51
|
Tariq H, Naz S. TFG associated hereditary spastic paraplegia: an addition to the phenotypic spectrum. Neurogenetics 2017; 18:105-109. [DOI: 10.1007/s10048-017-0508-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/14/2017] [Indexed: 01/15/2023]
|
52
|
Kanadome T, Shibata H, Kuwata K, Takahara T, Maki M. The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J 2017; 284:56-76. [PMID: 27813252 DOI: 10.1111/febs.13949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2), which is a gene product of PDCD6, is a 22-kDa Ca2+ -binding protein. Accumulating evidence points to a role for ALG-2 as a Ca2+ -responsive adaptor protein. On binding to Ca2+ , ALG-2 undergoes a conformational change that facilitates its interaction with various proteins. It also forms a homodimer and heterodimer with peflin, a paralog of ALG-2. However, the differences in cellular roles for the ALG-2 homodimer and ALG-2/peflin heterodimer are unclear. In the present study, we found that Trk-fused gene (TFG) protein interacted with the ALG-2 homodimer. Immunostaining analysis revealed that TFG and ALG-2 partially overlapped at endoplasmic reticulum exit sites (ERES), a platform for COPII-mediated protein transport from the endoplasmic reticulum. Time-lapse live-cell imaging demonstrated that both green fluorescent protein-fused TFG and mCherry-fused ALG-2 are recruited to ERES after thapsigargin treatment, which raises intracellular Ca2+ levels. Furthermore, overexpression of ALG-2 induced the accumulation of TFG at ERES. TFG has an ALG-2-binding motif and deletion of the motif decreased TFG binding to ALG-2 and shortened its half-life at ERES, suggesting a critical role for ALG-2 in retaining TFG at ERES. We also demonstrated, by in vitro cross-linking assays, that ALG-2 promoted the polymerization of TFG in a Ca2+ -dependent manner. Collectively, the results suggest that ALG-2 acts as a Ca2+ -sensitive adaptor to concentrate and polymerize TFG at ERES, supporting a potential role for ALG-2 in COPII-dependent trafficking from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Takashi Kanadome
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Japan
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| |
Collapse
|
53
|
Kino Y, Washizu C, Kurosawa M, Yamada M, Doi H, Takumi T, Adachi H, Katsuno M, Sobue G, Hicks GG, Hattori N, Shimogori T, Nukina N. FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice. Sci Rep 2016; 6:35236. [PMID: 27739513 PMCID: PMC5064419 DOI: 10.1038/srep35236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS+/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.
Collapse
Affiliation(s)
- Yoshihiro Kino
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan.,Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Chika Washizu
- Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan
| | - Masaru Kurosawa
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan
| | - Mizuki Yamada
- Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan
| | - Hiroshi Doi
- Department of Clinical Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toru Takumi
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Laboratory for Mental Biology, Brain Science Institute, RIKEN, Saitama, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Geoffrey G Hicks
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | - Nobutaka Hattori
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan
| | - Nobuyuki Nukina
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| |
Collapse
|
54
|
Khani M, Shamshiri H, Alavi A, Nafissi S, Elahi E. Identification of novel TFG mutation in HMSN-P pedigree: Emphasis on variable clinical presentations. J Neurol Sci 2016; 369:318-323. [DOI: 10.1016/j.jns.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/23/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023]
|
55
|
Elsayed LEO, Mohammed IN, Hamed AAA, Elseed MA, Johnson A, Mairey M, Mohamed HESA, Idris MN, Salih MAM, El-Sadig SM, Koko ME, Mohamed AYO, Raymond L, Coutelier M, Darios F, Siddig RA, Ahmed AKMA, Babai AMA, Malik HMO, Omer ZMBM, Mohamed EOE, Eltahir HB, Magboul NAA, Bushara EE, Elnour A, Rahim SMA, Alattaya A, Elbashir MI, Ibrahim ME, Durr A, Audhya A, Brice A, Ahmed AE, Stevanin G. Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet 2016; 25:100-110. [PMID: 27601211 DOI: 10.1038/ejhg.2016.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are the second most common type of motor neuron disease recognized worldwide. We investigated a total of 25 consanguineous families from Sudan. We used next-generation sequencing to screen 74 HSP-related genes in 23 families. Linkage analysis and candidate gene sequencing was performed in two other families. We established a genetic diagnosis in six families with autosomal recessive HSP (SPG11 in three families and TFG/SPG57, SACS and ALS2 in one family each). A heterozygous mutation in a gene involved in an autosomal dominant HSP (ATL1/SPG3A) was also identified in one additional family. Six out of seven identified variants were novel. The c.64C>T (p.(Arg22Trp)) TFG/SPG57 variant (PB1 domain) is the second identified that underlies HSP, and we demonstrated its impact on TFG oligomerization in vitro. Patients did not present with visual impairment as observed in a previously reported SPG57 family (c.316C>T (p.(Arg106Cys)) in coiled-coil domain), suggesting unique contributions of the PB1 and coiled-coil domains in TFG complex formation/function and a possible phenotype correlation to variant location. Some families manifested marked phenotypic variations implying the possibility of modifier factors complicated by high inbreeding. Finally, additional genetic heterogeneity is expected in HSP Sudanese families. The remaining families might unravel new genes or uncommon modes of inheritance.
