51
|
Cook Sangar ML, Girard EJ, Hopping G, Yin C, Pakiam F, Brusniak MY, Nguyen E, Ruff R, Gewe MM, Byrnes-Blake K, Nairn NW, Miller DM, Mehlin C, Strand AD, Mhyre AJ, Correnti CE, Strong RK, Simon JA, Olson JM. A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure. Sci Transl Med 2021; 12:12/533/eaay1041. [PMID: 32132215 DOI: 10.1126/scitranslmed.aay1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.
Collapse
Affiliation(s)
- Michelle L Cook Sangar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gene Hopping
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chunfeng Yin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elizabeth Nguyen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew D Strand
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
52
|
Warren MR, Zhang C, Vedadghavami A, Bokvist K, Dhal PK, Bajpayee AG. Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomater Sci 2021; 9:4260-4277. [PMID: 33367332 PMCID: PMC8205963 DOI: 10.1039/d0bm01497d] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity. Using in vitro models, we demonstrate that negatively charged hydrophobic mExos can penetrate multiple biological barriers to oral drug delivery. A hydrophilic polyethylene glycol (PEG) coating was introduced on the mExo surface via passive, stable hydrophobic insertion of a conjugated lipid tail, which significantly reduced mExo degradation in acidic gastric environment and enhanced their permeability through mucin by over 3× compared to unmodified mExo. Both mExo and PEG-mExo exhibited high uptake by intestinal epithelial cells and mediated functional intracellular delivery of siRNA, thereby suppressing the expression of the target green fluorescence protein (GFP) gene by up to 70%. We also show that cationic chemical transfection is significantly more efficient in loading siRNA into mExo than electroporation. The simplicity of isolating high purity mExo in high concentrations and equipping them with tunable surface properties, demonstrated here, paves way for the development of mExo as an effective, scalable platform technology for oral drug delivery of siRNA.
Collapse
Affiliation(s)
- Matthew R Warren
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Chenzhen Zhang
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Armin Vedadghavami
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | | | | | - Ambika G Bajpayee
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA. and Mechanical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Wei Y, Yan L, Luo L, Gui T, Jang B, Amirshaghaghi A, You T, Tsourkas A, Qin L, Cheng Z. Phospholipase A 2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. SCIENCE ADVANCES 2021; 7:7/15/eabe6374. [PMID: 33827816 PMCID: PMC8026133 DOI: 10.1126/sciadv.abe6374] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any notable clinical success, in part, due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in the articular cartilage in human and mouse OA cartilage tissues. We hypothesize that the inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop an sPLA2-responsive and nanoparticle (NP)-based interventional platform for OA management, we incorporated an sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar NPs (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lijun Luo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bian Jang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianyan You
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
54
|
Mancipe Castro LM, García AJ, Guldberg RE. Biomaterial strategies for improved intra-articular drug delivery. J Biomed Mater Res A 2021; 109:426-436. [PMID: 32780515 PMCID: PMC8906235 DOI: 10.1002/jbm.a.37074] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a joint degenerative disease that has become one of the leading causes of disability in the world. It is estimated that OA affects 50 million adults in the United States. Currently, there are no FDA-approved treatments that slow OA progression and its treatment is limited to pain management strategies and life style changes. Despite the discovery of several disease-modifying OA drugs (DMOADs) and promising results in preclinical studies, their clinical translation has been significantly limited because of poor intra-articular (IA) bioavailability and challenges in delivering these compounds to tissues of interest within the joint. Here, we review current OA treatments and their effectiveness at reducing joint pain, as well as novel targets for OA treatment and the challenges related to their clinical translation. Moreover, we discuss intra-articular (IA) drug delivery as a promising route of administration, describe its inherent challenges, and review recent advances in biomaterial-based IA drug delivery for OA treatment. Finally, we highlight the potential of tissue targeting in the development of effective IA drug delivery systems.
