51
|
Kozai TDY, Li X, Bodily LM, Caparosa EM, Zenonos GA, Carlisle DL, Friedlander RM, Cui XT. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 2014; 35:9620-34. [PMID: 25176060 DOI: 10.1016/j.biomaterials.2014.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
Chronic implantation of microelectrodes into the cortex has been shown to lead to inflammatory gliosis and neuronal loss in the microenvironment immediately surrounding the probe, a hypothesized cause of neural recording failure. Caspase-1 (aka Interleukin 1β converting enzyme) is known to play a key role in both inflammation and programmed cell death, particularly in stroke and neurodegenerative diseases. Caspase-1 knockout (KO) mice are resistant to apoptosis and these mice have preserved neurologic function by reducing ischemia-induced brain injury in stroke models. Local ischemic injury can occur following neural probe insertion and thus in this study we investigated the hypothesis that caspase-1 KO mice would have less ischemic injury surrounding the neural probe. In this study, caspase-1 KO mice were implanted with chronic single shank 3 mm Michigan probes into V1m cortex. Electrophysiology recording showed significantly improved single-unit recording performance (yield and signal to noise ratio) of caspase-1 KO mice compared to wild type C57B6 (WT) mice over the course of up to 6 months for the majority of the depth. The higher yield is supported by the improved neuronal survival in the caspase-1 KO mice. Impedance fluctuates over time but appears to be steadier in the caspase-1 KO especially at longer time points, suggesting milder glia scarring. These findings show that caspase-1 is a promising target for pharmacologic interventions.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| | - Xia Li
- Bioengineering, University of Pittsburgh, USA
| | - Lance M Bodily
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Ellen M Caparosa
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Georgios A Zenonos
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
52
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
53
|
Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV. Relationship between intracortical electrode design and chronic recording function. Biomaterials 2013; 34:8061-74. [DOI: 10.1016/j.biomaterials.2013.07.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
54
|
Minev IR, Moshayedi P, Fawcett JW, Lacour SP. Interaction of glia with a compliant, microstructured silicone surface. Acta Biomater 2013; 9:6936-42. [PMID: 23499849 DOI: 10.1016/j.actbio.2013.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 02/01/2023]
Abstract
Soft bioengineered surfaces offer a route towards modulating the tissue responses to chronically implanted devices and may enhance their functionality. In this communication we fabricate microtopographically rich and mechanically compliant silicone surfaces for use in soft neural interfaces. We observe the interaction of primary rat microglia and astroglia with arrays of tall and short (4.7 and 0.5μm) vertically oriented polydimethylsiloxane (PDMS) micropillars and a flat PDMS surface in vitro. With the pillar size and spacing that we use (1.3μm diameter and 1.6μm edge to edge), glia are found to engulf and bend tall pillars. The cytoskeleton of cells adhering to the pillar arrays lacks actin stress fibers; instead we observe actin ring formations around individual pillars. Tall, but not short pillar arrays are inhibitory to migration and spreading for both microglia and astrocytes. When compared to a flat PDMS surface and short pillar arrays, tall micropillar arrays cause nearly a 2-fold decrease in proliferation rates for both cell types. The antimitotic properties of tall pillar arrays may be useful for reducing the density of the glial capsule around brain-implanted devices.
Collapse
|
55
|
Eiber CD, Lovell NH, Suaning GJ. Attaining higher resolution visual prosthetics: a review of the factors and limitations. J Neural Eng 2013; 10:011002. [PMID: 23337266 DOI: 10.1088/1741-2560/10/1/011002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Visual prosthetics is an expanding subfield of functional electrical stimulation which has gained increased interest recently in light of new advances in treatments and technology. These treatments and technology represent a major improvement over prior art, but are still subject to a host of limitations which are dependent on the manner in which one approaches the topic of visual prosthetics. These limitations pose new research challenges whose solutions are directly applicable to the well-being of blind individuals everywhere. In this review, we will outline and critically compare major current approaches to visual prosthetics, and in particular retinal prosthetics. Then, we will engage in an in-depth discussion of the limitations imposed by current technology, physics, and the underlying biology of the retina to highlight several of the challenges currently facing researchers.