Collapse
Affiliation(s)
- Liena E O Elsayed
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL université, Paris, France.,University of Khartoum, Khartoum, Sudan
| | | | | | | | - Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Mathilde Mairey
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL université, Paris, France
| | | | - Mohamed N Idris
- University of Khartoum, Khartoum, Sudan.,Sudan Medical Council, Neurology, Sudan
| | - Mustafa A M Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sarah M El-Sadig
- University of Khartoum, Khartoum, Sudan.,Department of Neurology, Soba University Hospital, Khartoum, Sudan
| | - Mahmoud E Koko
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ashraf Y O Mohamed
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
| | - Laure Raymond
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL université, Paris, France.,Department of genetics, APHP Pitié-Salpêtrière Hospital, Paris, France
| | - Marie Coutelier
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL université, Paris, France
| | - Frédéric Darios
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France
| | | | | | | | | | | | | | - Hanan B Eltahir
- Department of Biochemistry, El Imam EL Mahdi University, Kosti, Sudan
| | | | | | | | | | | | | | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Alexandra Durr
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France.,Department of genetics, APHP Pitié-Salpêtrière Hospital, Paris, France
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France. .,Department of genetics, APHP Pitié-Salpêtrière Hospital, Paris, France.
| | - Ammar E Ahmed
- University of Khartoum, Khartoum, Sudan.,Sudan Medical Council, Neurology, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, Paris, France. .,Ecole Pratique des Hautes Etudes, EPHE, PSL université, Paris, France. .,Department of genetics, APHP Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
56
|
Harlalka GV, McEntagart ME, Gupta N, Skrzypiec AE, Mucha MW, Chioza BA, Simpson MA, Sreekantan-Nair A, Pereira A, Günther S, Jahic A, Modarres H, Moore-Barton H, Trembath RC, Kabra M, Baple EL, Thakur S, Patton MA, Beetz C, Pawlak R, Crosby AH. Novel Genetic, Clinical, and Pathomechanistic Insights into TFG-Associated Hereditary Spastic Paraplegia. Hum Mutat 2016; 37:1157-1161. [PMID: 27492651 DOI: 10.1002/humu.23060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/30/2016] [Indexed: 11/05/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically and clinically heterogeneous axonopathies primarily affecting upper motor neurons and, in complex forms, additional neurons. Here, we report two families with distinct recessive mutations in TFG, previously suggested to cause HSP based on findings in a single small family with complex HSP. The first carried a homozygous c.317G>A (p.R106H) variant and presented with pure HSP. The second carried the same homozygous c.316C>T (p.R106C) variant previously reported and displayed a similarly complex phenotype including optic atrophy. Haplotyping and bisulfate sequencing revealed evidence for a c.316C>T founder allele, as well as for a c.316_317 mutation hotspot. Expression of mutant TFG proteins in cultured neurons revealed mitochondrial fragmentation, the extent of which correlated with clinical severity. Our findings confirm the causal nature of bi-allelic TFG mutations for HSP, broaden the clinical and mutational spectra, and suggest mitochondrial impairment to represent a pathomechanistic link to other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gaurav V Harlalka
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Meriel E McEntagart
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Anna E Skrzypiec
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mariusz W Mucha
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry A Chioza
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Ajith Sreekantan-Nair
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Anthony Pereira
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Hamid Modarres
- Department of Neurology, Atkinson Morley Wing, St. George's Hospital, Tooting, London, UK
| | - Heather Moore-Barton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, Old O.T. Block, All India Institute of Medical Sciences, New Delhi, India
| | - Emma L Baple
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Seema Thakur
- Department of Genetics and Fetal Medicine, Fortis La femme, S-549, New Delhi, India
| | - Michael A Patton
- Medical Genetics Unit, Floor 0, Jenner Wing, St. George's University of London, Cranmer Terrace, London, UK
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany.
| | - Robert Pawlak
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew H Crosby
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| |
Collapse
|
57
|
Kawarai T, Tajima A, Kuroda Y, Saji N, Orlacchio A, Terasawa H, Shimizu H, Kita Y, Izumi Y, Mitsui T, Imoto I, Kaji R. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability. J Neurol Neurosurg Psychiatry 2016; 87:656-62. [PMID: 26157035 DOI: 10.1136/jnnp-2014-309828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hereditary cerebellar ataxia constitutes a heterogeneous group of neurodegenerative disorders, occasionally accompanied by other neurological features. Genetic defects remain to be elucidated in approximately 40% of hereditary cerebellar ataxia cases in Japan. We attempted to identify the gene responsible for autosomal recessive cerebellar ataxia with intellectual disability. METHODS The present study involved three patients in a consanguineous Japanese family. Neurological examination and gene analyses were performed in all family members. We performed genome-wide linkage analysis including single nucleotide polymorphism arrays, copy-number variation analysis and whole exome sequencing. To clarify the functional alteration resulting from the identified mutation, we performed cell viability assay of cultured cells expressing mutant protein. RESULTS One homozygous region shared among the three patients on chromosomes 2p16.1-2q12.3 was identified. Using whole exome sequencing, six homozygous variants in genes in the region were detected. Only one variant, VWA3B c.A1865C, results in a change of a highly conserved amino acid (p.K622T) and was not present in control samples. VWA3B encodes a von Willebrand Factor A Domain-Containing Protein 3B with ubiquitous expression, including the cerebellum. The viability of cultured cells expressing the specific K622T mutation was proved to decrease through the activation of apoptotic pathway. CONCLUSIONS Mutated VWA3B was found to be likely associated with cerebellar degeneration with intellectual disability. Although a rare cause of cerebellar degeneration, these findings indicate a critical role for VWA3B in the apoptosis pathway in neuronal tissues.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukiko Kuroda
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Naoki Saji
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Rome, Italy Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Hideo Terasawa
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Hirotaka Shimizu
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yasushi Kita
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takao Mitsui
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
58
|
Yagi T, Ito D, Suzuki N. TFG-Related Neurologic Disorders: New Insights Into Relationships Between Endoplasmic Reticulum and Neurodegeneration. J Neuropathol Exp Neurol 2016; 75:299-305. [PMID: 26945032 DOI: 10.1093/jnen/nlw009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tropomyosin-receptor kinase fused gene(TFG), which is located on chromosome 3q12.2, was originally identified as a fusion partner that results in the formation of oncogenic products associated with multiple cancers. TFG protein interacts directly with Sec16, the scaffolding protein for coat protein II-coated vesicles that regulate endoplasmic reticulum (ER)-to-Golgi transport at ER exit sites. In 2012, a heterozygous mutation of TFG was identified as the causative gene for autosomal-dominant hereditary motor and sensory neuropathy with proximal dominant involvement. In 2013, a homozygous mutation of TFG was reported in a family with early onset spastic paraplegia, optic atrophy, and neuropathy. Another novel mutation in TFG was discovered in 2014 as a cause of dominant axonal Charcot-Marie-Tooth disease type 2. These findings suggest that mutations of TFG cause ER dysfunction and neurodegeneration in this disease spectrum, which is tightly associated with ER function. Here, we review the clinical phenotypes of these diseases and present recent insights that suggest causal roles of ER dysfunction in TFG-related neurologic disorders. Although the precise pathogenetic mechanisms underlying these TFG mutations remain to be elucidated, experimental manipulations suggest that the dysregulations of ER homeostasis that occur due to mutations in TFG lead to neurodegeneration.