Collapse
Affiliation(s)
- Lina María Mancipe Castro
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, OR 97403, U.S.A
| |
Collapse
|
55
|
Perni S, Prokopovich P. Optimisation and feature selection of poly-beta-amino-ester as a drug delivery system for cartilage. J Mater Chem B 2021; 8:5096-5108. [PMID: 32412019 PMCID: PMC7412864 DOI: 10.1039/c9tb02778e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug localisation is one of the main challenges in treating cartilage; poly-beta-amino-esters (PBAEs) drug conjugates are a possible solution; their efficacy depends on the polymer structure hence the full potential of this system is still unknown.
Drug localisation is still one of the main challenges in treating pathologies affecting cartilage; poly-beta-amino-esters (PBAEs) drug conjugates are a possible solution; however, their efficacy highly depends on the polymer structure hence the full potential of this delivery system is still unknown. For the purpose of optimising the delivery system design, a large library of PBAEs was synthesised and dexamethasone (DEX) uptake in cartilage was determined. All three components of PBAE (amine, acrylate and end-capping) impacted the outcome. The most effective PBAE identified enhanced DEX uptake by 8 folds compared to an equivalent dose of the commercial formulation and also prevented, through delivery of DEX, the cartilage degradation caused by IL-1α (interleukine1α). A chemometrics based predictive model was constructed and PBAEs properties most affecting the performance of the drug delivery systems were identified. This model will allow further computer based PBAEs optimisation and fast track the bench to market process for this delivery system.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
56
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
57
|
He T, Li B, Colombani T, Joshi-Navare K, Mehta S, Kisiday J, Bencherif SA, Bajpayee AG. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Eng Part A 2021; 27:748-760. [PMID: 33108972 DOI: 10.1089/ten.tea.2020.0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic joint injuries can result in significant cartilage defects, which can greatly increase the risk of osteoarthritis development. Due to the limited self-healing capacity of avascular cartilage, tissue engineering approaches are required for filling defects and promoting cartilage regeneration. Current approaches utilize invasive surgical procedures for extraction and implantation of autologous chondrocytes; therefore, injectable biomaterials have gained interest to minimize the risk of infection as well as patient pain and discomfort. In this study, we engineered biomimetic, hyaluronic acid (HA)-based cryogel scaffolds that possess shape-memory properties as they contract and regain their shape after syringe injection to noninvasively fill cartilage defects. The cryogels, fabricated with HA and glycidyl methacrylate at -20°C, resulted in an elastic, macroporous, and highly interconnected network that provided a conducive microenvironment for chondrocytes to remain viable and metabolically active after injection through a syringe needle. Chondrocytes seeded within cryogels and cultured for 15 days exhibited enhanced cell proliferation, metabolism, and production of cartilage extracellular matrix glycosaminoglycans compared with HA-based hydrogels. Furthermore, immunohistochemical staining revealed production of collagen type II from chondrocyte-seeded cryogels, indicating the maintenance of cell phenotype. These results demonstrate the potential of chondrocyte-seeded, HA-based, injectable cryogel scaffolds to promote regeneration of cartilage tissue for nonsurgically invasive defect repair. Impact statement Hyaluronic acid-based shape-memory cryogels provide a conducive microenvironment for chondrocyte adhesion, proliferation, and matrix biosynthesis for use in repair of cartilage defects. Due to their sponge-like elastic properties, cryogels can fully recover their original shape back after injection while not impacting metabolism or viability of encapsulated cells. Clinically, they provide an opportunity for filling focal cartilage defects by using a single, minimally invasive injection of a cell encapsulating biocompatible three-dimensional scaffold that can return to its original structure to fit the defect geometry and enable matrix regeneration.
