51
|
Peritoneal dialysis beyond kidney failure? J Control Release 2018; 282:3-12. [DOI: 10.1016/j.jconrel.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
|
52
|
Gaur H, Purushothaman S, Pullaguri N, Bhargava Y, Bhargava A. Sodium benzoate induced developmental defects, oxidative stress and anxiety-like behaviour in zebrafish larva. Biochem Biophys Res Commun 2018; 502:364-369. [PMID: 29842881 DOI: 10.1016/j.bbrc.2018.05.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Sodium benzoate (SB) is a common food preservative. Its FDA described safety limit is 1000 ppm. Lately, increased use of SB has prompted investigations regarding its effects on biological systems. Data regarding toxicity of SB is divergent and controversial with studies reporting both harmful and beneficial effects. Therefore, we did a systematic dose dependent toxicity study of SB using zebrafish vertebrate animal model. We also investigated oxidative stress and anxiety-like behaviour in zebrafish larva treated with SB. Our results indicate that SB induced developmental (delayed hatching), morphological (pericardial edema, yolk sac edema and tail bending), biochemical (oxidative stress) and behavioural (anxiety-like behaviour) abnormalities in developing zebrafish larva. LC50 of SB induced toxicity was approximately 400 ppm after 48 h of SB exposure. Our study strongly supports its harmful effects on vertebrates at increasing doses. Thus, we suggest caution in the excessive use of this preservative in processed and convenience foods.
Collapse
Affiliation(s)
- Himanshu Gaur
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India
| | - Srinithi Purushothaman
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India
| | - Narasimha Pullaguri
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, School of Biological Sciences, Dr Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India.
| |
Collapse
|
53
|
Giacalone G, Matoori S, Agostoni V, Forster V, Kabbaj M, Eggenschwiler S, Lussi M, De Gottardi A, Zamboni N, Leroux JC. Liposome-supported peritoneal dialysis in the treatment of severe hyperammonemia: An investigation on potential interactions. J Control Release 2018; 278:57-65. [DOI: 10.1016/j.jconrel.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
|
54
|
Carrier P, Loustaud-Ratti V. Treating hepatic encephalopathy in cirrhotic patients admitted to ICU with sodium phenylbutyrate: a preliminary study. Fundam Clin Pharmacol 2018; 32:206-208. [DOI: 10.1111/fcp.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul Carrier
- Hepatology and Gastroenterology Unit; Limoges Teaching Hospital; 2, avenue Martin Luther King 87042 Limoges France
- Faculté de Médecine et de Pharmacie de Limoges; INSERM; UMR-1248; 2, rue Docteur Marcland 87042 Limoges France
- FHU SUPORT (SUrvival oPtimization in ORgan Transplantation); 2, avenue Martin Luther King 87042 Limoges France
| | - Véronique Loustaud-Ratti
- Hepatology and Gastroenterology Unit; Limoges Teaching Hospital; 2, avenue Martin Luther King 87042 Limoges France
- Faculté de Médecine et de Pharmacie de Limoges; INSERM; UMR-1248; 2, rue Docteur Marcland 87042 Limoges France
- FHU SUPORT (SUrvival oPtimization in ORgan Transplantation); 2, avenue Martin Luther King 87042 Limoges France
| |
Collapse
|
55
|
Gambello MJ, Li H. Current strategies for the treatment of inborn errors of metabolism. J Genet Genomics 2018; 45:61-70. [PMID: 29500085 DOI: 10.1016/j.jgg.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/14/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Inborn errors of metabolism (IEMs) are a large group of inherited disorders characterized by disruption of metabolic pathways due to deficient enzymes, cofactors, or transporters. The rapid advances in the understanding of the molecular pathophysiology of many IEMs, have led to significant progress in the development of many new treatments. The institution and continued expansion of newborn screening provide the opportunity for early treatment, leading to reduced morbidity and mortality. This review provides an overview of the diverse therapeutic approaches and recent advances in the treatment of IEMs that focus on the basic principles of reducing substrate accumulation, replacing or enhancing absent or reduced enzyme or cofactor, and supplementing product deficiency. In addition, the challenges and obstacles of current treatment modalities and future treatment perspectives are reviewed and discussed.