Collapse
Affiliation(s)
- Takuya Yagi
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY).
| | - Daisuke Ito
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY)
| | - Norihiro Suzuki
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY)
| |
Collapse
|
59
|
Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging 2016; 38:216.e11-216.e18. [PMID: 26675814 DOI: 10.1016/j.neurobiolaging.2015.10.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/09/2015] [Accepted: 10/30/2015] [Indexed: 02/03/2023]
Abstract
We aimed to identify the genetic cause of a neurologic disorder accompanied with mental deficiency in a consanguineous family with 3 affected siblings by linkage analysis and exome sequencing. Iron accumulation in the brain of the patients was a notable phenotypic feature. A full-field electroretinography revealed generalized dysfunction of photoreceptors, bipolar cells, and amacrine cells. A splice site mutation in GTPBP2 that encodes GTP-binding protein 2 was identified in the patients and considered possible cause of their disease. The mutation was empirically shown to cause deletion of exon 9 of the gene and result in production of a truncated protein-lacking conserved C-terminus domains. GTPBP2 is a member of the GTPase superfamily of proteins. A recent report of identification of another splice site mutation in GTPBP2 in mice that causes neurodegeneration, and retinal damage provides supportive evidence for our finding. The conditions in the affected individuals of the family studied may define a novel form of neurodegeneration with brain iron accumulation, and GTPBP2 may be a novel neurodegeneration with brain iron accumulation gene.
Collapse
|
60
|
Sevilla T, Lupo V, Martínez-Rubio D, Sancho P, Sivera R, Chumillas MJ, García-Romero M, Pascual-Pascual SI, Muelas N, Dopazo J, Vílchez JJ, Palau F, Espinós C. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease. Brain 2015; 139:62-72. [PMID: 26497905 DOI: 10.1093/brain/awv311] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Teresa Sevilla
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 3 Department of Medicine, University of Valencia, Avd. Blasco Ibáñez no. 15, 46010 Valencia, Spain
| | - Vincenzo Lupo
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Dolores Martínez-Rubio
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Paula Sancho
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Rafael Sivera
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain
| | - María J Chumillas
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 5 Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain
| | - Mar García-Romero
- 6 Department of Neuropaediatrics, Hospital Universitario La Paz, P° de la Castellana no. 261, 08046 Madrid, Spain
| | - Samuel I Pascual-Pascual
- 6 Department of Neuropaediatrics, Hospital Universitario La Paz, P° de la Castellana no. 261, 08046 Madrid, Spain
| | - Nuria Muelas
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Joaquín Dopazo
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 7 Program on Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Juan J Vílchez
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 3 Department of Medicine, University of Valencia, Avd. Blasco Ibáñez no. 15, 46010 Valencia, Spain
| | - Francesc Palau
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 8 Department of Genetic and Molecular Medicine, and Pediatric Institute for Rare Diseases (IPER), Hospital Sant Joan de Déu, P° Sant Joan de Déu no. 2, 08950 Barcelona, Spain
| | - Carmen Espinós
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| |
Collapse
|
61
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
62
|
Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep 2015; 12:1169-83. [PMID: 26257172 DOI: 10.1016/j.celrep.2015.07.023] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Collapse
|
63
|
Higuchi Y, Takashima H. [The Cutting-edge of Medicine; Progress in clinical genetics of inherited neuropathy]. ACTA ACUST UNITED AC 2015; 104:1470-8. [PMID: 26513967 DOI: 10.2169/naika.104.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
64
|
Kumar KR, Blair NF, Sue CM. An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Mov Disord Clin Pract 2015; 2:213-223. [PMID: 30838228 DOI: 10.1002/mdc3.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by spasticity in the lower limbs. We provide an overview of HSP with an emphasis on recent developments. Methods A PubMed search using the term "hereditary spastic paraplegia" and "hereditary spastic paraparesis" was conducted for a period from January 2012 to January 2015. We discuss and critique the major studies in the field over this 36-month period. Results A total of 346 publications were identified, of which 47 were selected for review. We provide an update of the common forms of HSP and include patient videos. We also discuss how next-generation sequencing (NGS) has led to the accelerated discovery of new HSP genes, including B4GALNT1,DDHD1, C19orf12,GBA2,TECPR2,DDHD2, C12orf65,REEP2, and IBA57. Moreover, a single study alone identified 18 previously unknown putative HSP genes and created a model for the protein interactions of HSP, called the "HSPome." Many of the newly reported genes cause rare, complicated, autosomal recessive forms of HSP. NGS also has important clinical applications by facilitating the molecular diagnosis of HSP. Furthermore, common genetic forms of HSP have been studied using new disease models, such as neurons derived from induced pluripotent stem cells. These models have been used to elucidate important disease mechanisms and have served as platforms to screen for candidate drug compounds. Conclusion The field of HSP research has been progressing at a rapid pace. The challenge remains in translating these advances into new targeted disease therapies.