Collapse
Affiliation(s)
- Tengfei He
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Boting Li
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Kasturi Joshi-Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Shikhar Mehta
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sidi A Bencherif
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
58
|
DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. ADVANCED THERAPEUTICS 2021; 4:2000088. [PMID: 33709019 PMCID: PMC7941755 DOI: 10.1002/adtp.202000088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and a leading cause of physical disability in adults. Intra-articular (IA) therapy is a popular treatment strategy for localized, single-joint OA; however, small-molecule drugs such as corticosteroids do not provide prolonged relief. One possible reason for their lack of efficacy is high clearance rates from the joint through constant lymphatic drainage of the synovial tissues and synovial fluid and also by their exchange via the synovial vasculature. Advanced drug delivery strategies for extended release of therapeutic agents in the joint space is a promising approach to improve outcomes for OA patients. Broadly, the basic principle behind this strategy is to encapsulate therapeutic agents in a polymeric drug delivery system (DDS) for diffusion- and/or degradation-controlled release, whereby degradation can occur by hydrolysis or tied to relevant microenvironmental cues such as pH, reactive oxygen species (ROS), and protease activity. In this review, we highlight the development of clinically tested IA therapies for OA and highlight recent systems which have been investigated preclinically. DDS strategies including hydrogels, liposomes, polymeric microparticles (MPs) and nanoparticles (NPs), drug conjugates, and combination systems are introduced and evaluated for clinical translational potential.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Karen A Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, 1211 Union Ave. Suite 520, Memphis, TN 38104, United States
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, 1161 21 Ave. S., Nashville, TN 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is associated with severe joint pain, inflammation, and cartilage degeneration. Drugs injected directly into intra-articular joint space clear out rapidly providing only short-term benefit. Their transport into cartilage to reach cellular targets is hindered by the tissue's dense, negatively charged extracellular matrix. This has limited, despite strong preclinical data, the clinical translation of osteoarthritis drugs. Recent work has focused on developing intra-joint and intra-cartilage targeting drug delivery systems (DDS) to enable long-term therapeutic response, which is presented here. RECENT FINDINGS Synovial joint targeting hybrid systems utilizing combinations of hydrogels, liposomes, and particle-based carriers are in consideration for pain-inflammation relief. Cartilage penetrating DDS target intra-cartilage constituents like aggrecans, collagen II, and chondrocytes such that drugs can reach their cellular and intra-cellular targets, which can enable clinical translation of disease-modifying osteoarthritis drugs including gene therapy. SUMMARY Recent years have witnessed significant increase in both fundamental and clinical studies evaluating DDS for osteoarthritis. Steroid encapsulating polymeric microparticles for longer lasting pain relief were recently approved for clinical use. Electrically charged biomaterials for intra-cartilage targeting have shown promising disease-modifying response in preclinical models. Clinical trials evaluating safety of viral vectors are ongoing whose success can pave the way for gene therapy as osteoarthritis treatment.
Collapse
Affiliation(s)
- Shikhar Mehta
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
61
|
Polymer colloids as drug delivery systems for the treatment of arthritis. Adv Colloid Interface Sci 2020; 285:102273. [PMID: 33002783 DOI: 10.1016/j.cis.2020.102273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022]
Abstract
The most common types of arthritis are osteoarthritis (OA) and rheumatoid arthritis (RA) which are themain causes of disability and pain among older people. Current treatment of arthritis mainly consists of oral and intra-articular medications. Despite the efficacy of the intraarticular injections over the oral treatment, it is still limited by the rapid clearance of the injected drug. Therefore, a rational design of drug delivery systems (DDSs) able to delivery drugs in controlled manner and for required period of time to the arthritis joint is a key in developing safe and effective formulations for OA and RA. In this paper various colloidal systems like nanoparticles, liposomes, cationic carriers, hydrogels, and emulsion-based carriers were presented and discussed in light of their use and efficacy as delivery systems to transport therapeutics for arthritis treatment. Factors influencing the delivery efficacy such as size, charge, structure, drug uptake, retention and its release profile alongside with cytocompatibility and safety were addressed. Moreover, the advantages and disadvantages of the different colloidal systems were emphasised.