Collapse
Affiliation(s)
- Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
56
|
Besio R, Iula G, Garibaldi N, Cipolla L, Sabbioneda S, Biggiogera M, Marini JC, Rossi A, Forlino A. 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1642-1652. [PMID: 29432813 PMCID: PMC5908783 DOI: 10.1016/j.bbadis.2018.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
The clinical phenotype in osteogenesis imperfecta (OI) is attributed to the dominant negative function of mutant type I collagen molecules in the extracellular matrix, by altering its structure and function. Intracellular retention of mutant collagen has also been reported, but its effect on cellular homeostasis is less characterized. Using OI patient fibroblasts carrying mutations in the α1(I) and α2(I) chains we demonstrate that retained collagen molecules are responsible for endoplasmic reticulum (ER) enlargement and activation of the unfolded protein response (UPR) mainly through the eukaryotic translation initiation factor 2 alpha kinase 3 (PERK) branch. Cells carrying α1(I) mutations upregulate autophagy, while cells with α2(I) mutations only occasionally activate the autodegradative response. Despite the autophagy activation to face stress conditions, apoptosis occurs in all mutant fibroblasts. To reduce cellular stress, mutant fibroblasts were treated with the FDA-approved chemical chaperone 4-phenylbutyric acid. The drug rescues cell death by modulating UPR activation thanks to both its chaperone and histone deacetylase inhibitor abilities. As chaperone it increases general cellular protein secretion in all patients' cells as well as collagen secretion in cells with the most C-terminal mutation. As histone deacetylase inhibitor it enhances the expression of the autophagic gene Atg5 with a consequent stimulation of autophagy. These results demonstrate that the cellular response to ER stress can be a relevant target to ameliorate OI cell homeostasis.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia 27100, Italy.
| | - Giusy Iula
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia 27100, Italy.
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia 27100, Italy.
| | - Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy.
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy.
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA.
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia 27100, Italy.
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
57
|
The Pharmabiotic Approach to Treat Hyperammonemia. Nutrients 2018; 10:nu10020140. [PMID: 29382084 PMCID: PMC5852716 DOI: 10.3390/nu10020140] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Ammonia is constantly produced as a metabolic waste from amino acid catabolism in mammals. Ammonia, the toxic waste metabolite, is resolved in the liver where the urea cycle converts free ammonia to urea. Liver malfunctions cause hyperammonemia that leads to central nervous system (CNS) dysfunctions, such as brain edema, convulsions, and coma. The current treatments for hyperammonemia, such as antibiotics or lactulose, are designed to decrease the intestinal production of ammonia and/or its absorption into the body and are not effective, besides being often accompanied by side effects. In recent years, increasing evidence has shown that modifications of the gut microbiota could be used to treat hyperammonemia. Considering the role of the gut microbiota and the physiological characteristics of the intestine, the removal of ammonia from the intestine by modulating the gut microbiota would be an ideal approach to treat hyperammonemia. In this review, we discuss the significance of hyperammonemia and its related diseases and the efficacy of the current management methods for hyperammonemia to understand the mechanism of ammonia transport in the human body. The possibility to use the gut microbiota as pharmabiotics to treat hyperammonemia and its related diseases is also explored.
Collapse
|
58
|
Gioia R, Tonelli F, Ceppi I, Biggiogera M, Leikin S, Fisher S, Tenedini E, Yorgan TA, Schinke T, Tian K, Schwartz JM, Forte F, Wagener R, Villani S, Rossi A, Forlino A. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet 2018; 26:2897-2911. [PMID: 28475764 PMCID: PMC5886106 DOI: 10.1093/hmg/ddx171] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment.
Collapse
Affiliation(s)
- Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ilaria Ceppi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Shannon Fisher
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Elena Tenedini
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Timur A Yorgan
- Institute of Osteology and Biomechanic, Center for Experimental Medicine, University of Hamburg, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanic, Center for Experimental Medicine, University of Hamburg, Hamburg, Germany
| | - Kun Tian
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabiana Forte
- Medical Faculty, Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Medical Faculty, Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
59
|
Enhancement of hepatic autophagy increases ureagenesis and protects against hyperammonemia. Proc Natl Acad Sci U S A 2017; 115:391-396. [PMID: 29279371 DOI: 10.1073/pnas.1714670115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ammonia is a potent neurotoxin that is detoxified mainly by the urea cycle in the liver. Hyperammonemia is a common complication of a wide variety of both inherited and acquired liver diseases. If not treated early and thoroughly, it results in encephalopathy and death. Here, we found that hepatic autophagy is critically involved in systemic ammonia homeostasis by providing key urea-cycle intermediates and ATP. Hepatic autophagy is triggered in vivo by hyperammonemia through an α-ketoglutarate-dependent inhibition of the mammalian target of rapamycin complex 1, and deficiency of autophagy impairs ammonia detoxification. In contrast, autophagy enhancement by means of hepatic gene transfer of the master regulator of autophagy transcription factor EB or treatments with the autophagy enhancers rapamycin and Tat-Beclin-1 increased ureagenesis and protected against hyperammonemia in a variety of acute and chronic hyperammonemia animal models, including acute liver failure and ornithine transcarbamylase deficiency, the most frequent urea-cycle disorder. In conclusion, hepatic autophagy is an important mechanism for ammonia detoxification because of its support of urea synthesis, and its enhancement has potential for therapy of both primary and secondary causes of hyperammonemia.
