51
|
Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune Cell Therapies to Improve Regeneration and Revascularization of Non-Healing Wounds. Int J Mol Sci 2020; 21:E5235. [PMID: 32718071 PMCID: PMC7432547 DOI: 10.3390/ijms21155235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.
Collapse
Affiliation(s)
- Elena Groppa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tea Kocijan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
52
|
Huang M, Huang X, Jiang B, Zhang P, Guo L, Cui X, Zhou S, Ren L, Zhang M, Zeng J, Huang X, Liang P. linc00174-EZH2-ZNF24/Runx1-VEGFA Regulatory Mechanism Modulates Post-burn Wound Healing. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:824-836. [PMID: 32805486 PMCID: PMC7452087 DOI: 10.1016/j.omtn.2020.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Preservation of denatured dermis exerts promotive functions in wound healing and improves the appearance and function of skin. Angiogenesis is crucial for wound healing during burn injury. However, the potential molecular mechanism of angiogenesis in the recovery after burn injury remains to be elucidated. Herein, RNA chromatin immunoprecipitation (ChIP) sequencing analysis revealed upregulation of long intergenic non-coding RNA 00174 (linc00174) in the post-burn tissues. linc00174 overexpression promoted angiogenic activities of human umbilical vein endothelial cells (HUVECs) in the heat-denatured cell model, characterized by the promotion of cell proliferation, migration, and tube formation. Mechanistically, linc00174 directly bound to enhancer of zeste homolog 2 (EZH2), thus stimulating the protein level of trimethylation at lysine 27 of histone H3 (H3K27me3). Moreover, inhibition of EZH2 resulted in downregulation of ZNF24 and Runx1, as well as a decline of vascular endothelial growth factor A (VEGFA). Furthermore, EZH2 modulated epigenetic repression of ZNF24 and Runx1 through the promoter of H3K27me3. Additionally, ZNF24 and Runx1 both functioned as transcriptional inhibitors of VEGFA. Taken together, these findings uncover that linc00174 epigenetically inhibits ZNF24 and Runx1 expression through binding to EZH2, thus attenuating the suppression of VEGFA, contributing to the facilitation of angiogenesis during the recovery of heat-denatured endothelial cells.
Collapse
Affiliation(s)
- Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.
| |
Collapse
|
53
|
Dong X, He Z, Xiang G, Cai L, Xu Z, Mao C, Feng Y. Paeoniflorin promotes angiogenesis and tissue regeneration in a full-thickness cutaneous wound model through the PI3K/AKT pathway. J Cell Physiol 2020; 235:9933-9945. [PMID: 32542807 DOI: 10.1002/jcp.29808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients' need for functional and aesthetically pleasing scars. For the wound healing process, new blood vessels which can deliver nutrients and oxygen to the wound area are necessary. In this study, we investigated the pro-angiogenesis ability and mechanism in wound healing of paeoniflorin (PF), which is a traditional Chinese medicine. In our in vitro results, the ability for proliferation, migration and in vitro angiogenesis in human umbilical vein endothelial cells was promoted by coculturing with PF (1.25-5 μM). Meanwhile, molecular docking studies revealed that PF has excellent binding abilities to phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT), and consistent with our western blot results, that PF suppressed PI3K and AKT phosphorylation. Furthermore, to investigate the healing effect of PF in vivo, we constructed a full-thickness cutaneous wound model in rats. PF stimulated the cellular proliferation status, collagen matrix deposition and remodeling processes in vitro and new blood vessel formation at the wound bed resulting in efficient wound healing after intragastric administration of 10 mg·kg-1 ·day-1 in vivo. Overall, PF performed the pro-angiogenetic effect in vitro and accelerating wound healing in vivo. In summary, the capacity for angiogenesis in endothelial cells could be enhanced by PF treatment via the PI3K/AKT pathway in vitro and could accelerate the wound healing process in vivo through collagen deposition and angiogenesis in regenerated tissue. This study provides evidence that application of PF represents a novel therapeutic approach for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zili He
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leyi Cai
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenjiang Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
54
|
Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release 2020; 323:24-35. [PMID: 32283209 DOI: 10.1016/j.jconrel.2020.04.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
