51
|
Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. J Funct Biomater 2020; 11:E71. [PMID: 32992861 PMCID: PMC7712382 DOI: 10.3390/jfb11040071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/01/2023] Open
Abstract
Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.
Collapse
Affiliation(s)
- John H. T. Luong
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| | - Tarun Narayan
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
- Applied Chemistry Department, Delhi Technological University, Delhi 110042, India
| | - Bansi D. Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| |
Collapse
|
52
|
Xiang W, Zhang Z, Weng W, Wu B, Cheng J, Shi L, Sun H, Gao L, Shi K. Highly sensitive detection of carcinoembryonic antigen using copper-free click chemistry on the surface of azide cofunctionalized graphene oxide. Anal Chim Acta 2020; 1127:156-162. [PMID: 32800119 DOI: 10.1016/j.aca.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
In this study, we reported a highly sensitive method for detecting carcinoembryonic antigen (CEA) based on an azide cofunctionalized graphene oxide (GO-N3) and carbon dot (CDs) biosensor system. Carbon dots-labeled DNA (CDs-DNA) combined with GO-N3 using copper-free click chemistry (CFCC), which quenched the fluorescence of the CDs via fluorescence resonance energy transfer (FRET). Upon the addition of CEA, fluorescence was recovered due to the combination of CEA and aptamer. Under optimal conditions, the relative fluorescence intensity was linear with CEA concentration in the range of 0.01-1 ng/mL (R2 = 0.9788), and the limit of detection (LOD) was 7.32 pg/mL (S/N = 3). This biosensor had a high sensitivity and good selectivity for CEA detection in serum samples, indicating that the novel sensor platform holds a great potential for CEA and other biomarkers in practical applications.
Collapse
Affiliation(s)
- Wenwen Xiang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Zhongjing Zhang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Wanqing Weng
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Boda Wu
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Jia Cheng
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Liang Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Hongwei Sun
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| | - Li Gao
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China.
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
53
|
da Silva W, Queiroz AC, Brett CM. Nanostructured Poly(Phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline - Deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136284] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Sahoo JK, Paikra SK, Baliarsingh A, Panda D, Rath S, Mishra M, Sahoo H. Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for Chromium (VI) removal and bacterial treatment. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9e3f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
55
|
Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. MICROMACHINES 2020; 11:E411. [PMID: 32295170 PMCID: PMC7231317 DOI: 10.3390/mi11040411] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
The accurate determination of specific tumor markers associated with cancer with non-invasive or minimally invasive procedures is the most promising approach to improve the long-term survival of cancer patients and fight against the high incidence and mortality of this disease. Quantification of biomarkers at different stages of the disease can lead to an appropriate and instantaneous therapeutic action. In this context, the determination of biomarkers by electrochemical biosensors is at the forefront of cancer diagnosis research because of their unique features such as their versatility, fast response, accurate quantification, and amenability for multiplexing and miniaturization. In this review, after briefly discussing the relevant aspects and current challenges in the determination of colorectal tumor markers, it will critically summarize the development of electrochemical biosensors to date to this aim, highlighting the enormous potential of these devices to be incorporated into the clinical practice. Finally, it will focus on the remaining challenges and opportunities to bring electrochemical biosensors to the point-of-care testing.
Collapse
Affiliation(s)
- Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Danilo Echeverri
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Andrés Felipe Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - María Elena Maldonado
- Grupo Impacto de los Componentes Alimentarios en la Salud, School of Dietetics and Human Nutrition, University of Antioquia, A.A. 1226, Medellín 050010, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| |
Collapse
|
56
|
Application of Electrically Conducting Nanocomposite Material Polythiophene@NiO/Frt/GOx as Anode for Enzymatic Biofuel Cells. MATERIALS 2020; 13:ma13081823. [PMID: 32290640 PMCID: PMC7215782 DOI: 10.3390/ma13081823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022]
Abstract
In this work, nano-inspired nickel oxide nanoparticles (NiO) and polythiophene (Pth) modified bioanode was prepared for biofuel cell applications. The chemically prepared nickel oxide nanoparticles and its composite with polythiophene were characterized for elemental composition and microscopic characterization while using scanning electron microscopy. The electrochemical characterizations of polythiophene@NiO composite, biocompatible mediator ferritin (Frt) and glucose oxidase (GOx) catalyst modified glassy carbon (GC) electrode were carried out using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and charge-discharge studies. The current density of Pth@NiO/Frt/GOx bioanode was found to be 5.4 mA/cm2. The bioanode exhibited a good bio-electrocatalytic activity towards the oxidation of the glucose. The experimental studies of the bioanode are justifying its employment in biofuel cells. This will cater a platform for the generation of sustainable energy for low temperature devices.