Collapse
|
62
|
Ji ML, Jiang H, Wu F, Geng R, Ya LK, Lin YC, Xu JH, Wu XT, Lu J. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis 2020; 80:356-366. [PMID: 33109602 DOI: 10.1136/annrheumdis-2020-218469] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Despite preclinical studies involving miRNA therapeutics conducted in osteoarthritis (OA) over the years, none of these miRNAs have yet translated to clinical applications, owing largely to the lack of efficient intra-articular (IA) delivery systems. Here, we investigated therapeutic efficacy of the chondrocyte-specific aptamer-decorated PEGylated polyamidoamine nanoparticles (NPs)-based miRNAs delivery for OA. METHODS The role of miR-141/200c cluster during skeletal and OA development was examined by miR-141/200cflox/flox mice and Col2a1-CreERT2; miR-141/200cflox/flox mice. Histological analysis was performed in mouse joints and human cartilage specimens. Chondrocyte-specific aptamer-decorated NPs was designed, and its penetration, stability and safety were evaluated. OA progression was assessed by micro-CT analysis, X-ray and Osteoarthritis Research Society International scores after destabilising the medial meniscus surgery with miR-141/200c manipulation by NPs IA injection. Mass spectrometry analysis, molecular docking and molecular dynamics simulations were performed to investigate the interaction between aptamer and receptor. RESULTS Increased retention of NPs inside joint space is observed. The NPs are freely and deeply penetrant to mice and human cartilage, and unexpectedly persist in chondrocytes for at least 5 weeks. OA chondrocytes microenviroment improves endo/lysosomal escape of microRNAs (miRNAs). Therapeutically, IA injection of miR-141/200c inhibitors provides strong chondroprotection, whereas ectopic expression of miR-141/200c exacerbates OA. Mechanistically, miR-141/200c promotes OA by targeting SIRT1, which acetylates histone in the promoters of interleukin 6 (IL-6), thereby activating IL-6/STAT3 pathway. CONCLUSIONS Our findings indicate that this nanocarrier can optimise the transport kinetics of miR-141/200c into chondrocytes, fostering miRNA-specific disease-modifying OA drugs development.
Collapse
Affiliation(s)
- Ming-Liang Ji
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Geng
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Li Kun Ya
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Cheng Lin
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ji Hao Xu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Tao Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
63
|
Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. NANO TODAY 2020; 34:100898. [PMID: 32802145 PMCID: PMC7425807 DOI: 10.1016/j.nantod.2020.100898] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
64
|
Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix. Acta Biomater 2020; 113:240-251. [PMID: 32428687 DOI: 10.1016/j.actbio.2020.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Drug carriers achieve poor and heterogeneous distribution within solid tumors due to limited transport through the tumor extracellular matrix (ECM). The tumor ECM forms a net negatively charged network that interacts with and hinders the transport of molecules in part due to electrostatic interactions. Traditionally, the surfaces of drug delivery systems are passivated to minimize these interactions, but the mechanism of how charge interactions impact transport and penetration within the tumor microenvironment (TME) is not well understood. Here, we used T7 bacteriophage as a model biological nanoparticle to display peptides of different charges on its surface and elucidate how charge-based binding drives transport, uptake, and retention within tumor tissue. In contrast to current studies with neutrally charged surfaces, we discovered that a positively charged peptide displayed on T7 enhanced its penetration through a tumor-like ECM when compared to neutrally and negatively charged peptides. The positively charged peptide displayed on T7 facilitated weak and reversible binding with the TME to achieve Donnan partitioning and deep penetration into ex vivo tumor tissue. Additionally, the positively charged peptide-presenting T7 has a high number of intra-tissue binding sites in the TME (~4 µM) that enables almost 100% retention in the tumor tissue for up to 24 h. These results, coupled with transport studies of systematically mutated T7, show that electrostatic interactions can be responsible for uptake and retention of the positively charged peptide-presenting T7 within the net negatively charged TME. STATEMENT OF SIGNIFICANCE: The TME selectively hinders the transport of drugs and drug delivery systems due to their size, shape, and intermolecular interactions. Typically, the focus in drug delivery has been to develop delivery systems smaller than the pore size of the tumor ECM and/or develop inert surface coatings that have negligible interactions with the tumor ECM for diffusive transport. While there is an association of the surface charge of carriers with their transport through the tumor ECM, the mechanism of charge-driven transport is poorly understood. In this work, we elucidate the mechanism and find that interestingly, particles with a weakly positive surface charge interact with the net negatively charged tumor ECM to significantly improve their uptake, penetration, and retention in tumor tissue.