Supramolecular hydrogels confer control over structural properties in a reversible, dynamic, and biomimetic fashion. The design of supramolecular hydrogels with an improved structural and functional recapitulation of damaged organs is important for clinical applications. For wound healing management, in particular, an effective healing process, through the modulation of epidermal growth factor (EGF) delivery using supramolecular polysaccharide hydrogels, has yet to be developed. In this study, photo-responsive supramolecular polysaccharide hydrogels were formed through host-guest interactions between azobenzene and β-cyclodextrin groups conjugated to hyaluronic acid chains. By exploiting the photoisomerization properties of azobenzene under different wavelengths, a supramolecular hydrogel featuring a dynamic spatial network crosslink density through the application of a light stimulus was obtained. Under ultra violet (UV) light, the loosened hydrogel can rapidly release EGF, thereby enhancing EGF delivery at the wound site. Based on an in vivo assessment of the healing process through a full-thickness skin defect model, the controlled EGF release from a supramolecular hydrogel exhibited superior wound healing efficiency with respect to granulation tissue formation, growth factor levels, and angiogenesis. Therefore, the proposed supramolecular hydrogels are potentially valuable as controlled delivery systems for future clinical wound healing applications.
Collapse
|
55
|
Li Y, Xu T, Tu Z, Dai W, Xue Y, Tang C, Gao W, Mao C, Lei B, Lin C. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Am J Cancer Res 2020; 10:4929-4943. [PMID: 32308759 PMCID: PMC7163448 DOI: 10.7150/thno.41839] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic wound repair and skin regeneration remains a worldwide challenge due to the impaired functionality of re-vascularization. Methods: This study reports a bioactive self-healing antibacterial injectable dual-network silica-based nanocomposite hydrogel scaffolds that can significantly enhance the diabetic wound healing/skin tissue formation through promoting early angiogenesis without adding any bioactive factors. The nanocomposite scaffold comprises a main network of polyethylene glycol diacrylate (PEGDA) forming scaffolds, with an auxiliary dynamic network formed between bioactive glass nanoparticles containing copper (BGNC) and sodium alginate (ALG) (PABC scaffolds). Results: PABC scaffolds exhibit the biomimetic elastomeric mechanical properties, excellent injectabilities, self-healing behavior, as well as the robust broad-spectrum antibacterial activity. Importantly, PABC hydrogel significantly promoted the viability, proliferation and angiogenic ability of endothelial progenitor cells (EPCs) in vitro. In vivo, PABC hydrogel could efficiently restore blood vessels networks through enhancing HIF-1α/VEGF expression and collagen matrix deposition in the full-thickness diabetic wound, and significantly accelerate wound healing and skin tissue regeneration. Conclusion: The prominent multifunctional properties and angiogenic capacity of PABC hydrogel scaffolds enable their promising applications in angiogenesis-related regenerative medicine.
Collapse
|
56
|
Tong C, Zhong X, Yang Y, Liu X, Zhong G, Xiao C, Liu B, Wang W, Yang X. PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials 2020; 243:119936. [PMID: 32171103 DOI: 10.1016/j.biomaterials.2020.119936] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
The ever-growing threats of multidrug-resistant bacterial infection and chronic wound healing have created an imperative need for the development of novel antibacterial materials and therapeutic strategies, especially for diabetic patients infected with multidrug-resistant bacteria. In this work, the nanocomplexes named as PB@PDA@Ag were used for eradicating multidrug-resistant bacteria and accelerating wound healing of MRSA-infected diabetic model with the assistance of laser irradiation. In vitro results revealed that the combinational strategy exerted a synergistic effect for anti-MRSA through disrupting cell integrity, producing ROS, declining ATP, and oxidizing GSH, comparing with PB@PDA@Ag or NIR laser irradiation alone. Moreover, in vivo assay demonstrated that this system effectively accelerated MRSA-infected diabetic wound healing by mitigating local inflammatory response and up-regulating VEGF expression on the wound bed. Meanwhile, satisfactory biocompatibility and negligible damage to major organs were observed. Altogether, the aforementioned results indicate that the combinational therapy of PB@PDA@Ag and NIR irradiation shows a great potential application in the field of clinic infection.