Collapse
Affiliation(s)
- Kishore R Kumar
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Nicholas F Blair
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Carolyn M Sue
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| |
Collapse
|
65
|
Fasciculations in human hereditary disease. Acta Neurol Belg 2015; 115:91-5. [PMID: 25073774 DOI: 10.1007/s13760-014-0335-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022]
Abstract
Fasciculations are a manifestation of peripheral nerve hyperexcitability in addition to myokymia, neuromyotonia, cramps, or tetany. Fasciculations occur in hereditary and non-hereditary diseases. Among the hereditary diseases, fasciculations are most frequently reported in familial amyotrophic lateral sclerosis (FALS), and spinal muscular atrophy (SMA). Among the non-hereditary diseases, fasciculations occur most frequently in peripheral nerve hyperexcitability syndromes (Isaac's syndrome, voltage-gated potassium channelopathy, cramp fasciculation syndrome, Morvan syndrome). If the cause of fasciculations remains unknown, they are called benign. Systematically reviewing the literature about fasciculations in hereditary disease shows that fasciculations can be a phenotypic feature in bulbospinal muscular atrophy (BSMA), GM2-gangliosidosis, triple-A syndrome, or hereditary neuropathy. Additionally, fasciculations have been reported in familial amyloidosis, spinocerebellar ataxias, Huntington's disease, Rett syndrome, central nervous system disease due to L1-cell adhesion molecule (L1CAM) mutations, Fabry's disease, or Gerstmann-Sträussler disease. Rarely, fasciculations may be a phenotypic feature in patients with mitochondrial disorders or other myopathies. Fasciculations are part of the phenotype in much more genetic disorders than commonly assumed. Fasciculations not only occur in motor neuron disease, but also in hereditary neuropathy, spinocerebellar ataxia, GM2-gangliosidosis, Huntington's disease, Rett syndrome, Fabry's disease, Gerstmann-Sträussler disease, mitochondrial disorders, or muscular dystrophies.
Collapse
|
66
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW This article focuses on recent advances in Charcot-Marie-Tooth disease, in particular additions to the genetic spectrum, novel paradigms in molecular techniques and an update on therapeutic strategies. RECENT FINDINGS Several new Charcot-Marie-Tooth disease-causing genes have been recently identified, further enlarging the genetic diversity and phenotypic variability, including: SBF1, DHTKD1, TFG, MARS, HARS, HINT1, TRIM1, AIFM1, PDK3 and GNB4. The increasing availability and affordability of next-generation sequencing technologies has ramped up gene discovery and drastically changed genetic screening strategies. All large-scale trials studying the effect of ascorbic acid in Charcot-Marie-Tooth 1A have now been completed and were negative. Efforts have been made to design more robust outcome-measures for clinical trials. Promising results with lonaprisan, curcumin and histone deacetylase 6 inhibitors have been obtained in animal models. SUMMARY Charcot-Marie-Tooth is the most common form of inherited peripheral neuropathy and represents the most prevalent hereditary neuromuscular disorder. The genetic spectrum spans more than 70 genes. Gene discovery has been revolutionized recently by new high-throughput molecular technologies. In addition, the phenotypic diversity has grown tremendously. This is a major challenge for geneticists and neurologists. No effective therapy is available for Charcot-Marie-Tooth. Several large trials with ascorbic acid were negative but research into novel compounds continues.
Collapse
Affiliation(s)
- Jonathan Baets
- aNeurogenetics Group bPeripheral Neuropathy Group, VIB-Department of Molecular Genetics cLaboratory of Neurogenetics, Institute Born-Bunge dDepartment of Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
68
|
Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015; 134:511-38. [PMID: 25758904 PMCID: PMC4424374 DOI: 10.1007/s00439-015-1536-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
Collapse
|
69
|
HMSN-P caused by p.Pro285Leu mutation in TFG is not confined to patients with Far East ancestry. Neurobiol Aging 2015; 36:1606.e1-7. [DOI: 10.1016/j.neurobiolaging.2014.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022]
|
70
|
Takashima H. [Clinical practice of hereditary motor neuropathy (HMN) and hereditary sensory and autonomic neuropathy (HSAN)]. Rinsho Shinkeigaku 2015; 54:957-9. [PMID: 25672680 DOI: 10.5692/clinicalneurol.54.957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inherited neuropathy is a genetically and clinically heterogeneous group of neuropathies, the main category becomes Charcot-Marie-Tooth neuropathy (CMT), also known as hereditary motor and sensory neuropathy (HMSN), distal hereditary motor neuropathy (dHMN), and hereditary sensory autonomic neuropathy (HSAN). At least 80 genes have been associated with CMT, HMN or HSAN, a precise molecular diagnosis is often needed to make a clinical diagnosis accurately, enable genetic counseling of the patient and understanding of their molecular mechanisms. To identify the mutation in each patient, using a high-throughput NGS, we established a diagnostic procedure involving screening of disease causing genes in CMT, HMN or HSAN.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences; Neurology, Kagoshima University Medical and Dental Hospital
| |
Collapse
|
71
|
Mori C, Saito T, Saito T, Fujimura H, Sakoda S. [Two cases of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)]. Rinsho Shinkeigaku 2015; 55:401-405. [PMID: 26103812 DOI: 10.5692/clinicalneurol.cn-000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We, herein, report two independent cases with hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) inherited in an autosomal dominant fashion. Their common clinical features are slowly progressive proximal dominant muscular atrophy, fasciculations and mild to moderate distal sensory disturbance with areflexia. Nerve conduction study revealed an absence of sensory nerve action potentials, in contrast to almost normal compound muscle action potentials. Gene analysis in both patients elucidated heterozygous mutation (c.854C>T, p.Pro285Leu) in the TFG, which is an identical mutation, already described by Ishiura et al. Okinawa and Shiga are two foci of HMSN-P in Japan. Eventually, one patient is from Okinawa and the other is from a mountain village in Shiga prefecture. When we see a patient who has symptoms suggestive of motor neuron disease with sensory neuropathy, HMSN-P should be considered as a differential diagnosis despite the patient's actual resident place.