Collapse
|
65
|
Wagner EK, Vedadghavami A, Jacobsen TD, Goel SA, Chahine NO, Bajpayee AG. Avidin grafted dextran nanostructure enables a month-long intra-discal retention. Sci Rep 2020; 10:12017. [PMID: 32694557 PMCID: PMC7374582 DOI: 10.1038/s41598-020-68351-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Low back pain is often the direct result of degeneration of the intervertebral disc. A wide range of therapeutics including anti-catabolic, pro-anabolic factors and chemo-attractants that can stimulate resident cells and recruit endogenous progenitors are under consideration. The avascular nature and the dense matrix of this tissue make it challenging for systemically administered drugs to reach their target cells inside the nucleus pulposus (NP), the central gelatinous region of the intervertebral disc (IVD). Therefore, local intra-discal injection of therapeutic drugs directly into the NP is a clinically relevant delivery approach, however, suffers from rapid and wide diffusion outside the injection site resulting in short lived benefits while causing systemic toxicity. NP has a high negative fixed charge density due to the presence of negatively charged aggrecan glycosaminoglycans that provide swelling pressures, compressive stiffness and hydration to the tissue. This negative fixed charge density can also be used for enhancing intra-NP residence time of therapeutic drugs. Here we design positively charged Avidin grafted branched Dextran nanostructures that utilize long-range binding effects of electrostatic interactions to bind with the intra-NP negatively charged groups. The binding is strong enough to enable a month-long retention of cationic nanostructures within the NP following intra-discal administration, yet weak and reversible to allow movement to reach cells dispersed throughout the tissue. The branched carrier has multiple sites for drug conjugation and can reduce the need for multiple injections of high drug doses and minimize associated side-effects, paving the way for effective clinical translation of potential therapeutics for treatment of low back pain and disc degeneration.
Collapse
Affiliation(s)
- Erica K Wagner
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA
| | - Timothy D Jacobsen
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 14-1410, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shakti A Goel
- Department of Orthopedic Surgery, Indian Spinal Injuries Center, New Delhi, India
| | - Nadeen O Chahine
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 14-1410, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA.
- Department of Mechanical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
66
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
67
|
Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. Bioelectricity 2020; 2:68-81. [PMID: 32803148 DOI: 10.1089/bioe.2020.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological systems overwhelmingly comprise charged entities generating electrical activity that can have significant impact on biological structure and function. This intrinsic bio-electrical activity can also be harnessed for overcoming the tissue matrix and cell membrane barriers, which have been outstanding challenges for targeted drug delivery, by using rationally designed cationic carriers. The weak and reversible long-range electrostatic interactions with fixed negatively charged groups facilitate electro-diffusive transport of cationic therapeutics through full-tissue thickness to effectively reach intra-tissue, cellular, and intracellular target sites. This article presents a perspective on the promise of using rationally designed cationic biomaterials in targeted drug delivery, the underlying charge-based mechanisms, and bio-transport phenomena while addressing outstanding concerns around toxicity and methods to mitigate them. We also discuss electrically charged drugs that are currently being evaluated in clinical trials and identify areas of further development that have the potential to usher in new treatments.
Collapse
Affiliation(s)
- Cameron C Young
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
68
|
Avidin-biotin technology to synthesize multi-arm nano-construct for drug delivery. MethodsX 2020; 7:100882. [PMID: 32405463 PMCID: PMC7210587 DOI: 10.1016/j.mex.2020.100882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Here we describe methods for synthesizing a cationic, multi-arm Avidin (mAv) nano-construct that has a wide range of applications in drug delivery and imaging of negatively charged tissues. We use Avidin-biotin technology that gives the flexibility for conjugating biotinylated Dexamethasone to mAv by simple mixing at room temperature. We also describe methods to control hydrolysis rates of ester linkers to enable sustained (and tunable) drug release rates in therapeutic doses.Multi-arm structure provides multiple sites for covalent conjugation of drugs Use of Avidin-biotin reaction gives multi-arm nano-construct a modular design enabling conjugation and delivery of similar sized biotinylated drugs.