Collapse
Affiliation(s)
- Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Xianghua Zhong
- School of Medicine, Hunan Normal University, Changsha, 410125, PR China
| | - Yuejun Yang
- School of Medicine, Hunan Normal University, Changsha, 410125, PR China
| | - Xu Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Guowei Zhong
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Chang Xiao
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, PR China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Xiaoping Yang
- School of Medicine, Hunan Normal University, Changsha, 410125, PR China
| |
Collapse
|
57
|
Ma M, Zhong Y, Jiang X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym 2020; 236:116096. [PMID: 32172898 DOI: 10.1016/j.carbpol.2020.116096] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Polysaccharide hydrogels have been widely used as wound dressings because of their biocompatibility and ability to provide moist environment for wound healing. However, bacterial infection often delays the healing process. Herein, a novel thermosensitive and pH-sensitive hydroxypropyl chitin/tannic acid/ferric ion (HPCH/TA/Fe) composite hydrogel was fabricated by a simple assembly. The pre-cooled hydrogel precursor solution can be injected onto the irregular wound area and gel rapidly at physiological temperature. The TA not only acted as a crosslinker to enhance mechanical properties of the hydrogel, but also as an antibacterial agent which could be sustainably released in response to the acidic environment. The composite hydrogel showed excellent broad-spectrum antibacterial activity up to 7 days with negligible cytotoxicity. Moreover, the hydrogel can inhibit bacterial infection and accelerate the wound healing process without scars in the mouse experiment. These results indicate the potential application of this composite hydrogel for the infected wound healing.
Collapse
Affiliation(s)
- Mengsi Ma
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
58
|
Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X, Chang Y, Zheng J, Wu J. Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:965-976. [DOI: 10.1021/acsabm.9b01000] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Hu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yi Song
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Cuiyun Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wen Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Susu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanxin Chen
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chaodong Tu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jianhui Liu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuan Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
59
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
60
|
Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells Int 2019; 2019:6789823. [PMID: 32082386 PMCID: PMC7012201 DOI: 10.1155/2019/6789823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Skin regeneration is a vexing problem in the field of regenerative medicine. A bioactive molecule-based strategy has been frequently used in skin wound healing in recent years. Bioactive molecules are practical tools for regulating cellular processes and have been applied to control cellular differentiation, dedifferentiation, and reprogramming. In this review, we focus on recent progress in the use of bioactive molecules in skin regenerative medicine, by which desired cell types can be generated in vitro for cell therapy and conventional therapeutics can be developed to repair and regenerate skin in vivo through activation of the endogenous repairing potential. We further prospect that the bioactive molecule-base method might be one of the promising strategies to achieve in situ skin regeneration in the future.
Collapse
|
61
|
Guo X, Xu D, Zhao Y, Gao H, Shi X, Cai J, Deng H, Chen Y, Du Y. Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34766-34776. [PMID: 31429547 DOI: 10.1021/acsami.9b13063] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.