Collapse
Affiliation(s)
- Chiaki Mori
- Department of Neurology, National Hospital Organization Toneyama National Hospital
| | | | | | | | | |
Collapse
|
72
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
73
|
Hong Y, Jung J, Jung SC, Chung K, Choi BO. Application of variant-calling algorithms for Mendelian disorders: lessons from whole-exome sequencing in Charcot-Marie-Tooth disease. Clin Genet 2014; 86:298-9. [DOI: 10.1111/cge.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Y.B. Hong
- Department of Neurology, School of Medicine; Sungkyunkwan University; Seoul South Korea
| | - J. Jung
- Postomics Lab; Syntekabio, Inc.; Seoul South Korea
| | - S.-C. Jung
- Department of Biochemistry, School of Medicine; Ewha Womans University; Seoul South Korea
| | - K.W. Chung
- Department of Biological Science; Kongju National University; Gongju South Korea
| | - B.-O. Choi
- Department of Neurology, School of Medicine; Sungkyunkwan University; Seoul South Korea
| |
Collapse
|
74
|
Mitsui J, Tsuji S. Genomic aspects of sporadic neurodegenerative diseases. Biochem Biophys Res Commun 2014; 452:221-5. [PMID: 25078619 DOI: 10.1016/j.bbrc.2014.07.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
Sporadic neurodegenerative diseases are complex in nature, that is, they involve multiple genetic and environmental factors that may play roles at the molecular level. In contrast to diseases with Mendelian inheritance, the genomic signatures of common sporadic forms of neurodegenerative diseases largely remain unknown. Over the past decade, genome-wide association studies employing common single-nucleotide polymorphisms have been intensively conducted, in which the theoretical framework is based on the "common disease-common variants" hypothesis. Another paradigm is a sequence-based association study under the "common disease-multiple rare variants" hypothesis. Because current next-generation sequencing technologies enable us to obtain virtually all the variants in human genome irrespective of allele frequencies, it is anticipated that sequence-based association studies will become the mainstream approach. In this review, we present brief overviews of molecular genetic approaches to elucidate the molecular bases of sporadic forms of neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and multiple system atrophy as examples.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, Japan.
| |
Collapse
|
75
|
Peeters K, Chamova T, Jordanova A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. ACTA ACUST UNITED AC 2014; 137:2879-96. [PMID: 24970098 PMCID: PMC4208460 DOI: 10.1093/brain/awu169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peeters et al. review current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies (SMA). They describe the molecular and cellular functions enriched among causative genes, and discuss the challenges facing the post-genomics era of SMA research. Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research.
Collapse
Affiliation(s)
- Kristien Peeters
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Teodora Chamova
- 3 Department of Neurology, Medical University-Sofia, Sofia 1000, Bulgaria
| | - Albena Jordanova
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 4 Department of Medical Chemistry and Biochemistry, Molecular Medicine Centre, Medical University-Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
76
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
77
|
Masuda C, Takeuchi S, J. Bisem N, R. Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem 2014; 47:75-83. [PMID: 25221366 PMCID: PMC4138404 DOI: 10.1267/ahc.14018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
The TRK-fused gene (TFG) was originally identified in chromosome translocation events, creating a pair of oncogenes in some cancers, and was recently demonstrated as the causal gene of hereditary motor and sensory neuropathy with proximal dominant involvement. Recently, we cloned an alternative splicing variant of Tfg from a cDNA library of the rat retina, tentatively naming it retinal Tfg (rTfg). Although the common form of Tfg is ubiquitously expressed in most rat tissues, rTfg expression is localized to the central nervous system. In this study, we produced an antibody against an rTFG-specific amino acid sequence and used it to examine the localization of rTFG-like protein in the rat retina by immunohistochemistry and Western blots. Western blot analysis showed that the antibody detected a single band of 24 kDa in the rat retina. When we examined rTFG recombinant protein, the antibody detected two bands of about 42 kDa and 24 kDa. The results suggest that the 24 kDa rTFG-like protein is a fragment of rTFG. In our immunohistochemical studies of the rat retina, rTFG-like immunoreactivity was observed in all calbindin D-28K-positive horizontal cells and in some syntaxin 1-positive amacrine cells (ACs). In addition, the rTFG-like immunopositive ACs were actually glycine transporter 1-positive glycinergic or glutamate decarboxylase-positive GABAergic ACs. Our findings indicate that this novel 24 kDa rTFG-like protein may play a specific role in retinal inhibitory interneurons.