Collapse
|
60
|
Wang Y, Chang L, Zhai J, Wu Q, Wang D, Wang Y. Generation of carbamoyl phosphate synthetase 1 reporter cell lines for the assessment of ammonia metabolism. J Cell Mol Med 2017; 21:3214-3223. [PMID: 28557353 PMCID: PMC5706564 DOI: 10.1111/jcmm.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/09/2017] [Indexed: 01/25/2023] Open
Abstract
Both primary hepatocytes and stem cells-derived hepatocyte-like cells (HLCs) are major sources for bioartificial liver (BAL). Maintenance of hepatocellular functions and induction of functional maturity of HLCs are critical for BAL's support effect. It remains difficult to assess and improve detoxification functions inherent to hepatocytes, including ammonia clearance. Here, we aim to assess ammonia metabolism and identify ammonia detoxification enhancer by developing an imaging strategy. In hepatoma cell line HepG2, and immortalized hepatic cell line LO2, carbamoyl phosphate synthetase 1 (CPS1) gene, the first enzyme of ammonia-eliminating urea cycle, was labelled with fluorescence protein via CRISPR/Cas9 system. With the reporter-based screening approach, cellular detoxification enhancers were selected among a collection of 182 small molecules. In both CPS1 reporter cell lines, the fluorescence intensity is positively correlated with cellular CPS1 mRNA expression, ammonia elimination and secreted urea, and reflected ammonia detoxification in a dose-dependent manner. Surprisingly, high-level CPS1 reporter clones also reserved many other critical hepatocellular functions, for example albumin secretion and cytochrome 450 metabolic functions. Sodium phenylbutyrate and resveratrol were identified to enhance metabolism-related gene expression and liver-enriched transcription factors C/EBPα, HNF4α. In conclusion, the CPS1-reporter system provides an economic and effective platform for assessment of cellular metabolic function and high-throughput identification of chemical compounds that improve detoxification activities in hepatic lineage cells.
Collapse
Affiliation(s)
- Yi Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Le Chang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Jiahui Zhai
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Qiao Wu
- Capital Medical University Youan hospitalBeijingChina
| | - Donggen Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Yunfang Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| |
Collapse
|
61
|
Moedas M, Adam A, Farelo M, IJlst L, Chamuleau R, Hoekstra R, Wanders R, Silva M. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS. Anal Biochem 2017; 535:47-55. [DOI: 10.1016/j.ab.2017.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
62
|
López-Corella E, Ibarra-González I, Fernández-Lainez C, Rodríguez-Weber MÁ, Guillén-Lopez S, Belmont-Martínez L, Agüero-Linares D, Vela-Amieva M. Kernicterus in a boy with ornithine transcarbamylase deficiency: A case report. Neuropathology 2017; 37:586-590. [PMID: 28815739 DOI: 10.1111/neup.12404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked urea cycle defect associated with severe and usually fatal hyperammonemia. This study describes a patient with early onset lethal OTCD due to a known pathogenic variant (c.298+1G>A), as well as the novel autopsy finding of kernicterus with relatively low blood concentration of unconjugated bilirubin (UCB) (11.55 mg/dL). The patient was a full-term male with a family history of two previous male siblings who died as newborns after acute neurologic deterioration. The patient's symptoms began at 24 h of life with lethargy that rapidly progressed to coma upon admission to the neonatal intensive care unit. Although hyperammonemia and hyperbilirubinemia were documented, hemofiltration could not be performed. OTCD diagnosis was biochemically established. Despite nutritional intervention and treatment for hyperammonemia, the patient died on the sixth day of life. At autopsy, external brain examination revealed a marked yellow pigmentation typical of kernicterus that included gray matter, particularly the thalamus and basal ganglia; dentate nuclei of the cerebellum and brain stem gray matter were also affected. Microscopic findings were consistent with the classical description of tissue damage in OTCD, including the presence of Alzheimer type II astrocytes in basal ganglia, necrosis, neuronal loss with spongiform degeneration and macrophage infiltration surrounded by astroglia. This condition may be an important comorbidity in newborns with hyperammonemia.
