51
|
Rhouati A, Catanante G, Nunes G, Hayat A, Marty JL. Label-Free Aptasensors for the Detection of Mycotoxins. SENSORS 2016; 16:s16122178. [PMID: 27999353 PMCID: PMC5191157 DOI: 10.3390/s16122178] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins.
Collapse
Affiliation(s)
- Amina Rhouati
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France.
- Ecole Nationale Supérieure de Biotechnologie, Constantine 25100, Algeria.
| | - Gaelle Catanante
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France.
| | - Gilvanda Nunes
- Technological Chemistry Department, Federal University of Maranhão, CCET/UFMA, Av. Portugueses, Cidade Universitária do Canga, 65080-040 São Luis, Brazil.
| | - Akhtar Hayat
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France.
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT), Lahore 54000, Pakistan.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France.
| |
Collapse
|
52
|
Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 2016; 90:525-533. [PMID: 27825886 DOI: 10.1016/j.bios.2016.10.029] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/24/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Pathogenic bacteria cause serious harm to human health, which calls for the development of advanced detection methods. Herein, we developed a novel detection platform based on fluorescence resonance energy transfer (FRET) for rapid, ultrasensitive and specific bacteria detection, where gold nanoparticles (AuNPs, acceptor) were conjugated with aptamers while upconversion nanoparticles (UCNPs, donor) were functionalized with corresponding complementary DNA (cDNA). The spectral overlap between UCNPs fluorescence emission and AuNPs absorption enables the occurrence of FRET when hybridizing the targeted aptamer and cDNA, causing upconversion fluorescence quenching. In the presence of target bacteria, the aptamers preferentially bind to bacteria forming a three-dimensional structure and thereby dissociate UCNPs-cDNA from AuNPs-aptamers, resulting in the recovery of upconversion fluorescence. Using the UCNPs based FRET aptasensor, we successfully detected Escherichia coli ATCC 8739 (as a model analyte) with a detection range of 5-106cfu/mL and detection limit of 3cfu/mL. The aptasensor was further used to detect E. coli in real food and water samples (e.g., tap/pond water, milk) within 20min. The novel UCNPs based FRET aptasensor could be used to detect a broad range of targets from whole cells to metal ions by using different aptamer sequences, holding great potential in environmental monitoring, medical diagnostics and food safety analysis.
Collapse
Affiliation(s)
- Birui Jin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shurui Wang
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Ying Jin
- Key Laboratory of Space Nutrition and Food Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Shujing Zhang
- Key Laboratory of Space Nutrition and Food Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Xingye Cui
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yan Gong
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
53
|
Nawaz MAH, Rauf S, Catanante G, Nawaz MH, Nunes G, Marty JL, Hayat A. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker. SENSORS 2016; 16:s16101651. [PMID: 27782067 PMCID: PMC5087439 DOI: 10.3390/s16101651] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Sajid Rauf
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France.
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gilvanda Nunes
- Technological Chemistry Department, Federal University of Maranhão, CCET/UFMA, Av. Portugueses, Cidade Universitária do Canga, São Luis 65080-040, MA, Brazil.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| |
Collapse
|
54
|
Tang Y, Long F, Gu C, Wang C, Han S, He M. Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform. Anal Chim Acta 2016; 933:182-8. [PMID: 27497011 DOI: 10.1016/j.aca.2016.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
A rapid, facile, and sensitive assay of cocaine in biological fluids is important to prevent illegal abuse of drugs. A two-step structure-switching aptasensor has been developed for cocaine detection based on evanescent wave optical biosensing platform. In the proposed biosensing platform, two tailored aptamer probes were used to construct the molecular structure switching. In the existence of cocaine, two fragments of cocaine aptamer formed a three-way junction quickly, and the fluorophore group of one fragment was effectively quenched by the quencher group of the other one. The tail of the three-way junction hybridized with the cDNA sequences immobilized on the optical fiber biosensor. Fluorescence was excited by evanescent wave, and the fluorescence signal was proportional to cocaine concentration. Cocaine was detected in 450 s (300 s for incubation and 150 s for detection and regeneration) with a limit of detection (LOD) of 165.2 nM. The proposed aptasensor was evaluated in human serum samples, and it exhibited good recovery, precision, and accuracy without complicated sample pretreatments.
