51
|
Saneja A, Khare V, Alam N, Dubey RD, Gupta PN. Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 2013; 11:121-38. [DOI: 10.1517/17425247.2014.865014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
52
|
Influence of excipients on in vivo fate of delivered drugs. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Abstract
INTRODUCTION The development of poorly soluble or permeable new chemical entities within the pharmaceutical industry often requires the use of nonstandard enabling nonclinical oral formulations. Despite this, the toxicity profile of many commonly used nonclinical vehicles is poorly understood. This lack of data can lead to unexpected formulation-related effects being observed in critical oral safety studies. AREAS COVERED This article summarizes the key considerations for formulation selection for oral nonclinical safety studies, and provides a strategy for appropriate development-phase formulation selection. The industry's use of oral nonclinical vehicles is reviewed, based on data from the FDA's Orange Book. Finally, a summary of the repeat dose oral toxicity of commonly used vehicles is presented. EXPERT OPINION The rapid identification of a suitable nonclinical oral formulation is a critical step in small-molecule drug development. In order to maintain flexibility and address the needs of a diverse set of new chemical entities (NCEs) with widely varying physiochemical properties, a "tool belt" of multiple oral formulations is recommended. The appropriate formulation is identified based on the goals of the study, as well as exposure required, species, duration and therapeutic indication of the NCE.
Collapse
Affiliation(s)
- Evan A Thackaberry
- Genentech, Inc, Safety Assessment , 1 DNA Way, MS 59, South San Francisco, CA 94080 , USA +1 650 467 7156
| |
Collapse
|
54
|
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.
Collapse
|
55
|
Martin P, Giardiello M, McDonald TO, Rannard SP, Owen A. Mediation of in Vitro Cytochrome P450 Activity by Common Pharmaceutical Excipients. Mol Pharm 2013; 10:2739-48. [DOI: 10.1021/mp400175n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip Martin
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
| | - Marco Giardiello
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Tom O. McDonald
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Steven P. Rannard
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| | - Andrew Owen
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| |
Collapse
|
56
|
Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65:315-499. [PMID: 23383426 DOI: 10.1124/pr.112.005660] [Citation(s) in RCA: 1003] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.
Collapse
Affiliation(s)
- Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
57
|
Gupta VK, Bhalla Y, Jaitak V. Impact of ABC transporters, glutathione conjugates in MDR and their modulation by flavonoids: an overview. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0612-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Characterization of the Solutol® HS15/water phase diagram and the impact of the Δ9-tetrahydrocannabinol solubilization. J Colloid Interface Sci 2013; 390:129-36. [DOI: 10.1016/j.jcis.2012.08.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/22/2022]
|
59
|
Kurkov SV, Madden DE, Carr D, Loftsson T. The Effect of Parenterally Administered Cyclodextrins on the Pharmacokinetics of Coadministered Drugs. J Pharm Sci 2012; 101:4402-8. [DOI: 10.1002/jps.23329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 11/11/2022]
|
60
|
Abstract
P-glycoprotein (P-gp), a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC) super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR) analyses in the development of novel rational P-gp inhibitors have also been mentioned.
Collapse
|
61
|
Engel A, Oswald S, Siegmund W, Keiser M. Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol Pharm 2012; 9:2577-81. [PMID: 22808947 DOI: 10.1021/mp3001815] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17β-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies.
Collapse
Affiliation(s)
- Anett Engel
- Department of Clinical Pharmacology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | | | | | | |
Collapse
|
62
|
Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 2012; 436:359-78. [PMID: 22759644 DOI: 10.1016/j.ijpharm.2012.06.052] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Emulsions are widely used in pharmaceutics for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to answer the increasing demand for clean label excipients, natural polymers can replace the potentially irritative synthetic surfactants used in emulsion formulation. Indeed, biopolymers are currently used in the food industry to stabilize emulsions, and they appear as promising candidates in the pharmaceutical field too. All proteins and some polysaccharides are able to adsorb at a globule surface, thus decreasing the interfacial tension and enhancing the interfacial elasticity. However, most polysaccharides stabilize emulsions simply by increasing the viscosity of the continuous phase. Proteins and polysaccharides may also be associated either through covalent bonding or electrostatic interactions. The combination of the properties of these biopolymers under appropriate conditions leads to increased emulsion stability. Alternative layers of oppositely charged biopolymers can also be formed around the globules to obtain multi-layered "membranes". These layers can provide electrostatic and steric stabilization thus improving thermal stability and resistance to external treatment. The novel biopolymer-stabilized emulsions have a great potential in the pharmaceutical field for encapsulation, controlled digestion, and targeted release although several challenging issues such as storage and bacteriological concerns still need to be addressed.
