51
|
Spannl S, Kumichel A, Hebbar S, Kapp K, Gonzalez-Gaitan M, Winkler S, Blawid R, Jessberger G, Knust E. The Crumbs_C isoform of Drosophila shows tissue- and stage-specific expression and prevents light-dependent retinal degeneration. Biol Open 2017; 6:165-175. [PMID: 28202468 PMCID: PMC5312091 DOI: 10.1242/bio.020040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila Crumbs (Crb) is a key regulator of epithelial polarity and fulfils a plethora of other functions, such as growth regulation, morphogenesis of photoreceptor cells and prevention of retinal degeneration. This raises the question how a single gene regulates such diverse functions, which in mammals are controlled by three different paralogs. Here, we show that in Drosophila different Crb protein isoforms are differentially expressed as a result of alternative splicing. All isoforms are transmembrane proteins that differ by just one EGF-like repeat in their extracellular portion. Unlike Crb_A, which is expressed in most embryonic epithelia from early stages onward, Crb_C is expressed later and only in a subset of embryonic epithelia. Flies specifically lacking Crb_C are homozygous viable and fertile. Strikingly, these flies undergo light-dependent photoreceptor degeneration despite the fact that the other isoforms are expressed and properly localised at the stalk membrane. This allele now provides an ideal possibility to further unravel the molecular mechanisms by which Drosophila crb protects photoreceptor cells from the detrimental consequences of light-induced cell stress. Summary: Loss of Crb_C, one protein isoform encoded by Drosophila crumbs, results in light-dependent retinal degeneration, but does not affect any of the other crumbs-specific functions.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alexandra Kumichel
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Katja Kapp
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Sciences II, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4 1211, Switzerland
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Rosana Blawid
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Gregor Jessberger
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
52
|
Study of concentration of amniotic fluid alpha-fetal protein in thalassemia fetus. ASIAN PAC J TROP MED 2017; 10:201-203. [DOI: 10.1016/j.apjtm.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/22/2022] Open
|
53
|
Crumbs2 promotes cell ingression during the epithelial-to-mesenchymal transition at gastrulation. Nat Cell Biol 2016; 18:1281-1291. [PMID: 27870829 DOI: 10.1038/ncb3442] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Abstract
During gastrulation of the mouse embryo, individual cells ingress in an apparently stochastic pattern during the epithelial-to-mesenchymal transition (EMT). Here we define a critical role of the apical protein Crumbs2 (CRB2) in the gastrulation EMT. Static and live imaging show that ingressing cells in Crumbs2 mutant embryos become trapped at the primitive streak, where they continue to express the epiblast transcription factor SOX2 and retain thin E-cadherin-containing connections to the epiblast surface that trap them at the streak. CRB2 is distributed in a complex anisotropic pattern on apical cell edges, and the level of CRB2 on a cell edge is inversely correlated with the level of myosin IIB. The data suggest that the distributions of CRB2 and myosin IIB define which cells will ingress, and we propose that cells with high apical CRB2 are basally extruded from the epiblast by neighbouring cells with high levels of apical myosin.
Collapse
|
54
|
Abstract
The introduction of new technologies has dramatically changed the current practice of prenatal screening and testing for genetic abnormalities in the fetus. Expanded carrier screening panels and non-invasive cell-free fetal DNA-based screening for aneuploidy and single-gene disorders, and more recently for subchromosomal abnormalities, have been introduced into prenatal care. More recently introduced technologies such as chromosomal microarray analysis and whole-exome sequencing can diagnose more genetic conditions on samples obtained through amniocentesis or chorionic villus sampling, including many disorders that cannot be screened for non-invasively. All of these options have benefits and limitations, and genetic counseling has become increasingly complex for providers who are responsible for guiding patients in their decisions about screening and testing before and during pregnancy.