Collapse
|
69
|
He T, Zhang C, Vedadghavami A, Mehta S, Clark HA, Porter RM, Bajpayee AG. Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs. J Control Release 2019; 318:109-123. [PMID: 31843642 DOI: 10.1016/j.jconrel.2019.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023]
Abstract
Targeted drug delivery to joint tissues like cartilage remains a challenge that has prevented clinical translation of promising osteoarthritis (OA) drugs. Local intra-articular (IA) injections of drugs suffer from rapid clearance from the joint space and slow diffusive transport through the dense, avascular cartilage matrix comprised of negatively charged glycosaminoglycans (GAGs). Here we apply drug carriers that leverage electrostatic interactions with the tissue's high negative fixed charge density (FCD) for delivering small molecule drugs to cartilage cell and matrix sites. We demonstrate that a multi-arm cationic nano-construct of Avidin (mAv) with 28 sites for covalent drug conjugation can rapidly penetrate through the full thickness of cartilage in high concentration and have long intra-cartilage residence time in both healthy and arthritic cartilage via weak-reversible binding with negatively charged aggrecans. mAv's intra-cartilage mean uptake was found to be 112× and 33× the equilibration bath concentration in healthy and arthritic (50% GAG depleted) cartilage, respectively. mAv was conjugated with Dexamethasone (mAv-Dex), a broad-spectrum glucocorticoid, using a combination of hydrolysable ester linkers derived from succinic anhydride (SA), 3,3-dimethylglutaric anhydride (GA) and phthalic anhydride (PA) in 2:1:1 M ratio that enabled 50% drug release within 38.5 h followed by sustained release in therapeutic doses over 2 weeks. A single 10 μM low dose of controlled release mAv-Dex (2:1:1) effectively suppressed IL-1α-induced GAG loss, cell death and inflammatory response significantly better than unmodified Dex over 2 weeks in cartilage explant culture models of OA. With this multi-arm design, <1 μM Avidin was needed - a concentration which has been shown to be safe, preventing further GAG loss and cytotoxicity. A charge-based cartilage homing drug delivery platform like this can elicit disease modifying effects as well as facilitate long-term symptomatic pain and inflammation relief by enhancing tissue specificity and prolonging intra-cartilage residence time of OA drugs. This nano-construct thus has high translational potential for enabling intra-cartilage delivery of a broad array of small molecule OA drugs and their combinations to chondrocytes, enabling OA treatment with a single injection of low drug doses and eliminating toxicity issues associated with multiple high dose injections.