Collapse
Affiliation(s)
- Xiaojia Guo
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | - Duoduo Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | | | - Huimin Gao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaowen Shi
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | - Jie Cai
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- Research Institute of Shenzhen , Wuhan University , Shenzhen 518057 , China
| | - Hongbing Deng
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | | | - Yumin Du
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| |
Collapse
|
62
|
Miao G, Li Z, Meng Y, Wu J, Li Y, Hu Q, Chen X, Yang X, Chen X. Preparation, characterization, in vitro bioactivity and protein loading/release property of mesoporous bioactive glass microspheres with different compositions. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Fu J, Zhang Y, Chu J, Wang X, Yan W, Zhang Q, Liu H. Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2019; 5:4054-4066. [PMID: 33448807 DOI: 10.1021/acsbiomaterials.9b00485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic skin wounds caused by diabetes mellitus (DM) have been acknowledged as one of the most intractable complications. Local transplantation of mesenchymal stem cells (MSCs) is a promising method, but strategies for stabilizing and efficiently delivering active MSCs according to the wound circumstance with high proteolysis remain the main barrier. Hereon, the study demonstrates the feasibility of incorporating reduced graphene oxide (RGO) nanoparticles with an acellular dermal matrix (ADM) to improve physicochemical characteristics of natural scaffold material and fabricate a highly efficient local transplantation system for MSCs in diabetic wound healing. Under the influence of RGO nanoparticles, the ADM-RGO composite scaffolds achieved high stability and strong mechanical behaviors. In vitro, conductive ADM-RGO scaffolds demonstrated an admirable milieu for stem cells adhesion and proliferation. After having been cocultured with MSCs, the ADM-RGO-MSC composite scaffolds were transplanted into the full-thickness wound of a diabetic model that was induced by streptozotocin (STZ) to evaluate its effects. As a result, the ADM-RGO composite scaffold delivered with MSCs supported robust vascularization and collagen deposition as well as rapid re-epithelialization during diabetic wound healing. Overall, the versatile nature of the ADM-RGO composite scaffold makes it an efficient transplanting mediator for pluripotent stem cells in tissue engineering applications. The composite scaffold delivered with MSCs presents a promising approach for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- JinPing Fu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Yue Zhang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Jing Chu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Xiao Wang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - WenXia Yan
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Qiong Zhang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - HanPing Liu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| |
Collapse
|
64
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
65
|
Xu M, Hua Y, Qi Y, Meng G, Yang S. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 2019; 28:776-785. [PMID: 30927279 DOI: 10.1111/exd.13930] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Hydrogen sulphide (H2 S) is an important gasotransmitter with several physiological functions. However, the roles and the detailed mechanisms of H2 S on skin wound healing are not known well. In the present study, 129S1/SvImJ mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for 2 weeks. Then, a round wound of 6 mm diameter with depth into the dermis was made. The skin wound area, blood perfusion, superoxide production, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), expression of vascular endothelial growth factor (VEGF), dynamin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) were measured. After NaHS (50 μmol/L) pre-administration for 4 hours, cell migration rate, DRP1, OPA1 and α-smooth muscle actin (α-SMA) expression, superoxide production and mitochondrial membrane potential in primary skin fibroblasts were measured. Tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in human keratinocytes were also measured. The results showed that NaHS pretreatment significantly accelerated wound healing and improved blood flow in the wound after operation. NaHS increased VEGF expression in the wound and promoted tube formation in HUVECs. Meanwhile, NaHS attenuated reactive oxygen species (ROS) production, suppressed MDA level but restored T-AOC in the wound. NaHS also promoted skin fibroblasts migration and α-SMA expression after scratch. Moreover, NaHS alleviated ROS, increased mitochondrial membrane potential, decreased DRP1 but enhanced OPA1 expression in skin fibroblasts after scratch. NaHS also accelerated human keratinocytes migration after scratch. Taken together, exogenous H2 S supplementary accelerated the skin wound healing, which might be related to oxidative stress inhibition and VEGF enhancement.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
66
|
Noh M, Choi YH, An YH, Tahk D, Cho S, Yoon JW, Jeon NL, Park TH, Kim J, Hwang NS. Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application. ACS Biomater Sci Eng 2019; 5:3909-3921. [PMID: 33438430 DOI: 10.1021/acsbiomaterials.8b01307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial progenitor cells (EPCs) can induce a pro-angiogenic response during tissue repair. Recently, EPC transplantations have been widely investigated in wound healing applications. To maximize the healing efficacy by EPCs, a unique scaffold design that allows cell retention and function would be desirable for in situ delivery. Herein, we fabricated an alginate/poly-l-ornithine/gelatin (alginate-PLO-gelatin) hydrogel sheet with a groove pattern for use as a cell delivery platform. In addition, we demonstrate the topographical modification of the hydrogel sheet surface with a groove pattern to modulate cell proliferation, alignment, and elongation. We report that the patterned substrate prompted morphological changes of endothelial cells, increased cell-cell interaction, and resulted in the active secretion of growth factors such as PDGF-BB. Additionally, we incorporated magnetic nanoparticles (MNPs) into the patterned hydrogel sheet for the magnetic field-induced transfer of cell-seeded hydrogel sheets. As a result, enhanced wound healing was observed via efficient transplantation of the EPCs with an MNP-embedded patterned hydrogel sheet (MPS). Finally, enhanced vascularization and dermal wound repair were observed with EPC seeded MPS.