Collapse
Affiliation(s)
- Chiaki Masuda
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Shigeko Takeuchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Naomi J. Bisem
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Steven R. Vincent
- Division of Neurological Science, Department of Psychiatry, Faculty of Medicine, The University of British Columbia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| |
Collapse
|
78
|
Pradat PF. [SBMA: a rare disease but a classic ALS mimic syndrome]. Presse Med 2014; 43:580-6. [PMID: 24785145 DOI: 10.1016/j.lpm.2014.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder of lower motor neurons characterized by proximal limb muscular atrophy, bulbar involvement, marked fasciculation, hand tremor and gynaecomastia. SBMA is caused by a CAG-repeat expansion in the androgen receptor gene on the X-chromosome. Due to its mode of transmission, only male are symptomatic and clinical features appear progressively in adulthood. Motor signs and symptoms are restricted to lower motor neuron involvement, in contrast with amyotrophic lateral sclerosis (ALS) characterized by the association with upper motor neuron involvement. The diminution of sensory potential at electroneuromyogram is a major criteria discriminating between SBMA and ALS. Diagnostic confirmation is based on genetic testing.
Collapse
Affiliation(s)
- Pierre-François Pradat
- AP-HP, groupe hospitalier Pitié-Salpêtrière, département des maladies du système nerveux, 47, boulevard de l'Hôpital, 75651 Paris cedex, France; Sorbonne universités, UPMC université Paris 06, Inserm, CNRS, laboratoire d'imagerie biomédicale, 75006 Paris, France.
| |
Collapse
|
79
|
van Dis V, Kuijpers M, Haasdijk ED, Teuling E, Oakes SA, Hoogenraad CC, Jaarsma D. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2014; 2:38. [PMID: 24708899 PMCID: PMC4023628 DOI: 10.1186/2051-5960-2-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
Background Fragmentation of stacked cisterns of the Golgi apparatus into dispersed smaller elements is a feature associated with degeneration of neurons in amyotrophic lateral sclerosis (ALS) and some other neurodegenerative disorders. However, the role of Golgi fragmentation in motor neuron degeneration is not well understood. Results Here we use a SOD1-ALS mouse model (low-copy Gurney G93A-SOD1 mouse) to show that motor neurons with Golgi fragmentation are retrogradely labeled by intramuscularly injected CTB (beta subunit of cholera toxin), indicating that Golgi fragmentation precedes neuromuscular denervation and axon retraction. We further show that Golgi fragmentation may occur in the absence of and precede two other pathological markers, i.e. somatodendritic SOD1 inclusions, and the induction of ATF3 expression. In addition, we show that Golgi fragmentation is associated with an altered dendritic organization of the Golgi apparatus, does not depend on intact apoptotic machinery, and is facilitated in transgenic mice with impaired retrograde dynein-dependent transport (BICD2-N mice). A connection to altered dynein-dependent transport also is suggested by reduced expression of endosomal markers in neurons with Golgi fragmentation, which also occurs in neurons with impaired dynein function. Conclusions Together the data indicate that Golgi fragmentation is a very early event in the pathological cascade in ALS that is associated with altered organization of intracellular trafficking.
Collapse
|
80
|
Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CHJ. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn 2014; 14:469-87. [PMID: 24702023 DOI: 10.1586/14737159.2014.904749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomics has revolutionized the study of rare diseases. In this review, we overview the latest technological development, rare disease discoveries, implementation obstacles and bioethical challenges. First, we discuss the technology of genome and exome sequencing, including the different next-generation platforms and exome enrichment technologies. Second, we survey the pioneering centers and discoveries for rare diseases, including few of the research institutions that have contributed to the field, as well as an overview survey of different types of rare diseases that have had new discoveries due to next-generation sequencing. Third, we discuss the obstacles and challenges that allow for clinical implementation, including returning of results, informed consent and privacy. Last, we discuss possible outlook as clinical genomics receives wider adoption, as third-generation sequencing is coming onto the horizon, and some needs in informatics and software to further advance the field.
Collapse
Affiliation(s)
- Krissi Danielsson
- Rare Genomics Institute, 4100 Forest Park Ave, Suite 204, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
81
|
Evidence of TRK-Fused Gene (TFG1) function in the ubiquitin-proteasome system. Neurobiol Dis 2014; 66:83-91. [PMID: 24613659 DOI: 10.1016/j.nbd.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/29/2014] [Accepted: 02/25/2014] [Indexed: 11/23/2022] Open
Abstract
A heterozygous mutation in the TRK-Fused Gene (TFG1) has recently been identified in hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). TFG1 protein is reportedly localized at endoplasmic reticulum (ER) exit sites and modulates ER export, but the mechanism of its action in neurodegeneration remains unclear. To clarify the molecular pathogenesis of HMSN-P, we examined the biochemical and cellular characteristics of wild-type and mutant (P285L) TFG1 in vitro. A coexpression study of human TFG1 and ER substrates, which are degraded by the ubiquitin-proteasome system (UPS), showed that TFG1 is an inhibitory regulator of the UPS. Deletion mutant constructs revealed that the proline/glutamine-rich domain in TFG1 was critical for regulation of the UPS and proper localization at ER exit sites. Furthermore, overexpression of wild-type TFG1 increased ubiquitination of ER-resident proteins and led to ER stress. Mutant (P285L) TFG1, which is in the proline/glutamine-rich domain, enhanced the inhibitory effect on the UPS and the level of ER stress. These data provide new pathological insights into HMSN-P, and we suspect that the pathogenesis is tightly associated with disruption of intracellular protein homeostasis and ER stress.