Collapse
Affiliation(s)
- Eléonore Bouyer
- Univ Paris Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | | | | | | | | |
Collapse
|
63
|
Impact of Excipient Interactions on Drug Bioavailability from Solid Dosage Forms. Pharm Res 2012; 29:2639-59. [DOI: 10.1007/s11095-012-0767-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023]
|
64
|
Controlled systemic delivery by polymeric implants enhances tissue and plasma curcumin levels compared with oral administration. Eur J Pharm Biopharm 2011; 80:571-7. [PMID: 22227368 DOI: 10.1016/j.ejpb.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 12/31/2022]
Abstract
Curcumin possesses potent anti-inflammatory and anti-proliferative activities but with poor biopharmaceutical attributes. To overcome these limitations, curcumin implants were developed and tissue (plasma, brain and liver) curcumin concentrations were measured in female ACI rats for 3 months. Biological efficacy of tissue levels achieved was analyzed by modulation of hepatic cytochromes. Curcumin implants exhibited diffusion-mediated biphasic release pattern with ∼2-fold higher in vivo release as compared to in vitro. Plasma curcumin concentration from implants was ∼3.3 ng/ml on day 1, which dropped to ∼0.2 ng/ml after 3 months, whereas only 0.2-0.3 ng/ml concentration was observed from 4-12 days with diet and was undetected subsequently. Almost 10-fold higher curcumin levels were observed in brain on day 1 from implants compared with diet (30.1 ± 7.3 vs 2.7 ± 0.8 ng/g) and were still significant even after 90 days (7.7 ± 3.8 vs 2.2 ± 0.8 ng/g). Although curcumin levels were similar in liver from both the routes (∼25-30 ng/g from day 1-4 and ∼10-15 ng/g at 90 days), implants were more efficacious in altering hepatic CYP1A1 levels and CYP3A4 activity at ∼28-fold lower doses at 90 days. Curcumin implants provided much higher plasma and tissue concentrations and are a viable alternative for delivery of curcumin to various organs like brain.
Collapse
|
65
|
Zhang J, Peng Q, Shi S, Zhang Q, Sun X, Gong T, Zhang Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int J Nanomedicine 2011; 6:3405-14. [PMID: 22267925 PMCID: PMC3260034 DOI: 10.2147/ijn.s25824] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background As a poorly water-soluble drug, the oral application of morin is limited by its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of morin. Methods Morin-phospholipid complex (MPC) was prepared by a solvent evaporation method and characterized by infrared spectroscopy and X-ray diffraction. After formation of MPC, it was found that the liposolubility of morin was significantly increased, as verified through solubility studies. An orthogonal design was employed to screen the blank SNEDDS, using emulsifying rate and particle size as evaluation indices. Ternary phase diagrams were then constructed to investigate the effects of drug loading on the self-emulsifying performance of the optimized blank SNEDDS. Subsequently, in vivo pharmacokinetic parameters of the morin-phospholipid complex self-nanoemulsifying drug delivery system (MPC-SNEDDS) were investigated in Wistar rats (200 mg/kg of morin by oral administration). Results The optimum formulation was composed of Labrafil® M 1944 CS, Cremophor® RH 40, and Transcutol® P (3:5:3, w/w), which gave a mean particle size of approximately 140 nm. Oral delivery of the MPC-SNEDDS exhibited a significantly greater Cmax (28.60 μg/mL) than the morin suspension (5.53 μg/mL) or MPC suspension (23.74 μg/mL) (all P < 0.05). Tmax was prolonged from 0.48 to 0.77 hours and to 1 hour for MPC and MPC-SNEDDS, respectively. In addition, the relative oral bioavailability of morin formulated in the MPC-SNEDDS was 6.23-fold higher than that of the morin suspension, and was significantly higher than that of the MPC suspension (P < 0.05). Conclusion The study demonstrated that a SNEDDS combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of morin.