Collapse
Affiliation(s)
- Miyeon Noh
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongha Tahk
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
67
|
Zhang J, Vikash V, Wang P, Zheng T, Chen DL, Wang Q, Ke M. Effect of subconjunctival injection with conbercept as an adjuvant to filtration surgery for open angle glaucoma: a prospective randomized interventional 6-month follow-up study. Int J Ophthalmol 2019; 12:235-240. [PMID: 30809478 DOI: 10.18240/ijo.2019.02.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
AIM To compare the safety and efficacy of subconjunctival injection with conbercept and 5-fluorouracil (5-FU) for open angle glaucoma (OAG) patients after filtration surgery. METHODS As a prospective randomized interventional trial, 36 eyes from 36 patients after OAG surgery were collected and divided randomly into conbercept and 5-FU groups. All patients were subconjunctivally injected with either conbercept (0.2 mL) or 5-FU (0.2 mL) on the 5th day post-operatively. The intraocular pressure (IOP), number of medications used, type of conjunctival bleb, and complications were recorded and analyzed pre-operatively and 1d, 1wk, 1, 3 and 6mo post-injection. RESULTS There were significant differences in IOP between the conbercept and 5-FU groups 1mo (conbercept group: 12.17±1.04 mm Hg; 5-FU group: 13.50±2.33 mm Hg, t=2.214, P=0.037), 3mo (conbercept group: 13.00±1.88 mm Hg; 5-FU group: 14.50±2.28 mm Hg, t=2.153, P=0.039), and 6mo post-injection (conbercept group: 13.28±2.95 mm Hg; 5-FU group: 15.22±2.49 mm Hg, t=2.140, P=0.040); however, in the number of medications, a prominent difference was not shown between groups on post-injection 6mo (t=1.312, P=0.200). Moreover, there was mild vascularity observed in the conbecept group than the 5-FU group 1d (3a, 3b, 3c: t=8.497, 6.693, 4.515, P=0.000), 1wk (3a, 3b, 3c: t=3.431, 6.408, 3.984, P=0.002, 0.000, 0.000), and 1mo post-injection (3a, 3b, 3c: t=2.466, 2.466, 2.503, P=0.019, 0.019, 0.017). Simultaneously, differences from other indicators between the two groups were not demonstrated. Also, there was a lower probability of corneal epithelial stripping in the conbercept group than the 5-FU group (χ 2=4.500, P=0.034). CONCLUSION Subconjunctival injection of conbercept has a safe, effective, and tolerable profile for open angle glaucoma patients with distinct conjunctival congestion after filtration surgery.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Vikash Vikash
- Department of Gastroenterology and Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ping Wang
- Department of Ophthalmology, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Tian Zheng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Dong-Lai Chen
- Department of Ophthalmology, the Second People's Hospital of Honghu, Honghu 433202, Hubei Province, China
| | - Qing Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
68
|
Gizaw M, Faglie A, Pieper M, Poudel S, Chou SF. The Role of Electrospun Fiber Scaffolds in Stem Cell Therapy for Skin Tissue Regeneration. MED ONE 2019; 4:e190002. [PMID: 30972372 PMCID: PMC6453140 DOI: 10.20900/mo.20190002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy has emerged as one of the topics in tissue engineering where undifferentiated and multipotent cells are strategically placed/ injected in tissue structure for cell regeneration. Over the years, stem cells have shown promising results in skin repairs for non-healing and/or chronic wounds. The addition of the stem cells around the wound site promotes signaling pathways for growth factors that regulate tissue reconstruction. However, injecting stem cells around the wound site has its drawbacks, including cell death due to lack of microenvironment cues. This particular issue is resolved when biomaterial scaffolds are involved in the cultivation and mechanical support of the stem