Collapse
|
82
|
A statistical framework to guide sequencing choices in pedigrees. Am J Hum Genet 2014; 94:257-67. [PMID: 24507777 DOI: 10.1016/j.ajhg.2014.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 11/23/2022] Open
Abstract
The use of large pedigrees is an effective design for identifying rare functional variants affecting heritable traits. Cost-effective studies using sequence data can be achieved via pedigree-based genotype imputation in which some subjects are sequenced and missing genotypes are inferred on the remaining subjects. Because of high cost, it is important to carefully prioritize subjects for sequencing. Here, we introduce a statistical framework that enables systematic comparison among subject-selection choices for sequencing. We introduce a metric "local coverage," which allows the use of inferred inheritance vectors to measure genotype-imputation ability specifically in a region of interest, such as one with prior evidence of linkage. In the absence of linkage information, we can instead use a "genome-wide coverage" metric computed with the pedigree structure. These metrics enable the development of a method that identifies efficient selection choices for sequencing. As implemented in GIGI-Pick, this method also flexibly allows initial manual selection of subjects and optimizes selections within the constraint that only some subjects might be available for sequencing. In the present study, we used simulations to compare GIGI-Pick with PRIMUS, ExomePicks, and common ad hoc methods of selecting subjects. In genotype imputation of both common and rare alleles, GIGI-Pick substantially outperformed all other methods considered and had the added advantage of incorporating prior linkage information. We also used a real pedigree to demonstrate the utility of our approach in identifying causal mutations. Our work enables prioritization of subjects for sequencing to facilitate dissection of the genetic basis of heritable traits.
Collapse
|
83
|
Ishiura H, Takahashi Y, Hayashi T, Saito K, Furuya H, Watanabe M, Murata M, Suzuki M, Sugiura A, Sawai S, Shibuya K, Ueda N, Ichikawa Y, Kanazawa I, Goto J, Tsuji S. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet 2014; 59:163-72. [PMID: 24451228 DOI: 10.1038/jhg.2013.139] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is one of the most genetically heterogeneous neurodegenerative disorders characterized by progressive spasticity and pyramidal weakness of lower limbs. Because >30 causative genes have been identified, screening of multiple genes is required for establishing molecular diagnosis of individual patients with HSP. To elucidate molecular epidemiology of HSP in the Japanese population, we have conducted mutational analyses of 16 causative genes of HSP (L1CAM, PLP1, ATL1, SPAST, CYP7B1, NIPA1, SPG7, KIAA0196, KIF5A, HSPD1, BSCL2, SPG11, SPG20, SPG21, REEP1 and ZFYVE27) using resequencing microarrays, array-based comparative genomic hybridization and Sanger sequencing. The mutational analysis of 129 Japanese patients revealed 49 mutations in 46 patients, 32 of which were novel. Molecular diagnosis was accomplished for 67.3% (33/49) of autosomal dominant HSP patients. Even among sporadic HSP patients, mutations were identified in 11.1% (7/63) of them. The present study elucidated the molecular epidemiology of HSP in the Japanese population and further broadened the mutational and clinical spectra of HSP.
Collapse
Affiliation(s)
- Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Hayashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Hirokazu Furuya
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Fukuoka, Japan
| | - Mitsunori Watanabe
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Miho Murata
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikiya Suzuki
- Department of Neurology, Higashisaitama Hospital, National Hospital Organization, Saitama, Japan
| | - Akira Sugiura
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Setsu Sawai
- 1] Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan [2] Division of Laboratory Medicine and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naohisa Ueda
- 1] Department of Neurology, Chigasaki Municipal Hospital, Kanagawa, Japan [2] Department of Neurology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Yaeko Ichikawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ichiro Kanazawa
- Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Jun Goto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
84
|
Penttilä S, Jokela M, Huovinen S, Saukkonen AM, Toivanen J, Lindberg C, Baumann P, Udd B. Late-onset spinal motor neuronopathy - a common form of dominant SMA. Neuromuscul Disord 2013; 24:259-68. [PMID: 24360573 DOI: 10.1016/j.nmd.2013.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
We previously described two Finnish families with a new autosomal dominant late-onset spinal motor neuronopathy that was mapped to chromosome 22q11.2-q13.2. In the current screening study of 43 lower motor neuron disease patients from Finland and Sweden, we identified 26 new late-onset spinal motor neuronopathy patients sharing the founder haplotype. In addition to the main symptoms and signs: painful cramps, fasciculations, areflexia and slowly evolving muscle weakness, new features such as mild bulbar findings, were identified. The disease is relatively benign in terms of life expectancy and rate of disability progression, and it is therefore noteworthy that three patients were initially misdiagnosed with ALS. Significant recombinants in this new patient cohort restricted the disease locus by 90% to 1.8Mb. Late-onset spinal motor neuronopathy seems not to be very rare, at least not in Finland, with 38 patients identified in a preliminary ascertainment.
Collapse
Affiliation(s)
- Sini Penttilä
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.
| | - Manu Jokela
- Department of Neurology, Turku University Hospital, Turku, Finland.
