51
|
Wu J, Rnjak-Kovacina J, Du Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials 2014; 35:3744-55. [PMID: 24503156 DOI: 10.1016/j.biomaterials.2013.12.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
Emulating corneal stromal tissue is believed to be the most challenging step in bioengineering an artificial human cornea because of the difficulty in reproducing its highly ordered microstructure, the key to the robust biomechanical properties and optical transparency of this tissue. We conducted a comparative study to assess the feasibility of human corneal stromal stem cells (hCSSCs) and human corneal fibroblasts (hCFs) in the generation of human corneal stromal tissue on groove-patterned silk substrates. In serum-free keratocyte differentiation medium, hCSSCs successfully differentiated into keratocytes secreting multilayered lamellae with orthogonally-oriented collagen fibrils, in a pattern mimicking human corneal stromal tissue. The constructs were 90-100 μm thick, containing abundant cornea-specific extracellular matrix (ECM) components, including keratan sulfate, lumican, and keratocan. In contrast, hCFs tended to differentiate into myofibroblasts that deposited less organized collagen in a pattern resembling that of corneal scar tissue. RGD surface coupling coupling was an essential factor in enhancing cell attachment, orientation, proliferation, differentiation and ECM deposition on the silk substratum. These results demonstrated that an approach of combining hCSSCs with an RGD surface-coupled patterned silk film offers a powerful tool to develop highly ordered collagen fibril-based constructs for corneal regeneration and corneal stromal tissue repair.
Collapse
Affiliation(s)
- Jian Wu
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - James L Funderburgh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
52
|
Lai JY. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:334-40. [DOI: 10.1016/j.msec.2013.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/08/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
53
|
Lai JY. Interrelationship between cross-linking structure, molecular stability, and cytocompatibility of amniotic membranes cross-linked with glutaraldehyde of varying concentrations. RSC Adv 2014. [DOI: 10.1039/c4ra01930j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemical cross-linker concentration has a marked influence on the interrelationship between cross-linking structure, molecular stability, and cytocompatibility of a glutaraldehyde-treated amniotic membrane for a limbal stem cell niche.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302, Republic of China
| |
Collapse
|
54
|
Lai JY. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym 2014; 101:203-12. [DOI: 10.1016/j.carbpol.2013.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
|
55
|
Lai JY. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1273-85. [PMID: 24187486 PMCID: PMC3810330 DOI: 10.2147/dddt.s53759] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ocular drug delivery is one of the most commonly used treatment modalities in the management of glaucoma. We have recently proposed the use of gelatin and poly(N-isopropylacrylamide) (PNIPAAm) graft copolymers as biodegradable in situ forming delivery systems for the intracameral administration of antiglaucoma medications. In this study, we further investigated the influence of carrier characteristics on drug delivery performance. The carboxyl-terminated PNIPAAm samples with different molecular weights were synthesized by varying the molar ratio of mercaptoacetic acid (MAA)/N-isopropylacrylamide (NIPAAm) from 0.05 to 1.25, and were determined by end-group titration. The preparation of gelatin-g-PNIPAAm (GN) copolymers from these thermoresponsive polymers was achieved using carbodiimide chemistry. Our results showed that the carboxylic end-capped PNIPAAm of high molecular weight may lead to the lower thermal phase transition temperature and slower degradation rate of GN vehicles than its low molecular weight counterparts. With a decreasing MAA/NIPAAm molar ratio, the drug encapsulation efficiency of copolymers was increased due to fast temperature-triggered capture of pilocarpine nitrate. The degradation of the gelatin network could greatly affect the drug release profiles. All of the GN copolymeric carriers demonstrated good corneal endothelial cell and tissue compatibility. It is concluded that different types of GN-based delivery systems exhibit noticeably distinct intraocular pressure-lowering effect and miosis action, thereby reflecting the potential value of a MAA/NIPAAm molar ratio in the development of new antiglaucoma formulations.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
56
|
Li J, Zhang K, Yang P, Liao Y, Wu L, Chen J, Zhao A, Li G, Huang N. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Exp Cell Res 2013; 319:2663-72. [DOI: 10.1016/j.yexcr.2013.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/19/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
|
57
|
Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids Surf B Biointerfaces 2013; 110:199-207. [DOI: 10.1016/j.colsurfb.2013.04.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
|
58
|
Lai JY. Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2201-2210. [PMID: 23677435 DOI: 10.1007/s10856-013-4961-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Gelatin is a protein molecule that displays bioaffinity and provides a template to guide retinal pigment epithelial (RPE) cell organization and growth. We have recently demonstrated that the carbodiimide cross-linked gelatin membranes can be used as retinal sheet carriers. The purpose of this work was to further determine the role of solvent composition in the tissue delivery performance of chemically modified biopolymer matrices. The gelatin molecules were treated with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of binary ethanol/water mixtures with varying ethanol concentrations (70-95 vol%) to obtain the carriers with different cross-linking efficiencies and mechanical properties. Results of melting point measurements and in vitro degradation tests showed that when the cross-linking index reached a high level of around 45 %, the EDC cross-linked gelatin materials have sufficient thermal stability and resistance to enzymatic degradation, indicating their suitability for the development of carriers for retinal sheet delivery. Irrespective of the solvent composition, the chemically modified gelatin samples are compatible toward human RPE cells without causing toxicity and inflammation. In particular, the membrane carriers prepared by the cross-linking in the presence of solvent mixtures containing 80-90 vol% of ethanol have no impact on the proliferative capacity of ARPE-19 cultures and possess good efficiency in transferring and encapsulating the retinal tissues. It is concluded that, except for cell viability and pro-inflammatory cytokine expression, the retinal sheet delivery performance strongly depends on the solvent composition for EDC cross-linking of gelatin molecules.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan, Republic of China.