cells. In this review, we describe the current models of stem cell therapy by injections and those that are done through cell cultures using electrospun fiber scaffolds. Electrospun fibers are considered as an ideal candidate for cell cultures due to their surface properties. Through the control of fiber morphology and fiber structure, cells are able to proliferate and differentiate into keratinocytes for skin tissue regeneration. Furthermore, we provide another perspective of using electrospun fibers and stem cells in a layer-by-layer structure for skin substitutes (dressing). Finally, electrospun fibers have the potential to incorporate bioactive agents to achieve controlled release properties, which is beneficial to the survival of the delivered stem cells or the recruitment of the cells. Overall, our work illustrates that electrospun fibers are ideal for stem cell cultures while serving as cell carriers for wound dressing materials.
Collapse
Affiliation(s)
- Mulugeta Gizaw
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Martha Pieper
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Sarju Poudel
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
69
|
Jiang Y, Han Y, Wang J, Lv F, Yi Z, Ke Q, Xu H. Space-Oriented Nanofibrous Scaffold with Silicon-Doped Amorphous Calcium Phosphate Nanocoating for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:787-795. [DOI: 10.1021/acsabm.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuqi Jiang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Yiming Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Wang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qinfei Ke
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - He Xu
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
70
|
Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics 2019; 9:65-76. [PMID: 30662554 PMCID: PMC6332800 DOI: 10.7150/thno.29766] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rationale: Chronic nonhealing diabetic wound therapy and complete skin regeneration remains a critical clinical challenge. The controlled release of bioactive factors from a multifunctional hydrogel was a promising strategy to repair chronic wounds. Methods: Herein, for the first time, we developed an injectable, self-healing and antibacterial polypeptide-based FHE hydrogel (F127/OHA-EPL) with stimuli-responsive adipose-derived mesenchymal stem cells exosomes (AMSCs-exo) release for synergistically enhancing chronic wound healing and complete skin regeneration. The materials characterization, antibacterial activity, stimulated cellular behavior and in vivo full-thickness diabetic wound healing ability of the hydrogels were performed and analyzed. Results: The FHE hydrogel possessed multifunctional properties including fast self-healing process, shear-thinning injectable ability, efficient antibacterial activity, and long term pH-responsive bioactive exosomes release behavior. In vitro, the FHE@exosomes (FHE@exo) hydrogel significantly promoted the proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs). In vivo, the FHE@exo hydrogel significantly enhanced the healing efficiency of diabetic full-thickness cutaneous wounds, characterized with enhanced wound closure rates, fast angiogenesis, re-epithelization and collagen deposition within the wound site. Moreover, the FHE@exo hydrogel displayed better healing outcomes than those of exosomes or FHE hydrogel alone, suggesting that the sustained release of exosomes and FHE hydrogel can synergistically facilitate diabetic wound healing. Skin appendages and less scar tissue also appeared in FHE@exo hydrogel treated wounds, indicating its potent ability to achieve complete skin regeneration. Conclusion: This work offers a new approach for repairing chronic wounds completely through a multifunctional hydrogel with controlled exosomes release.