Collapse
Affiliation(s)
- Calvin D Eiber
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
56
|
|
57
|
Povlich LK, Cho JC, Leach MK, Corey JM, Kim J, Martin DC. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim Biophys Acta Gen Subj 2012; 1830:4288-93. [PMID: 23103748 DOI: 10.1016/j.bbagen.2012.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Conjugated polymers have been developed as effective materials for interfacing prosthetic device electrodes with neural tissue. Recent focus has been on the development of conjugated polymers that contain biological components in order to improve the tissue response upon implantation of these electrodes. METHODS Carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) monomer was synthesized in order to covalently bind peptides to the surface of conjugated polymer films. EDOTacid was copolymerized with EDOT monomer to form stable, electrically conductive copolymer films referred to as PEDOT-PEDOTacid. The peptide GGGGRGDS was bound to PEDOT-PEDOTacid to create peptide functionalized PEDOT films. RESULTS The PEDOT-PEDOTacid-peptide films increased the adhesion of primary rat motor neurons between 3 and 9 times higher than controls, thus demonstrating that the peptide maintained its biological activity. CONCLUSIONS The EDOT-acid monomer can be used to create functionalized PEDOT-PEDOTacid copolymer films that can have controlled bioactivity. GENERAL SIGNIFICANCE PEDOT-PEDOTacid-peptide films have the potential to control the behavior of neurons and vastly improve the performance of implanted electrodes. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine.
Collapse
Affiliation(s)
- Laura K Povlich
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
58
|
Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomater 2012; 8:3561-75. [PMID: 22750248 PMCID: PMC3429718 DOI: 10.1016/j.actbio.2012.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023]
Abstract
The spinal cord (SC) and dorsal root ganglion (DRG) are target implantation regions for neural prosthetics, but the tissue-electrode interface in these regions is not well-studied. To improve understanding of these locations, the tissue reactions around implanted electrodes were characterized. L1, an adhesion molecule shown to maintain neuronal density and reduce gliosis in brain tissue, was then evaluated in SC and DRG implants. Following L1 immobilization onto neural electrodes, the bioactivities of the coatings were verified in vitro using neuron, astrocyte and microglia cultures. Non-modified and L1-coated electrodes were implanted into adult rats for 1 or 4 weeks. Hematoxylin and eosin staining along with cell-type specific antibodies were used to characterize the tissue response. In the SC and DRG, cells aggregated at the electrode-tissue interface. Microglia staining was more intense around the implant site and decreased with distance from the interface. Neurofilament staining in both locations decreased or was absent around the implant, compared with surrounding tissue. With L1, neurofilament staining was significantly increased while neuronal cell death decreased. These results indicate that L1-modified electrodes may result in an improved chronic neural interface and will be evaluated in recording and stimulation studies.
Collapse
Affiliation(s)
| | - Dennis Bourbeau
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - Erdrin Azemi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Erika Rost
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ling Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Carl F. Lagenaur
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Douglas J. Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
59
|
Rao L, Zhou H, Li T, Li C, Duan YY. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomater 2012; 8:2233-42. [PMID: 22406507 DOI: 10.1016/j.actbio.2012.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/24/2012] [Accepted: 03/01/2012] [Indexed: 11/25/2022]
Abstract
The instability of the interface between chronically implanted neuroprosthetic devices and neural tissue is a major obstacle to the long-term use of such devices in clinical practice. In this study, we investigate the feasibility of polyethylene glycol (PEG)-containing polyurethane (PU) hydrogel as coatings for polydimethylsiloxane (PDMS)-based neural electrodes in order to achieve a stable neural interface. The influence of PU hydrogel coatings on electrode electrochemical behaviour was investigated. Importantly, the biocompatibility of PU hydrogel coatings was evaluated in vitro and in vivo. Changes in the electrochemical impedance of microelectrodes with PU coatings were negligible. The amount of protein adsorption on the PDMS substrate was reduced by 93% after coating. Rat pheochromocytoma (PC12) cells exhibited more and longer neurites on PU films than on PDMS substrates. Furthermore, PDMS implants with (n=10) and without (n=8) PU coatings were implanted into the cortex of rats and the tissue response to the implants was evaluated 6 weeks post-implantation. GFAP staining for astrocytes and NeuN staining for neurons revealed that PU coatings attenuated glial scarring and reduced the neuronal cell loss around the implants. All of these findings suggest that PU hydrogel coating is feasible and favourable for neural electrode applications.
Collapse
|
60
|
Collinger JL, Dicianno BE, Weber DJ, Cui XT, Wang W, Brienza DM, Boninger ML. Integrating rehabilitation engineering technology with biologics. PM R 2011; 3:S148-57. [PMID: 21703573 DOI: 10.1016/j.pmrj.2011.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population.