Collapse
Affiliation(s)
- Tengfei He
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Chenzhen Zhang
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Armin Vedadghavami
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Shikhar Mehta
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Heather A Clark
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA; Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Ryan M Porter
- Departments of Internal Medicine and Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ambika G Bajpayee
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA; Mechanical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
70
|
Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019; 224:119467. [PMID: 31557589 PMCID: PMC7025913 DOI: 10.1016/j.biomaterials.2019.119467] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of osteoarthritis and has become an important therapeutic target. Investigations of various antioxidant supplements, reactive oxidative species (ROS) pathway mediators, and free radical scavengers for treating osteoarthritis have demonstrated common disadvantages including poor bioavailability and stability, as well as rapid joint clearance or release profiles from delivery vehicles. Moreover, these therapies do not target cartilage, which irreversibly degenerates in the presence of oxidative stress. The goal of this study was to engineer a nanoparticle system capable of sustained retention in the joint space, localization to cartilage, and mitigation of oxidative stress. Towards this goal, ROS scavenging manganese dioxide nanoparticles with physicochemical properties (less than 20 nm and cationic) that facilitate their uptake into cartilage were developed and characterized. These particles penetrated through the depth of cartilage explants and were found both in the extracellular matrix as well as intracellularly within the resident chondrocytes. Furthermore, the particles demonstrated chondroprotection of cytokine-challenged cartilage explants by reducing the loss of glycosaminoglycans and release of nitric oxide. Quantitative PCR analysis revealed that the particles mitigated impacts of oxidative stress related genes in cytokine-challenged chondrocytes. When injected intra-articularly into rats, the particles persisted in the joint space over one week, with 75% of the initial signal remaining in the joint. Biodistribution and histological analysis revealed accumulation of particles at the chondral surfaces and colocalization of the particles with the lacunae of chondrocytes. The results suggest that the manganese dioxide nanoparticles could be a promising approach for the chondroprotection of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Olivia Liseth
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| |
Collapse
|
71
|
Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res Ther 2019; 21:238. [PMID: 31722745 PMCID: PMC6854651 DOI: 10.1186/s13075-019-2003-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Most in vitro studies of potential osteoarthritis (OA) therapies have used cartilage monocultures, even though synovium is a key player in mediating joint inflammation and, thereby, cartilage degeneration. In the case of interleukin-1 (IL-1) inhibition using its receptor antagonist (IL-1Ra), like chondrocytes, synoviocytes also express IL-1 receptors that influence intra-articular IL-1 signaling and IL-1Ra efficacy. The short residence time of IL-1Ra after intra-articular injection requires the application of frequent dosing, which is clinically impractical and comes with increased risk of infection; these limitations motivate the development of effective drug delivery strategies that can maintain sustained intra-articular IL-1Ra concentrations with only a single injection. The goals of this study were to assess how the presence of synovium in IL-1-challenged cartilage-synovium co-culture impacts the time-dependent biological response of single and sustained doses of IL-1Ra, and to understand the mechanisms underlying any co-culture effects. Methods Bovine cartilage explants with or without synovium were treated with IL-1α followed by single or multiple doses of IL-1Ra. Effects of IL-1Ra in rescuing IL-1α-induced catabolism in cartilage monoculture and cartilage-synovium co-culture were assessed by measuring loss of glycosaminoglycans (GAGs) and collagen using DMMB (dimethyl-methylene blue) and hydroxyproline assays, respectively, nitric oxide (NO) release using Griess assay, cell viability by fluorescence staining, metabolic activity using Alamar blue, and proteoglycan biosynthesis by radiolabel incorporation. Day 2 conditioned media from mono and co-cultures were analyzed by mass spectrometry and cytokine array to identify proteins unique to co-culture that contribute to biological crosstalk. Results A single dose of IL-1Ra was ineffective, and a sustained dose was necessary to significantly suppress IL-1α-induced catabolism as observed by enhanced suppression of GAG and collagen loss, NO synthesis, rescue of chondrocyte metabolism, viability, and GAG biosynthesis rates. The synovium exhibited a protective role as the effects of single-dose IL-1Ra were significantly enhanced in cartilage-synovium co-culture and were accompanied by release of anti-catabolic factors IL-4, carbonic anhydrase-3, and matrilin-3. A total of 26 unique proteins were identified in conditioned media from co-cultures, while expression levels of many additional proteins important to cartilage homeostasis were altered in co-culture compared to monocultures; principal component analysis revealed distinct clustering between co-culture and cartilage and synovium monocultures, thereby confirming significant crosstalk. Conclusions IL-1Ra suppresses cytokine-induced catabolism in cartilage more effectively in the presence of synovium, which was associated with endogenous production of anti-catabolic factors. Biological crosstalk between cartilage and synovium is significant; thus, their co-cultures should better model the intra-articular actions of potential OA therapeutics. Additionally, chondroprotective effects of IL-1Ra require sustained drug levels, underscoring the need for developing drug delivery strategies to enhance its joint residence time following a single intra-articular injection.
Collapse
|