Collapse
Affiliation(s)
- Eduardo López-Corella
- Department of Pathology, National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| | - Isabel Ibarra-González
- Nutritional Genetics Unit, Biomedical Research Institute UNAM-National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| | - Cynthia Fernández-Lainez
- Inborn Errors of Metabolism and Screening Laboratory, National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| | | | - Sara Guillén-Lopez
- Inborn Errors of Metabolism and Screening Laboratory, National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| | - Leticia Belmont-Martínez
- Inborn Errors of Metabolism and Screening Laboratory, National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| | | | - Marcela Vela-Amieva
- Inborn Errors of Metabolism and Screening Laboratory, National Institute of Pediatrics, Mexico City, Mexico State, Mexico
| |
Collapse
|
63
|
Kose E, Kuyum P, Aksoy B, Häberle J, Arslan N, Ozturk Y. First report of carglumic acid in a patient with citrullinemia type 1 (argininosuccinate synthetase deficiency). J Clin Pharm Ther 2017; 43:124-128. [PMID: 28741715 DOI: 10.1111/jcpt.12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Carglumic acid is a structural analogue of human N-acetylglutamate, which has become an alternative therapeutic option for hyperammonaemia in organic acidaemias such as isovaleric acidaemia, methylmalonic acidaemia and propionic acidaemia, and it has been suggested in other urea cycle disorders such as ornithine transcarbamylase deficiency and carbamoyl phosphate synthetase 1 deficiency. CASE DESCRIPTION A male newborn was diagnosed with citrullinemia after serum amino acid analyses revealed markedly elevated citrulline concentration together with homozygous p.Gly390Arg mutation in ASS1 gene. The ammonia concentration decreased and blood gas analysis normalized after peritoneal dialysis was performed for three days. Also, sodium benzoate, L-arginine and parenteral nutrition with glucose and lipid therapy were initiated. Until 1 year of age, low adherence to sodium benzoate therapy due to unpleasant taste caused hyperammonaemic episodes and obligated us to initiate carglumic acid (100 mg/kg/day) therapy. During treatment with carglumic acid, the median ammonia level was 45.6 µmol/L. The patient's treatment was switched from carglumic acid to sodium phenylbutyrate when he was 4.5 years old. Currently, the patient is 6.5 years old and remains under follow-up with sodium phenylbutyrate, L-arginine and protein-restricted diet. Plasma ornithine level was found to be significantly lower during the carglumic acid treatment compared to other treatments (P=.039). Also, glutamic acid was found to be higher during the sodium benzoate treatment period compared to other treatment periods (P=.024). WHAT IS NEW AND CONCLUSION To the best of our knowledge, this is the first report describing the long-term use of carglumic acid in a patient with argininosuccinate synthetase deficiency.
Collapse
Affiliation(s)
- E Kose
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - P Kuyum
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - B Aksoy
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - J Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - N Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - Y Ozturk
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
64
|
|
65
|
Ye Q, Yin W, Zhang L, Xiao H, Qi Y, Liu S, Qian B, Wang F, Han T. The value of grip test, lysophosphatidlycholines, glycerophosphocholine, ornithine, glucuronic acid decrement in assessment of nutritional and metabolic characteristics in hepatitis B cirrhosis. PLoS One 2017; 12:e0175165. [PMID: 28384211 PMCID: PMC5383249 DOI: 10.1371/journal.pone.0175165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
The liver is essential for the regulation of energy, protein and amino acids, as well as in other aspects of metabolism. To identify efficient indexes for evaluation of nutritional status and metabolic characteristics during different Child-Pugh stages of hepatitis B cirrhosis, 83 patients and 35 healthy individuals were enrolled in our study. We found that grip strength, triceps skinfold thickness (TSF), body fat and skeletal muscle of the patients were reduced compared to the control group (P<0.05). Ultra-high-performance liquid chromatography data combined with mass spectrometry (UPLC-MS) showed that levels of a variety of metabolites, including lysophosphatidylcholines (LysoPCs), glycerophosphocholine, ornithine and glucuronic acid were reduced in the serum of patients with hepatitis B cirrhosis (P<0.001). However, glycerophosphoserine and taurocholic acid levels were higher than in the control group (P<0.001). Moreover, grip strength was correlated with the Child-Pugh score (P<0.05). Serum albumin, total cholesterol, LDL, LysoPCs, glycerophosphocholine, ornithine, glucuronic acid, glycerophosphoserine and taurocholic acid were correlated with the Child-Pugh score (P<0.01). These findings suggested that grip strength and the above small molecular substances might be considered as sensitive and important indexes for evaluating nutritional status and metabolic characteristics of patients with hepatitis B cirrhosis, which may help assess prognosis and adjust nutritional treatment.