Collapse
|
57
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
58
|
Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113869] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
60
|
Zhang X, Yu Y, Shen J, Qi W, Wang H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta 2020; 212:120794. [PMID: 32113556 DOI: 10.1016/j.talanta.2020.120794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
A new type of nanocomposite composed of carboxylated single-walled carbon nanotubes (CNTs-COOH), reduced graphene oxide (rGO), bovine serum albumin-Ag hybride (Ag@BSA), and poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated to develop an ultrasensitive electrochemical platform for the detection of carcinoembryonic antigen (CEA) as a model of biomarkers. Two steps are involved for the fabrication of the organic/inorganic nanocomposites. The Ag@BSA nanoflowers were first synthesized to be doped with CNTs-COOH and rGO followed by the adsorption of PEDOT resulting in CNTs-COOH/rGO/Ag@BSA/PEDOT. The as-prepared nanocomposites were then deposited onto an Au electrode together with subsequent immobilization of CEA antibody (anti-CEA) to construct the electrochemical immunosensor. This unique structure and composition of the developed immunosensor can expect an excellent electrochemical response. The immunosensor offers a linear relationship between the electrochemical responses and the CEA concentrations from 0.002 to 50 ng∙mL-1 with a detection limit of 1 × 10-4 ng∙mL-1. Moreover, the ultrasensitive immunoassay can detect CEA in real human serum samples, and the results are comparable to those obtained from the commercial ELISA. Therefore, this strategy can monitor diseases, offer clinical diagnosis, and may be valuable for the development of new biomedical devices.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - You Yu
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Jinglin Shen
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Qi
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| |
Collapse
|
61
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
62
|
Wang Z, Tian X, Sun D, Cao P, Ding M, Li Y, Guo N, Ouyang R, Miao Y. A new Bi2MoO6 nano-tremella-based electrochemical immunosensor for the sensitive detection of a carcinoembryonic antigen. RSC Adv 2020; 10:15870-15880. [PMID: 35493654 PMCID: PMC9052421 DOI: 10.1039/d0ra01922d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Novel Bi2MoO6 nanohybrids with a tremella-like structure modified with gold nanoparticles were used to fabricate an electrochemical immunosensing platform of CEA.
Collapse
Affiliation(s)
- Zhongmin Wang
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Xinli Tian
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Dong Sun
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Penghui Cao
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Mengkui Ding
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuhao Li
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Ning Guo
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuqing Miao
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
63
|
Nazarzadeh Zare E, Makvandi P, Borzacchiello A, Tay FR, Ashtari B, V T Padil V. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun (Camb) 2019; 55:14871-14885. [PMID: 31776528 DOI: 10.1039/c9cc08207g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gum polysaccharides are derived from renewable sources. They are readily available, inexpensive, non-hazardous and eco-friendly. Depending upon the source, gums may be categorized as microbial gums, plant exudate gums or seed gums. Naturally occurring gum carbohydrates find multiple applications in the biomedical arena, compared with synthetic compounds, because of their unique structures and functionalities. Gums and their biocomposites are preferred for sustained drug delivery because they are safe and edible as well as more susceptible to biodegradation. The present review provides a state-of-the-art conspectus on the industrial and biomedical applications of antimicrobial gum-based biocomposites. Different kinds of gums polysaccharides will first be addressed based on their sources. Metal-, carbon- and organic-based nanostructures that are used in gum nanocomposites will then be reviewed with respect to their industrial and biomedical applications, to provide a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy. and Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy.
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China and College of Graduate Studies, Augusta University, Augusta, GA 30912, USA
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran and Shadad Ronak Commercialization Company, Pasdaran Street, Tehran, 1947, Iran
| | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| |
Collapse
|
64
|
A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens Bioelectron 2019; 144:111697. [DOI: 10.1016/j.bios.2019.111697] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
|