Collapse
Affiliation(s)
- Yunfei Tang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Chunmei Gu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shitong Han
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
55
|
|
56
|
A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Biosens Bioelectron 2016; 81:495-502. [PMID: 27016910 DOI: 10.1016/j.bios.2016.03.048] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 11/22/2022]
Abstract
Circulating tumor cells (CTCs) contain a great deal of information of tumor phenotype. Therefore, highly sensitive detection and specific enrichment of CTCs are of intense interest. Herein, a label-free electrochemical impedance spectroscopy cytosensor with effective surface recognition between specific epithelial cell adhesion molecules (EpCAM) over-expressed on the cell membrane and EpCAM aptamer was developed for the detection of CTCs. After immobilization of 6-mercapto-1-hexanol (MCH) onto the gold electrode, the capture probe can be directionally inserted in MCH interspaces, which can improve the sensitivity of the cytosensor. A wide detection range from 30 to 1×10(6)cellsmL(-1) with a detection limit as low as 10cellsmL(-1) is reached on the condition of acceptable stability and reproducibility. The cytosensor can easily distinguish CTCs from the real blood sample due to the specific combination of EpCAM and EpCAM aptamer. Furthermore, the cytosensor can be reused 8 times and enrich CTCs by Uracil DNA Excision Mix specific cleaving the deoxyuridines (dUs) of the aptamer. The collected CTCs can contribute to further study. Thus, we reported that this cytosensor is a promising technique for the early monitoring and therapy of cancer.
Collapse
|
57
|
Catanante G, Mishra RK, Hayat A, Marty JL. Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta 2016; 153:138-44. [PMID: 27130100 DOI: 10.1016/j.talanta.2016.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
Abstract
This work demonstrates the development of a folding based electrochemical aptasensor using methylene blue (MB) tagged anti-Ochratoxin A (OTA) aptamers. Different aptamer coupling strategies were tested using Hexamethylenediamine, polyethylene glycol, simple adsorption and diazonium coupling mechanism. The best sensitivity was recorded by oxidation of amines using hexamethylenediamine (HDMA) on screen printed carbon electrode (SPCE). To achieve the direct detection of OTA, aptamer conjugated redox probe was used and detection was demonstrated based on the conformational changes in aptamer structure upon OTA sensing. Signaling in this class of sensors arises from changes in electron transfer efficiency upon target-induced changes in the conformation/flexibility of the aptamer probe. These changes can be readily recorded electrochemically. The developed aptasensor is unique in its own mechanism as redox probe tagged aptamer coupling such as MB has never been tried to immobilize using long carbon chain spacers as, addition of spacers would provide more sensitive detection methods. A good dynamic range 0.01-5ng/ml was obtained for OTA with Limit of detection (LOD) 0.01ng/ml and Limit of quantification (LOQ) of 0.03ng/ml respectively. The good reproducibility was recorded with RSD% of 3.75. The obtained straight line equation was y=0.4035x+0.90311, r=0.9976. We believe that the sensor design guidelines outlined here represents a general strategy for developing new folding-based electrochemical aptasensors. The developed aptasensor was extended to screen cocoa samples for OTA contamination. The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns. The aptasensor displayed good recovery values in the range 84-85% thus, exhibited the effectiveness of proposed aptasensor for such complex matrices.
Collapse
Affiliation(s)
- Gaëlle Catanante
- Laboratoire B.A.E., Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| | - Rupesh K Mishra
- Laboratoire B.A.E., Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| | - Akhtar Hayat
- Laboratoire B.A.E., Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore 54000, Pakistan
| | - Jean-Louis Marty
- Laboratoire B.A.E., Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
58
|
Luan Y, Chen J, Li C, Xie G, Fu H, Ma Z, Lu A. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles. Toxins (Basel) 2015; 7:5377-85. [PMID: 26690477 PMCID: PMC4690133 DOI: 10.3390/toxins7124883] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022] Open
Abstract
A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.
Collapse
Affiliation(s)
- Yunxia Luan
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| | - Jiayi Chen
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| | - Cheng Li
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| | - Gang Xie
- Grain Safety, Academy of State Administration of Grain, Beijing 100037, China.
| | - Hailong Fu
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| | - Zhihong Ma
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| | - Anxiang Lu
- Agriculture Environment, Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|
59
|
Ha TH. Recent Advances for the Detection of Ochratoxin A. Toxins (Basel) 2015; 7:5276-300. [PMID: 26690216 PMCID: PMC4690132 DOI: 10.3390/toxins7124882] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins secreted by Aspersillus and Penicillium that can easily colonize various grains like coffee, peanut, rice, and maize. Since OTA is a chemically stable compound that can endure the physicochemical conditions of modern food processing, additional research efforts have been devoted to develop sensitive and cost-effective surveillance solutions. Although traditional chromatographic and immunoassays appear to be mature enough to attain sensitivity up to the regulation levels, alternative detection schemes are still being enthusiastically pursued in an attempt to meet the requirements of rapid and cost-effective detections. Herein, this review presents recent progresses in OTA detections with minimal instrumental usage, which have been facilitated by the development of OTA aptamers and by the innovations in functional nanomaterials. In addition to the introduction of aptamer-based OTA detection techniques, OTA-specific detection principles are also presented, which exclusively take advantage of the unique chemical structure and related physicochemical characteristics.
Collapse
Affiliation(s)
- Tai Hwan Ha
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology (Major), Korea University of Science & Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|