Collapse
Affiliation(s)
- Jennifer L Collinger
- Department of Veterans Affairs, Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, 6425 Penn Avenue, 4th floor, Pittsburgh, PA 15206, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Lewitus DY, Landers J, Branch J, Smith KL, Callegari G, Kohn J, Neimark AV. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2011; 21:2624-2632. [PMID: 21887125 PMCID: PMC3163387 DOI: 10.1002/adfm.201002429] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report a novel approach for producing carbon nanotube fibers (CNF) composed with the polysaccharide agarose. Current attempts to make CNF's require the use of a polymer or precipitating agent in the coagulating bath that may have negative effects in biomedical applications. We show that by taking advantage of the gelation properties of agarose one can substitute the bath with distilled water or ethanol and hence reduce the complexity associated with alternating the bath components or the use of organic solvents. We also demonstrate that these CNF can be chemically functionalized to express biological moieties through available free hydroxyl groups in agarose. We corroborate that agarose CNF are not only conductive and nontoxic, but their functionalization can facilitate cell attachment and response both in vitro and in vivo. Our findings suggest that agarose/CNT hybrid materials are excellent candidates for applications involving neural tissue engineering and biointerfacing with the nervous system.
Collapse
Affiliation(s)
- Dan Y. Lewitus
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - John Landers
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jonathan Branch
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - Karen L. Smith
- Wadsworth Center, New York State Department of Health, 1 Government Center, Albany NY, 12201 (USA)
| | - Gerardo Callegari
- The Center for Modeling and Characterization of Nanoporous Materials, TRI/Princeton, Princeton, NJ 08542 USA
| | - Joachim Kohn
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
62
|
Lewitus D, Smith KL, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater 2011; 7:2483-91. [PMID: 21345383 DOI: 10.1016/j.actbio.2011.02.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 12/14/2022]
Abstract
We have identified a polymeric system based on a novel tyrosine-derived terpolymer that offers desirable insertion capability for flexible neural prosthetic devices. To test this concept, flexible films were coated with this terpolymer and their suitability for peranchyma insertion was visualized. The effect of the polymer on neural recording was evaluated using coated microwire probes. The stiff but readily resorbable polymer rapidly degrades (molecular weight half-life of 170 min) while turning into a soft gel, followed by complete resorption within 240 min. This polymeric platform maintains sufficient stiffness to facilitate pial penetration with a dry elastic modulus of 393±44 MPa but loses its strength within 30 min once immersed in saline. In vitro, the polymer's ability to locally deliver dexamethasone has been confirmed through a first order release profile over a 360 min period. In vitro, coated microwire probes regained their original impedance values of 0.5 KΩ within 20 min of wetting via water absorption and polymer resorption. In vivo, the retention of electrical recording capability was also demonstrated through multiple waveform detection in live animals. The ultrafast resorbing polymer as a platform to facilitate the implantation of micronized flexible probes can be utilized in future designs of chronic neural devices.
Collapse
|
63
|
Yen SJ, Hsu WL, Chen YC, Su HC, Chang YC, Chen H, Yeh SR, Yew TR. The enhancement of neural growth by amino-functionalization on carbon nanotubes as a neural electrode. Biosens Bioelectron 2011; 26:4124-32. [DOI: 10.1016/j.bios.2011.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
64
|
Wiertz RWF, Marani E, Rutten WLC. Neural cell-cell and cell-substrate adhesion through N-cadherin, N-CAM and L1. J Neural Eng 2011; 8:046004. [PMID: 21628769 DOI: 10.1088/1741-2560/8/4/046004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study neural (N)-cadherin, neural cell adhesion molecule (N-CAM) and L1 proteins and their antibody equivalents were covalently immobilized on a polyethylene-imine (PEI)-coated glass surface to form neuron-adhesive coatings. Impedance sensing and (supplementary) image analysis were used to monitor the effects of these CAMs. Immobilization of high concentrations of both N-cadherin protein and antibody led to good adhesion of neurons to the modified surface, better than surfaces treated with 30.0 and 100.0 µg ml(-1) N-CAM protein and antibody. L1 antibody and protein coating revealed no significant effect on neuronal cell-substrate adhesion. In a second series of combinatorial experiments, we used the same antibodies and proteins as medium-additives to inhibit cell-cell adhesion between neurons. Adhesion of neurons cultured on N-cadherin protein or antibody-modified surfaces was lowered by the addition of a soluble N-cadherin protein and antibody to the culturing medium, accelerating neuronal aggregation. The presence of a soluble N-CAM antibody or protein had no effect on the adhesion of neuronal cells on a N-cadherin protein-modified surface. On a N-cadherin antibody-coated surface, the addition of a soluble N-CAM protein led to cell death of neurons after 48 h, while a N-CAM antibody had no effect. In the presence of a soluble N-cadherin protein and antibody the aggregation of neurons was inhibited, both on N-CAM protein and N-CAM antibody-modified surfaces. Neurons cultured on immobilized antibodies were less affected by the addition of soluble CAM blockers than neurons cultured on immobilized proteins, indicating that antibody-protein bonds are more stable compared to protein-protein bonds.
