51
|
|
52
|
Comparative study of the insoluble and soluble Ulp1 protease constructs as Carrier free and dependent protein immobilizates. J Biosci Bioeng 2018; 127:23-29. [PMID: 30001877 DOI: 10.1016/j.jbiosc.2018.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022]
Abstract
In this study, we analyzed and compared the properties of yeast Ulp1 protease in active inclusion bodies (IBs) as special protein immobilizate, and the soluble Ulp1 via oriented immobilization. Fusion of the N-terminal self-assembling peptide GFIL8 to the Ulp1 increased production of active IBs in Escherichia coli. Attachment of the N-terminal cellulose-binding module facilitated the constructed protein immobilized on the regenerated amorphous cellulose (RAC) with a binding capacity up to about 235 mg protein per gram of RAC. Compared with the immobilized soluble construct, the insoluble Ulp1 showed higher resistance to limited proteolysis with trypsin digestion, lower leaky amount at different storage temperatures, but more rapid decrease in cleavage activity after stored at 4°C for 8 days. The immobilized soluble Ulp1 maintained about 42% initial cleavage activity with repetitive use successively, whereas the aggregated Ulp1 lost its cleavage capacity after cleaving the protein substrate once. Crosslinking of IBs mediated by glutaraldehyde inactivated the Ulp1. Freshly prepared and used IBs showed similar resistance to protease-K digestion, and comparable binding capacity of Congo red and thioflavin T. Taken together, due to different advantages, the Ulp1 constructs as carrier-free and carrier-dependent immobilizates are used under different conditions.
Collapse
|
53
|
Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli. J Biosci Bioeng 2018; 125:160-167. [DOI: 10.1016/j.jbiosc.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
54
|
Mathematical determination of kinetic parameters for assessing the effect of the organic solvent on the selectivity of peptide synthesis with immobilized α-chymotrypsin. J Biosci Bioeng 2017; 124:618-622. [DOI: 10.1016/j.jbiosc.2017.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022]
|
55
|
Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 2017; 102:81-92. [DOI: 10.1007/s00253-017-8623-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
56
|
Filipe A, Cardoso JCR, Miguel G, Anjos L, Trindade H, Figueiredo AC, Barroso J, Power DM, Marques NT. Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub Thymus albicans. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:35-44. [PMID: 28763707 DOI: 10.1016/j.jplph.2017.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 05/15/2023]
Abstract
The essential oil of Thymus albicans Hoffmanns. & Link, a native shrub from the Iberian Peninsula, is mainly composed of monoterpenes. In this study, a 1,8-cineole synthase was isolated from the 1,8-cineole chemotype. A partial sequence that lacked the complete plastid transit peptide but contained an extended C-terminal when compared to other related terpene synthases was generated by PCR and Rapid Amplification of cDNA Ends (RACE). The predicted mature polypeptide was 593 amino acids in length and shared 78% and 77% sequence similarity with the homologue 1,8-cineole synthase from Rosmarinus officinalis and Salvia officinalis, respectively. The putative protein possessed the characteristic conserved motifs of plant monoterpene synthases including the RRx8W and DDxxD motifs and phylogenetic analysis indicated that the amplified 1,8-cineole synthase bears greater sequence similarity with other 1,8-cineole synthases from Lamiaceae family relative to the terpene synthases from the genus Thymus. Functional expression of the recombinant protein in Escherichia coli revealed that in the presence of geranyl diphosphate (GPP) 1,8-cineole was the major product but that its production was too low for robust quantification. Other minor conversion products included α-pinene, β-pinene, sabinene and β-myrcene suggesting the isolated 1,8-cineole synthase may be a multi-product enzyme. To our knowledge, this is the first report of a functionally characterized monoterpene synthase from Thymus albicans.
Collapse
Affiliation(s)
- Alexandra Filipe
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - João C R Cardoso
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Graça Miguel
- Centre for Mediterranean Bioresources and Food (MeditBio), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Liliana Anjos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - José Barroso
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - Deborah M Power
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Natália T Marques
- Center of Electronics, Optoelectronics and Telecommunications, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
57
|
Lin CH, Pan YC, Liu FW, Chen CY. Prokaryotic expression and action mechanism of antimicrobial LsGRP1 C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl Microbiol Biotechnol 2017; 101:8129-8138. [PMID: 28965249 DOI: 10.1007/s00253-017-8530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) are peptides exhibiting broad-spectrum antimicrobial activities and considered as potential therapeutic agents. LsGRP1C, a novel AMP derived from defense-related LsGRP1 protein of Lilium, was proven to inhibit kinds of bacteria and fungi via alteration of microbial membrane permeability and induction of fungal programmed cell death-like phenomena by in vitro assays using synthetic LsGRP1C. In this study, the prokaryotic production of LsGRP1C recombinant protein containing an N-terminal fusion partner of the yeast small ubiquitin-like modifier (SUMO) was achieved by using optimized Escherichia coli host and purification buffer system, which lead to a high yield of soluble SUMO-LsGRP1C fusion protein. In vitro assay revealed that E. coli-expressed SUMO-LsGRP1C exhibited even better antifungal activity as compared to synthetic LsGRP1C. Meanwhile, the ability of SUMO-LsGRP1C in conducting fungal membrane permeabilization and programmed cell death was verified by SYTOX Green staining and 4',6-diamidino-2-phenylindole staining/terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, respectively, indicating that E. coli-expressed SUMO-LsGRP1C shares identical modes of action with synthetic LsGRP1C. Herein, this E. coli expression system enables the effective and convenient production of antimicrobial LsGRP1C in a form of SUMO-fused recombinant protein.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Ying-Chieh Pan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Fang-Wei Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|