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Jari Toivanen
- Department of Neurology, Central Hospital of Northern Karelia, Joensuu, Finland
| | - Christopher Lindberg
- Neuromuscular Center, Department of Neurology, Sahlgrenska Academy at University Gothenburg, Gothenburg, Sweden
| | - Peter Baumann
- Central Hospital of Lapland, Department of Neurology, Rovaniemi, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vasa Central Hospital, Vasa, Finland
| |
Collapse
|
85
|
Exome sequencing reveals HINT1 mutations as a cause of distal hereditary motor neuropathy. Eur J Hum Genet 2013; 22:847-50. [PMID: 24105373 DOI: 10.1038/ejhg.2013.231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022] Open
Abstract
Distal hereditary motor neuropathies (dHMNs) are a heterogenous group of genetic disorders with length-dependent degeneration of motor axons. Obtaining a genetic diagnosis in patients with dHMN remains challenging. We performed exome sequencing in a diagnostic setting in 12 patients with a clinical diagnosis of dHMN. Potential disease-causing variants in genes associated with dHMN and other forms of inherited neuropathies/motor neuron diseases were validated using Sequenom. The coverage in the genes studied was >95% with an average coverage of >50 times. In none of the patients a mutations was found in genes previously reported to be associated with dHMN. However, in 2/12 patients a recessive mutation in histidine triad nucleotide binding protein 1 (HINT1, recently discovered as a cause of axonal neuropathy with neuromyotonia) was identified. Our results demonstrate the diagnostic value of exome sequencing for patients with inherited neuropathies. The phenotypic spectrum of recessive mutations in HINT1 includes dHMN. HINT1 should be added to the list of genes to check for in dHMN.
Collapse
|
86
|
Handel AE, Disanto G, Ramagopalan SV. Next-generation sequencing in understanding complex neurological disease. Expert Rev Neurother 2013; 13:215-27. [PMID: 23368808 DOI: 10.1586/ern.12.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing techniques have made vast quantities of data on human genomes and transcriptomes available to researchers. Huge progress has been made towards understanding the basis of many Mendelian neurological conditions, but progress has been considerably slower in complex neurological diseases (multiple sclerosis, migraine, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and so on). The authors review current next-generation sequencing methodologies and present selected studies illustrating how these have been used to cast light on the genetic etiology of complex neurological diseases with specific focus on multiple sclerosis. The authors highlight particular pitfalls in next-generation sequencing experiments and speculate on both clinical and research applications of these sequencing platforms for complex neurological disorders in the future.
Collapse
Affiliation(s)
- Adam E Handel
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | | | | |
Collapse
|
87
|
Lee NR, Shin HB, Kim HI, Choi MS, Inn KS. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein. Biochem Biophys Res Commun 2013; 437:168-72. [PMID: 23810392 DOI: 10.1016/j.bbrc.2013.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.
Collapse
Affiliation(s)
- Na-Rae Lee
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
88
|
Campellone JV. Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P). J Clin Neuromuscul Dis 2013; 14:180-183. [PMID: 23703013 DOI: 10.1097/cnd.0b013e318286165a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a rare disorder inherited in an autosomal dominant fashion. Patients present with slowly progressive proximal-predominant weakness, painful muscle cramps, fasciculations, large-fiber sensory loss, and areflexia. Electrodiagnostic (EDX) studies typically reveal abnormalities consistent with a sensorimotor neuronopathy. A patient with HMSN-P underwent EDX studies, revealing ongoing and chronic neurogenic denervation, motor unit instability, and neuromyotonic discharges, further defining the spectrum of EDX findings in HMSN-P. The clinical, pathological, and genetic features are also reviewed. The appearance of HMSN-P in the United States and elsewhere calls for clinicians in nonendemic regions to be familiar with this rare disorder, which has typically been geographically confined.
Collapse
Affiliation(s)
- Joseph V Campellone
- Department of Neurology, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
89
|
Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci U S A 2013; 110:5091-6. [PMID: 23479643 DOI: 10.1073/pnas.1217197110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.
Collapse
|
90
|
Yoshida M. [Neuropathology of proximal-dominant hereditary motor and sensory neuropathy (HMSN-P)]. Rinsho Shinkeigaku 2013; 23:1200-1202. [PMID: 24291929 DOI: 10.5692/clinicalneurol.53.1200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuropathology of a case of Shiga pedigree with proximal-dominant hereditary motor and sensory neuropathy (HMSN-P) is reported. In the spinal cord, marked atrophy of anterior and posterior roots was found. Histologically, severe neuronal loss and gliosis were evident in the spinal anterior horns. Bunina bodies and hyaline inclusions were not seen. Neuronal loss and gliosis were mild in the hypoglossal and facial nuclei. Myelin pallor was evident in the posterior and lateral columns of the spinal cord. The posterior column, corticospinal tract and spinocerebellar tract showed loss of myelinated fibres and gliosis. In Clarke's nucleus, neuronal loss and gliosis were found. Dorsal root ganglion showed mild neuronal loss with a few Nageotte's nodules. In the precentral gyrus, mild loss of Betz cells and gliosis together with neurophagia were observed. In the iliopsoas muscle, islands of isolated muscle fibres can be seen against a background of fatty tissue. The sural nerve showed a markedly decreased number of large and small myelinated fibres without onion-bulb formation. Small infarctions were seen in the subcortical white matter, the basal ganglia, the brainstem and the cerebellum. Immunohistochemistry revealed ubiquitin-positive, TAR DNA-binding 43 kDa-positive, TFG-positive inclusions in the remaining LMNs.
Collapse
Affiliation(s)
- Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University
| |
Collapse
|
91
|
Ishiura H, Tsuji S. [Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a mutation in TFG]. Rinsho Shinkeigaku 2013; 23:1203-1205. [PMID: 24291930 DOI: 10.5692/clinicalneurol.53.1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.
Collapse
|