Collapse
Affiliation(s)
- Jinjie Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
66
|
Eid EEM, Abdul AB, Rasedee A, Suliman FEO, Sukari MA, Fatah SA. Liquid chromatography-tandem mass spectroscopic method for the determination of zerumbone in human plasma and its application to pharmacokinetics. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:772-781. [PMID: 21834015 DOI: 10.1002/jms.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A rapid, sensitive, specific and selective LC-MS/MS method for the determination of zerumbone (ZER) in human plasma using 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (DMTZ) as an internal standard (IS) has been developed and validated. ZER was chromatographed on C8 column using a mobile phase of acetonitrile/water (80:20, v/v) at a flow rate of 0.25 ml min(-1) . Quantitation was achieved using ESI+ interface, employing multiple reaction monitoring (MRM) mode at m/z 219 > 81 and 218 > 134 for ZER and IS, respectively. The calibration standards were linear over a range of 5-3000 ng ml(-1) (r(2)=0.9994) with an LLOQ of 5 ng ml(-1) (RSD %; 11.4% and bias%; 9.5%). Intra- and inter-day precision of ZER assay ranged from 0.18 to 3.56% with accuracy (bias) that varied between -5.09 and 4.3%, demonstrating good precision and accuracy. Recoveries of ZER and the IS from human plasma were above 85%. The developed method was validated for the determination of ZER in rat plasma. Linearity, stability of ZER and the ME on rat plasma were discussed. The applicability of the developed method was demonstrated by measuring ZER in rat plasma samples following intravenous and intraperitoneal administration of ZER prepared in hydroxypropyl-β-cyclodextrin (HPβCD) and sodium carboxymethyl cellulose (CMC), respectively, in 20 mg kg(-1) and this study indicated a clear significant difference (p<0.05) in pharmacokinetic parameters of ZER in ZER/HPβCD complex compared with ZER in CMC preparation.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Laboratory of Immunotherapeutic and Vaccines (LIVES), Institute of Bioscience, University Putra Malaysia, Serdang 43400, Selangor DE, Malaysia.
| | | | | | | | | | | |
Collapse
|
67
|
Agüeros M, Espuelas S, Esparza I, Calleja P, Peñuelas I, Ponchel G, Irache JM. Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin Drug Deliv 2011; 8:721-34. [DOI: 10.1517/17425247.2011.572069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
68
|
Koltun M, Morizzi J, Katneni K, Charman SA, Shackleford DM, McIntosh MP. Preclinical comparison of intravenous melphalan pharmacokinetics administered in formulations containing either (SBE)7 m-β-cyclodextrin or a co-solvent system. Biopharm Drug Dispos 2011; 31:450-4. [PMID: 20865695 DOI: 10.1002/bdd.725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this work was to evaluate the impact of sulfobutyl ether β-cyclodextrin ((SBE)(7 m)-β-CD; Captisol(®)) on the in vivo pharmacokinetics of melphalan in rats. Melphalan is a chemically unstable antineoplastic drug which in the current commercial formulation (Alkeran(®) for Injection) has some limitations with regard to solubility, stability and biocompatibility. Melphalan formulations containing (SBE)(7 m)-β-CD have previously been evaluated in vitro and shown to significantly reduce the rate of degradation and to simplify the reconstitution procedure for lyophilised melphalan. In this study, melphalan was administered intravenously in rats in formulations that either contain (SBE)(7 m)-β-CD or a co-solvent system (i.e. the commercial formulation). Pharmacokinetic parameters, including half-life, volume of distribution, clearance and extent of renal elimination of melphalan were essentially unchanged between the two formulations. These findings indicate that the pharmacokinetics of melphalan are not altered in the presence of (SBE)(7 m)-β-CD consistent with a rapid shift in the equilibrium to the fully dissociated drug from the fraction associated with the cyclodextrin host molecule upon intravenous administration.
Collapse
Affiliation(s)
- Maria Koltun
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
69
|
Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 2010; 27:260-73. [PMID: 20929336 DOI: 10.3109/09687688.2010.497971] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The oral and central nervous systems (CNS) present a unique set of barriers to the delivery of important diagnostic and therapeutic agents. Extensive research over the past few years has enabled a better understanding of these physical and biological barriers based on tight cellular junctions and expression of active transporters and metabolizing enzymes at the luminal surfaces of the gastrointestinal (GI) tract and the blood-brain barrier (BBB). This review focuses on the recent understanding of transport across the GI tract and BBB and the development of nanotechnology-based delivery strategies that can enhance bioavailability of drugs. Multifunctional lipid nanosystems, such as oil-in-water nanoemulsions, that integrate enhancement in permeability, tissue and cell targeting, imaging, and therapeutic functions are especially promising. Based on strategic choice of edible oils, surfactants and additional surface modifiers, and different types of payloads, rationale design of multifunctional nanoemulsions can serve as a safe and effective delivery vehicle across oral and CNS barriers.
