millisecond dynamics, suggesting that conformational flexibility can be conserved among analogous protein folds displaying low sequence identity. Our work shows that the reduced conformational flexibility of eosinophil cationic protein can be dynamically and functionally reproduced in the RNase A scaffold upon creation of a chimeric hybrid between the two proteins. These results support the hypothesis that conformational flexibility is partly required for catalytic function in homologous enzyme folds, further highlighting the importance of dynamic residue sectors in the structural organization of proteins.
Collapse
Affiliation(s)
- Donald Gagné
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
63
|
Casey AK, Baugh J, Frantom PA. The slow-onset nature of allosteric inhibition in α-isopropylmalate synthase from Mycobacterium tuberculosis is mediated by a flexible loop. Biochemistry 2012; 51:4773-5. [PMID: 22662746 DOI: 10.1021/bi300671u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of structure-function relationships in allosteric enzymes is essential to describing a molecular mechanism for allosteric processes. The enzyme α-isopropylmalate synthase from Mycobacterium tuberculosis (MtIPMS) is subject to slow-onset, allosteric inhibition by l-leucine. Here we report that alternate amino acids act as rapid equilibrium noncompetitive inhibitors of MtIPMS failing to display biphasic inhibition kinetics. Amino acid substitutions on a flexible loop covering the regulatory binding pocket generate enzyme variants that have significant affinity for l-leucine but lack biphasic inhibition kinetics. Taken together, these results are consistent with the flexible loop mediating the slow-onset step of allosteric inhibition.
Collapse
Affiliation(s)
- Ashley K Casey
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | | | | |
Collapse
|
64
|
Grant GA. Allosteric regulation: guest editor's introduction. Arch Biochem Biophys 2012; 519:67-8. [PMID: 22385570 DOI: 10.1016/j.abb.2012.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/13/2012] [Indexed: 01/04/2023]
|