| |
Collapse
|
59
|
Lai JY. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3704-10. [PMID: 23910267 DOI: 10.1016/j.msec.2013.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
Abstract
Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
60
|
Chou FY, Lai JY, Shih CM, Tsai MC, Lue SJ. In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly(N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: Effect of particle size and chemical composition. Colloids Surf B Biointerfaces 2013; 104:66-74. [DOI: 10.1016/j.colsurfb.2012.11.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/14/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
61
|
Lai JY, Ma DHK, Lai MH, Li YT, Chang RJ, Chen LM. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One 2013; 8:e54058. [PMID: 23382866 PMCID: PMC3559727 DOI: 10.1371/journal.pone.0054058] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/05/2012] [Indexed: 01/15/2023] Open
Abstract
Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC) monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5–15 wt%) on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young’s modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5–10 wt%, the hydrogels have high freezable water content (0.89–0.93) and concentration of permeated glucose (591.3–615.5 µg/ml). These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer concentration effects.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
62
|
Lai JY. Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci 2013; 14:2036-55. [PMID: 23337203 PMCID: PMC3565364 DOI: 10.3390/ijms14012036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 01/05/2013] [Indexed: 11/16/2022] Open
Abstract
A nanoscale modification strategy that can incorporate chondroitin sulfate (CS) into the cross-linked porous gelatin materials has previously been proposed to give superior performance for designed corneal keratocyte scaffolds. The purpose of this work was to further investigate the influence of carbodiimide chemistry on the characteristics and biofunctionalities of gelatin/CS scaffolds treated with varying N-hydroxysuccinimide (NHS)/1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) molar ratios (0-1) at a constant EDC concentration of 10 mM. Results of Fourier transform infrared spectroscopy and dimethylmethylene blue assays consistently indicated that when the NHS to EDC molar ratio exceeds a critical level (i.e., 0.5), the efficiency of carbodiimide-mediated biomaterial modification is significantly reduced. With the optimum NHS/EDC molar ratio of 0.5, chemical treatment could achieve relatively high CS content in the gelatin scaffolds, thereby enhancing the water content, glucose permeation, and fibronectin adsorption. Live/Dead assays and interleukin-6 mRNA expression analyses demonstrated that all the test samples have good cytocompatibility without causing toxicity and inflammation. In the molar ratio range of NHS to EDC from 0 to 0.5, the cell adhesion ratio and proliferation activity on the chemically modified samples significantly increased, which is attributed to the increasing CS content. Additionally, the materials with highest CS content (0.143 ± 0.007 nmol/10 mg scaffold) showed the greatest stimulatory effect on the biosynthetic activity of cultivated keratocytes. These findings suggest that a positive correlation is noticed between the NHS to EDC molar ratio and the CS content in the biopolymer matrices, thereby greatly affecting the corneal stromal cell growth.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
63
|
Lai JY. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial. MATERIALS 2012. [PMCID: PMC5449031 DOI: 10.3390/ma5101986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyaluronic acid (HA) is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5) at a constant 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v), the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; E-Mail: ; Tel.: +886-3-211-8800, ext. 3598; Fax: +886-3-211-8668
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
64
|
Lai JY. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int J Mol Sci 2012; 13:10970-10985. [PMID: 23109832 PMCID: PMC3472724 DOI: 10.3390/ijms130910970] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/02/2012] [Accepted: 08/27/2012] [Indexed: 11/23/2022] Open
Abstract
Chitosan is a naturally occurring cationic polysaccharide and has attracted much attention in the past decade as an important ophthalmic biomaterial. We recently demonstrated that the genipin (GP) cross-linked chitosan is compatible with human retinal pigment epithelial cells. The present work aims to further investigate the in vivo biocompatibility of GP-treated chitosan (GP-chi group) by adopting the anterior chamber of a rabbit eye model. The glutaraldehyde (GTA) cross-linked samples (GTA-chi group) were used for comparison. The 7-mm-diameter membrane implants made from either non-cross-linked chitosan or chemically modified materials with a cross-linking degree of around 80% were inserted in the ocular anterior chamber for 24 weeks and characterized by slit-lamp and specular microscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The interleukin-6 expressions at mRNA level were also detected by quantitative real-time reverse transcription polymerase chain reaction. Results of clinical observations showed that the overall ocular scores in the GTA-chi groups were relatively high. In contrast, the rabbits bearing GP-chi implants in the anterior chamber of the eye exhibited no signs of ocular inflammation. As compared to the non-cross-linked counterparts, the GP-chi samples improved the preservation of corneal endothelial cell density and possessed better anti-inflammatory activities, indicating the benefit action of the GP cross-linker. In summary, the intracameral tissue response to the chemically modified chitosan materials strongly depends on the selection of cross-linking agents.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; E-Mail: ; Tel.: +886-3-211-8800 (ext. 3598); Fax: +886-3-211-8668
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|