Collapse
Affiliation(s)
- Srinivas Ganta
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
70
|
Kuligowski J, Carrión D, Quintás G, Garrigues S, de la Guardia M. Cubic smoothing splines background correction in on-line liquid chromatography–Fourier transform infrared spectrometry. J Chromatogr A 2010; 1217:6733-41. [DOI: 10.1016/j.chroma.2010.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
71
|
Kurkov SV, Loftsson T, Messner M, Madden D. Parenteral delivery of HPβCD: effects on drug-HSA binding. AAPS PharmSciTech 2010; 11:1152-8. [PMID: 20658211 PMCID: PMC2974121 DOI: 10.1208/s12249-010-9482-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/30/2010] [Indexed: 12/25/2022] Open
Abstract
It is thought that cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin (HPβCD), will at high concentration affect pharmacokinetics of drugs through competitive binding with plasma proteins. Albumin is the major component of plasma proteins responsible for plasma protein binding. The purpose of this study was to evaluate in vitro the competitive binding of drugs between human serum albumin (HSA) and HPβCD in isotonic pH 7.4 phosphate buffer saline solution (PBS) at ambient temperature. Eight model drugs were selected based on their physicochemical properties and ability to form complexes with HSA and HPβCD. The drug/HPβCD stability constants (K(1:1)) were determined by the phase-solubility method and HSA/HPβCD competitive binding determined by an equilibrium dialysis method. Protein binding of drugs that are both strongly protein bound and have high affinity to HPβCD (i.e., have high K(1:1) value) is most likely to be affected by parenterally administered HPβCD. However, this in vitro study indicates that even for those drugs single parenteral dose of HPβCD has to be as high as 70 g to have detectable effect on their protein binding. Weakly protein bound drugs and drugs with low affinity towards HPβCD are insensitive to the cyclodextrin presence regardless their lipophilic properties.
Collapse
Affiliation(s)
- Sergey V. Kurkov
- />Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Thorsteinn Loftsson
- />Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Martin Messner
- />Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Donna Madden
- />Javelin Pharmaceuticals, Inc., 125 Cambridge Park Drive, Cambridge, Massachusetts 021402 USA
| |
Collapse
|
72
|
Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 2010; 62:1607-21. [DOI: 10.1111/j.2042-7158.2010.01030.x] [Citation(s) in RCA: 600] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Objectives
Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations.
Key findings
There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes.
Summary
We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Marcus E Brewster
- Chemical and Pharmaceutical Development, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| |
Collapse
|
73
|
Oral absorption enhancement: taking the next steps in therapeutic delivery. Ther Deliv 2010; 1:5-9. [DOI: 10.4155/tde.10.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
74
|
Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int J Pharm 2010; 391:203-11. [DOI: 10.1016/j.ijpharm.2010.03.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 01/01/2023]
|
75
|
Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J Control Release 2009; 140:86-94. [DOI: 10.1016/j.jconrel.2009.08.015] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 01/01/2023]
|
76
|
Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today 2009; 14:1067-74. [DOI: 10.1016/j.drudis.2009.07.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 06/17/2009] [Accepted: 07/20/2009] [Indexed: 12/24/2022]
|
77
|
Kummer O, Haschke M, Hammann F, Bodmer M, Bruderer S, Regnault Y, Dingemanse J, Krähenbühl S. Comparison of the dissolution and pharmacokinetic profiles of two galenical formulations of the endothelin receptor antagonist macitentan. Eur J Pharm Sci 2009; 38:384-8. [DOI: 10.1016/j.ejps.2009.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/21/2009] [Accepted: 09/06/2009] [Indexed: 11/28/2022]
|
78
|
Affiliation(s)
- Stephen Lowis
- Department of Paediatric and Adolescent Oncology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
79
|
Gut instincts: Explorations in intestinal physiology and drug delivery. Int J Pharm 2008; 364:213-26. [DOI: 10.1016/j.ijpharm.2008.05.012] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/03/2008] [Accepted: 05/06/2008] [Indexed: 12/12/2022]
|