Collapse
Affiliation(s)
- R W F Wiertz
- Neural and Cellular Engineering, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | | | | |
Collapse
|
65
|
Yue Z, Liu X, Molino PJ, Wallace GG. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid--collagen conjugate for neural interfacing. Biomaterials 2011; 32:4714-24. [PMID: 21477859 DOI: 10.1016/j.biomaterials.2011.03.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/12/2011] [Indexed: 12/16/2022]
Abstract
In this work, polydimethylsiloxane was activated with oxygen plasma and treated with silanes bearing ethylene imine units. Hyaluronic acid was then grafted covalently onto the aminated surfaces. The influence of silane structure on surface amination was assessed and the influence of the modification on surface physiochemical properties and protein adsorption of modified polydimethylsiloxane were investigated. Collagen type I was conjugated onto the modified polydimethylsiloxane to improve its cyto-compatibility for neural applications. In vitro cultivation of rat pheochromocytoma cells on the bioactive polydimethylsiloxane showed a significant increase in cell growth and differentiation. The potential applications of the bio-functionalized polydimethylsiloxane in cochlear implant electrode arrays were discussed.
Collapse
Affiliation(s)
- Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM facility, University of Wollongong, NSW 2522, Australia; The HEARing CRC, Carlton, Australia
| | | | | | | |
Collapse
|
66
|
Azemi E, Lagenaur CF, Cui XT. The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials 2010; 32:681-92. [PMID: 20933270 DOI: 10.1016/j.biomaterials.2010.09.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/14/2010] [Indexed: 12/16/2022]
Abstract
Brain tissue inflammatory responses, including neuronal loss and gliosis at the neural electrode/tissue interface, limit the recording stability and longevity of neural probes. The neural adhesion molecule L1 specifically promotes neurite outgrowth and neuronal survival. In this study, we covalently immobilized L1 on the surface of silicon-based neural probes and compared the tissue response between L1 modified and non-modified probes implanted in the rat cortex after 1, 4, and 8 weeks. The effect of L1 on neuronal health and survival, and glial cell reactions were evaluated with immunohistochemistry and quantitative image analysis. Similar to previous findings, persistent glial activation and significant decreases of neuronal and axonal densities were found at the vicinity of the non-modified probes. In contrast, the immediate area (100 μm) around the L1 modified probe showed no loss of neuronal bodies and a significantly increased axonal density relative to background. In this same region, immunohistochemistry analyses show a significantly lower activation of microglia and reaction of astrocytes around the L1 modified probes when compared to the control probes. These improvements in tissue reaction induced by the L1 coating are likely to lead to improved functionality of the implanted neural electrodes during chronic recordings.
Collapse
Affiliation(s)
- Erdrin Azemi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
67
|
Azemi E, Gobbel GT, Cui XT. Seeding neural progenitor cells on silicon-based neural probes. J Neurosurg 2010; 113:673-81. [DOI: 10.3171/2010.1.jns09313] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Object
Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells.
Methods
Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation.
Results
Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface showed differentiation potential similar to those grown on polylysine-treated well plates, as previously reported. Viable (still expressing GFP) NPCs were found on and in proximity to the neural implant after 1 and 7 days postimplantation. Preliminary examinations indicated that the probe's NPC coating might reduce the glial response at these 2 different time points.
Conclusions
The authors' findings suggest that NPCs can differentiate and strongly adhere to laminin-immobilized surfaces, providing a stable matrix for these cells to be implanted in brain tissue on the neural probe's surface. In addition, NPCs were found to improve the astrocytic reaction around the implant site. Further in vivo work revealing the mechanisms of this effect could lead to improvement of biocompatibility and chronic recording performance of neural probes.