Collapse
Affiliation(s)
- Qing Ye
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, PR China
| | - Weili Yin
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, PR China
| | - Lei Zhang
- Clinical Laboratory of Tianjin Third Central Hospital, Tianjin, China
| | - Huijuan Xiao
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Nutriology, Tianjin Third Central Hospital, Tianjin, China
| | - Yumei Qi
- Department of Nutriology, Tianjin Third Central Hospital, Tianjin, China
| | - Shuye Liu
- Clinical Laboratory of Tianjin Third Central Hospital, Tianjin, China
| | - Baoxin Qian
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, PR China
| | - Fengmei Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, PR China
| | - Tao Han
- The Third Central Clinical College of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, PR China
- * E-mail:
| |
Collapse
|
66
|
Diez-Fernandez C, Häberle J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets 2017; 21:391-399. [PMID: 28281899 DOI: 10.1080/14728222.2017.1294685] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.
Collapse
Affiliation(s)
- Carmen Diez-Fernandez
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| | - Johannes Häberle
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| |
Collapse
|
67
|
Chapel-Crespo CC, Diaz GA, Oishi K. Efficacy of N-carbamoyl-L-glutamic acid for the treatment of inherited metabolic disorders. Expert Rev Endocrinol Metab 2016; 11:467-473. [PMID: 30034506 PMCID: PMC6054484 DOI: 10.1080/17446651.2016.1239526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION N-carbamoyl-L-glutamic acid (NCG) is a synthetic analogue of N-acetyl glutamate (NAG) that works effectively as a cofactor for carbamoyl phosphate synthase 1 and enhances ureagenesis by activating the urea cycle. NCG (brand name, Carbaglu) was recently approved by the United States Food and Drug Administration (US FDA) for the management of NAGS deficiency and by the European Medicines Agency (EMA) for the treatment of NAGS deficiency as well as for the treatment of hyperammonenia in propionic, methylmalonic and isovaleric acidemias in Europe. AREAS COVERED The history, mechanism of action, and efficacy of this new drug are described. Moreover, clinical utility of NCG in a variety of inborn errors of metabolism with secondary NAGS deficiency is discussed. EXPERT COMMENTARY NCG has favorable pharmacological features including better bioavailability compared to NAG. The clinical use of NCG has proven to be so effective as to make dietary protein restriction unnecessary for patients with NAGS deficiency. It has been also demonstrated to be effective for hyperammonemia secondary to other types of inborn errors of metabolism. NCG may have additional therapeutic potential in conditions such as hepatic hyperammonemic encephalopathy secondary to chemotherapies or other liver pathology.
Collapse
Affiliation(s)
- Cristel C Chapel-Crespo
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
68
|
Burke MJ, Rheingold SR. Differentiating hypersensitivity versus infusion-related reactions in pediatric patients receiving intravenous asparaginase therapy for acute lymphoblastic leukemia. Leuk Lymphoma 2016; 58:540-551. [DOI: 10.1080/10428194.2016.1213826] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael J. Burke
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susan R. Rheingold
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
69
|
Garay RP, Citrome L, Samalin L, Liu CC, Thomsen MS, Correll CU, Hameg A, Llorca PM. Therapeutic improvements expected in the near future for schizophrenia and schizoaffective disorder: an appraisal of phase III clinical trials of schizophrenia-targeted therapies as found in US and EU clinical trial registries. Expert Opin Pharmacother 2016; 17:921-36. [DOI: 10.1517/14656566.2016.1149164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
70
|
Affiliation(s)
- Liangfang Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|