Collapse
Affiliation(s)
- Chenggui Wang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Tianzhen Xu
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingxing Zhang
- Center of Diabetic Foot, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cai Lin
- Center of Diabetic Foot, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyang Gao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huazi Xu
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Cong Mao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
71
|
Evaluation of collagen type I scaffolds including gelatin-collagen microparticles and Aloe vera in a model of full-thickness skin wound. Drug Deliv Transl Res 2018; 9:25-36. [DOI: 10.1007/s13346-018-00595-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Gao SQ, Chang C, Li JJ, Li Y, Niu XQ, Zhang DP, Li LJ, Gao JQ. Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis. Drug Deliv 2018; 25:1779-1789. [PMID: 30338719 PMCID: PMC6201774 DOI: 10.1080/10717544.2018.1513608] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nonhealing chronic wounds on foot induced by diabetes is a complicated pathologic process. They are mainly caused by impaired neovascularization, neuropathy, and excessive inflammation. A strategy, which can accelerate the vessel network formation as well as inhibit inflammatory response at the same time, makes it possible for effective diabetic ulcers treatment. Co-delivery of multiple drugs with complementary bioactivity offers a strategy to properly treat diabetic wound. We previously demonstrated that hydroxysafflor yellow A (HSYA) could accelerate diabetic wound healing through promoting angiogenesis and reducing inflammatory response. In order to further enhance blood vessel formation, a pro-angiogenic molecular called deferoxamine (DFO) was topically co-administrated with HSYA. The in vitro results showed that the combination of DFO and HSYA exerted synergistic effect on enhancing angiogenesis by upregulation of hypoxia inducible factor-1 alpha (HIF-1α) expression. The interpenetrating polymer networks hydrogels, characterized by good breathability and water absorption, were designed for co-loading of DFO and HSYA aiming to recruit angiogenesis relative cells and upgrade wound healing in vivo. Both DFO and HSYA in hydrogel have achieved sustained release. The in vivo studies indicated that HSYA/DFO hydrogel could accelerate diabetic wound healing. With a high expression of Hif-1α which is similar to that of normal tissue. The noninvasive US/PA imaging revealed that the wound could be recovered completely with abundant blood perfusion in dermis after given HSYA/DFO hydrogel for 28 days. In conclusion, combination of pro-angiogenic small molecule DFO and HSYA in hydrogel provides a promising strategy to productively promote diabetic wound healing as well as better the repair quality.
Collapse
Affiliation(s)
- Si-Qian Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chen Chang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun-Jun Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Qian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dan-Ping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Long-Jian Li
- Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Forces, Jiaxing, Zhejiang, P.R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou, P.R. China
| |
Collapse
|
73
|
Effects of light-emitting diodes irradiation on human vascular endothelial cells. Int J Impot Res 2018; 30:312-317. [PMID: 30046164 DOI: 10.1038/s41443-018-0051-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/28/2022]
Abstract
Endothelial cell proliferation is a hallmark of angiogenesis and plays a key role in the process of tissue repair. Low-intensity (670 nm) laser irradiation influences endothelial cell proliferation in vitro. Light in the near infrared spectrum may have clinical applications in erectile dysfunction. The purpose of this study was to investigate the effects of irradiation with light-emitting diodes (LEDs) at different wavelengths on human vascular endothelial cells in vitro. Human umbilical vein endothelial cells (HUVECs) were irradiated with LEDs at 410, 480, 595, and 630 nm in doses of 1, 2.5, 5, and 10 J/cm2. After 24 h of LED irradiation, effects on cell viability, nitric oxide (NO) secretion, and eNOS expression were assessed by using cell viability assays, Western blot, and real time-polymerase chain reaction, respectively. The cell viability assay demonstrated that irradiation with LEDs at 630 nm significantly increased the proliferation of HUVECs. In addition, irradiation with LEDs at 630 nm was more effective in stimulating NO secretion and eNOS expression from HUVECs than irradiation with LEDs at 410, 480, and 595 nm. Irradiation with LEDs at 630 nm was effective for inducing cell proliferation, NO secretion, and eNOS expression in HUVECs. These results suggest that irradiation with LEDs at 630 nm may be a therapeutic strategy for vasculogenic erectile dysfunction.
Collapse
|