Collapse
Affiliation(s)
- Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
55
|
Slavotinek AM. The Family of Crumbs Genes and Human Disease. Mol Syndromol 2016; 7:274-281. [PMID: 27867342 DOI: 10.1159/000448109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
The family of vertebrate Crumbs proteins, homologous to Drosophila Crumbs (Crb), share large extracellular domains with epidermal growth factor-like repeats and laminin-globular domains, a single transmembrane domain, and a short intracellular C-terminus containing a single membrane proximal 4.1/ezrin/radixin/moesin-binding domain and PSD-95/Discs large/ZO-1-binding motifs. There are 3 Crb genes in humans - Crumbs homolog-1 (CRB1), Crumbs homolog-2 (CRB2), and Crumbs homolog-3 (CRB3). Bilallelic loss-of-function mutations in CRB1 cause visual impairment, with Leber's congenital amaurosis and retinitis pigmentosa, whereas CRB2 mutations are associated with raised maternal serum and amniotic fluid alpha feto-protein levels, ventriculomegaly/hydrocephalus, and renal disease, ranging from focal segmental glomerulosclerosis to congenital Finnish nephrosis. CRB3 has not yet been associated with human disease. In this review, we summarize the phenotypic findings associated with deleterious sequence variants in CRB1 and CRB2. We discuss the mutational spectrum, animal models of loss of function for both genes and speculate on the likely mechanisms of disease.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, UCSF School of Medicine, University of California San Francisco, San Francisco, Calif., USA
| |
Collapse
|
56
|
Djuric I, Siebrasse JP, Schulze U, Granado D, Schlüter MA, Kubitscheck U, Pavenstädt H, Weide T. The C-terminal domain controls the mobility of Crumbs 3 isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1208-17. [DOI: 10.1016/j.bbamcr.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/12/2023]
|
57
|
Jaron R, Rosenfeld N, Zahdeh F, Carmi S, Beni-Adani L, Doviner V, Picard E, Segel R, Zeligson S, Carmel L, Renbaum P, Levy-Lahad E. Expanding the phenotype of CRB2 mutations - A new ciliopathy syndrome? Clin Genet 2016; 90:540-544. [PMID: 26925547 DOI: 10.1111/cge.12764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Recessive CRB2 mutations were recently reported to cause both steroid resistant nephrotic syndrome and prenatal onset ventriculomegaly with kidney disease. We report two Ashkenazi Jewish siblings clinically diagnosed with ciliopathy. Both presented with severe congenital hydrocephalus and mild urinary tract anomalies. One affected sibling also has lung hypoplasia and heart defects. Exome sequencing and further CRB2 analysis revealed that both siblings are compound heterozygotes for CRB2 mutations p.N800K and p.Gly1036Alafs*43, and heterozygous for a deleterious splice variant in the ciliopathy gene TTCB21. CRB2 is a polarity protein which plays a role in ciliogenesis and ciliary function. Biallelic CRB2 mutations in animal models result in phenotypes consistent with ciliopathy. This report expands the phenotype of CRB2 mutations to include lung hypoplasia and uretero-pelvic renal anomalies, and confirms cardiac malformation as a feature. We suggest that CRB2-associated disease is a new ciliopathy syndrome with possible digenic/triallelic inheritance, as observed in other ciliopathies. Clinically, CRB2 should be assessed when ciliopathy is suspected, especially in Ashkenazi Jews, where we found that p.N800K carrier frequency is 1 of 64. Patients harboring CRB2 mutations should be tested for the complete range of ciliopathy manifestations.
Collapse
Affiliation(s)
- R Jaron
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - N Rosenfeld
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| | - F Zahdeh
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science Jerusalem, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.,Hereditary Research Lab, Life Sciences Department, Bethlehem University, Bethlehem, Israel
| | - S Carmi
- Braun School of Public Health, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L Beni-Adani
- Pediatric Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel.,Pediatric Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - V Doviner
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Picard
- Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel.,Pediatric Pulmonary Institute, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - R Segel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| | - S Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - L Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science Jerusalem, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - P Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| |
Collapse
|
58
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
59
|
Expansion of phenotype and genotypic data in CRB2-related syndrome. Eur J Hum Genet 2016; 24:1436-44. [PMID: 27004616 DOI: 10.1038/ejhg.2016.24] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.
Collapse
|
60
|
Abstract
Prenatal diagnostic testing is available for a growing number of disorders. The goal of prenatal diagnosis was initially focused on the identification of Down syndrome in women aged 35 years and older, but invasive prenatal genetic techniques can now detect a far broader array of conditions. The risks of invasive procedures have also decreased over time. Advances in genomic medicine allow testing for smaller but significant chromosomal abnormalities known as copy number variants, in addition to major aneuploidies and structural rearrangements. Molecular DNA techniques can detect many single-gene conditions. In the future, it is likely that whole-exome and whole-genome sequencing will be applied to prenatal genetic testing to allow identification of yet more genetic disorders. With advances in technology, the indications for testing have likewise evolved far beyond recommendations based solely on maternal age to include a more patient-centered view of the goals of prenatal testing.
Collapse
Affiliation(s)
- Mary E Norton
- University of California, San Francisco, San Francisco, CA.
| | | |
Collapse
|
61
|
Dudok JJ, Murtaza M, Henrique Alves C, Rashbass P, Wijnholds J. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon. Neurosci Res 2016; 108:12-23. [PMID: 26802325 DOI: 10.1016/j.neures.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities.
Collapse
Affiliation(s)
- Jacobus J Dudok
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Mariyam Murtaza
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Henrique Alves
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Pen Rashbass
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
62
|
Clinical application of whole-exome sequencing across clinical indications. Genet Med 2015; 18:696-704. [DOI: 10.1038/gim.2015.148] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022] Open
|
63
|
Ramkumar N, Harvey BM, Lee JD, Alcorn HL, Silva-Gagliardi NF, McGlade CJ, Bestor TH, Wijnholds J, Haltiwanger RS, Anderson KV. Protein O-Glucosyltransferase 1 (POGLUT1) Promotes Mouse Gastrulation through Modification of the Apical Polarity Protein CRUMBS2. PLoS Genet 2015; 11:e1005551. [PMID: 26496195 PMCID: PMC4619674 DOI: 10.1371/journal.pgen.1005551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.
Collapse
Affiliation(s)
- Nitya Ramkumar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Beth M. Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jeffrey D. Lee
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Heather L. Alcorn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nancy F. Silva-Gagliardi
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Center and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C. Jane McGlade
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Center and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy H. Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
64
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|