Collapse
Affiliation(s)
- Erdrin Azemi
- 1Departments of Bioengineering and
- 3Center for the Neural Basis of Cognition; and
| | - Glenn T. Gobbel
- 2Neurological Surgery, University of Pittsburgh
- 4McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Xinyan Tracy Cui
- 1Departments of Bioengineering and
- 3Center for the Neural Basis of Cognition; and
- 4McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
68
|
Mercanzini A, Reddy ST, Velluto D, Colin P, Maillard A, Bensadoun JC, Hubbell JA, Renaud P. Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. J Control Release 2010; 145:196-202. [DOI: 10.1016/j.jconrel.2010.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/28/2022]
|
69
|
Kozai TDY, Marzullo TC, Hooi F, Langhals NB, Majewska AK, Brown EB, Kipke DR. Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J Neural Eng 2010; 7:046011. [PMID: 20644246 DOI: 10.1088/1741-2560/7/4/046011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 +/- 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 microm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 microm from their surface origin up to a depth of 500 microm. Inserting probes more than 49 microm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.
Collapse
Affiliation(s)
- T D Y Kozai
- Neural Engineering Lab, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Marin C, Fernández E. Biocompatibility of intracortical microelectrodes: current status and future prospects. FRONTIERS IN NEUROENGINEERING 2010; 3:8. [PMID: 20577634 PMCID: PMC2889721 DOI: 10.3389/fneng.2010.00008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 05/05/2010] [Indexed: 11/17/2022]
Abstract
Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However an important problem reported with all available microelectrodes to date is long-term viability and biocompatibility. Therefore it is essential to understand the signals that lead to neuroglial activation and create a targeted intervention to control the response, reduce the adverse nature of the reactions and maintain an ideal environment for the brain-electrode interface. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering, neurology and biomaterials.
Collapse
Affiliation(s)
- Cristina Marin
- Institute of Bioengineering, University Miguel Hernández Elche, Spain
| | | |
Collapse
|
71
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
72
|
|
73
|
Gouveia R, Kandzia S, Conradt HS, Costa J. Production and N-glycosylation of recombinant human cell adhesion molecule L1 from insect cells using the stable expression system. Effect of dimethyl sulfoxide. J Biotechnol 2010; 145:130-8. [DOI: 10.1016/j.jbiotec.2009.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/23/2009] [Accepted: 10/28/2009] [Indexed: 11/17/2022]
|
74
|
Zhao Y, Lü X, Wang Z, Huang Y, Jiang Z, Li X. Study of the adhesion improvement in hippocampal cells on collagen/chitosan- modified silicon surfaces. Biomed Mater 2009; 4:065004. [DOI: 10.1088/1748-6041/4/6/065004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
75
|
Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the Bioactive Microelectrode. MATERIALS 2009. [PMCID: PMC5525202 DOI: 10.3390/ma2041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 1999 we reported an important demonstration of a working brain-machine interface (BMI), in which recordings from multiple, single neurons in sensorimotor cortical areas of rats were used to directly control a robotic arm to retrieve a water reward. Subsequent studies in monkeys, using a similar approach, demonstrated that primates can use a BMI device to control a cursor on a computer screen and a robotic arm. Recent studies in humans with spinal cord injuries have shown that recordings from multiple, single neurons can be used by the patient to control the cursor on a computer screen. The promise is that one day it will be possible to use these control signals from neurons to re-activate the patient’s own limbs. However, the ability to record from large populations of single neurons for long periods of time has been hampered because either the electrode itself fails or the immunological response in the tissue surrounding the microelectrode produces a glial scar, preventing single-neuron recording. While we have largely solved the problem of mechanical or electrical failure of the electrode itself, much less is known about the long term immunological response to implantation of a microelectrode, its effect on neuronal recordings and, of greatest importance, how it can be reduced to allow long term single neuron recording. This article reviews materials approaches to resolving the glial scar to improve the longevity of recordings. The work to date suggests that approaches utilizing bioactive interventions that attempt to alter the glial response and attract neurons to the recording site are likely to be the most successful. Importantly, measures of the glial scar alone are not sufficient to assess the effect of interventions. It is imperative that recordings of single neurons accompany any study of glial activation because, at this time, we do not know the precise relationship between glial activation and loss of neuronal recordings. Moreover, new approaches to immobilize bioactive molecules on microelectrode surfaces while maintaining their functionality may open new avenues for very long term single neuron recording. Finally, it is important to have quantitative measures of glial upregulation and neuronal activity in order to assess the relationship between the two. These types of studies will help rationalize the study of interventions to improve the longevity of recordings from microelectrodes.
Collapse
|