51
|
Bradshaw G, Sutherland HG, Haupt LM, Griffiths LR. Dysregulated MicroRNA Expression Profiles and Potential Cellular, Circulating and Polymorphic Biomarkers in Non-Hodgkin Lymphoma. Genes (Basel) 2016; 7:genes7120130. [PMID: 27999330 PMCID: PMC5192506 DOI: 10.3390/genes7120130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
A large number of studies have focused on identifying molecular biomarkers, including microRNAs (miRNAs) to aid in the diagnosis and prognosis of the most common subtypes of non-Hodgkin lymphoma (NHL), Diffuse Large B-cell Lymphoma and Follicular Lymphoma. NHL is difficult to diagnose and treat with many cases becoming resistant to chemotherapy, hence the need to identify improved biomarkers to aid in both diagnosis and treatment modalities. This review summarises more recent research on the dysregulated miRNA expression profiles found in NHL, as well as the regulatory role and biomarker potential of cellular and circulating miRNAs found in tissue and serum, respectively. In addition, the emerging field of research focusing on miRNA single nucleotide polymorphisms (miRSNPs) in genes of the miRNA biogenesis pathway, in miRNA genes themselves, and in their target sites may provide new insights on gene expression changes in these genes. These miRSNPs may impact miRNA networks and have been shown to play a role in a host of different cancer types including haematological malignancies. With respect to NHL, a number of SNPs in miRNA-binding sites in target genes have been shown to be associated with overall survival.
Collapse
Affiliation(s)
- Gabrielle Bradshaw
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
52
|
Direct quantitative detection for cell-free miR-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016; 7:3255-66. [PMID: 26657502 PMCID: PMC4823104 DOI: 10.18632/oncotarget.6487] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
High recurrence rates of non-muscle invasive bladder cancer (NMIBC) in patients require lifelong testing and monitoring. The aim of this study is to develop a simplified RT-qPCR method (RT-qPCR-D) which directly quantifies cell-free miR-155 in urine without RNA extraction, and assess it as a potential tool in NMIBC detection. A pilot study including 60 urine samples was used to investigate the feasibility of RT-qPCR-D in detecting cell-free miR-155. Then, miR-155 levels were quantified in a large independent cohort of urine from 162 NIMBC patients, 76 cystitis patients, and 86 healthy donors using the RT-qPCR-D method. Changes of cell-free miR-155 before and after operation were also analyzed in 32 NIMBC patients. In pilot study, we found a significant linear association between RT-qPCR and RT-qPCR-D in urinary miR-155 detection. Both methods showed cell-free miR-155 were significantly increased in NMIBC patients, and could reflect their expression in tissues. Then, the increased expression of cell-free miR-155 was successfully validated in 162 NIMBC patients when compared with cystitis patients and healthy donors. Moreover, it distinguished NMIBC patients from others with 80.2% sensitivity and 84.6% specificity, which was superior to urine cytology. Cell-free miR-155 correlated with NMIBC stage and grade, and was an independent factor for predicting recurrence and progression to muscle invasion. In addition, cell-free miR-155 was significantly decreased after NMIBC patients underwent transurethral bladder resection. In conclusion, detection of cell-free miR-155 in urine using RT-qPCR-D is a simple and noninvasive approach which may be used for NMIBC diagnosis and prognosis prediction.
Collapse
|
53
|
Psatha K, Kollipara L, Voutyraki C, Divanach P, Sickmann A, Rassidakis GZ, Drakos E, Aivaliotis M. Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1047:2-14. [PMID: 27979587 DOI: 10.1016/j.jchromb.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based quantitative proteomics specifically applied to comprehend the pathogenesis of lymphoma has incremental value in deciphering the heterogeneity in complex deregulated molecular mechanisms/pathways of the lymphoma entities, implementing the current diagnostic and therapeutic strategies. Essential global, targeted and functional differential proteomics analyses although still evolving, have been successfully implemented to shed light on lymphoma pathogenesis to discover and explore the role of potential lymphoma biomarkers and drug targets. This review aims to outline and appraise the present status of MS-based quantitative proteomic approaches in lymphoma research, introducing the current state-of-the-art MS-based proteomic technologies, the opportunities they offer in biological discovery in human lymphomas and the related limitation issues arising from sample preparation to data evaluation. It is a synopsis containing information obtained from recent research articles, reviews and public proteomics repositories (PRIDE). We hope that this review article will aid, assimilate and assess all the information aiming to accelerate the development and validation of diagnostic, prognostic or therapeutic targets for an improved and empowered clinical proteomics application in lymphomas in the nearby future.
Collapse
Affiliation(s)
- Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece; School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathology, School of Medicine, University of Crete, Heraklion, Greece
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | - Peter Divanach
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - George Z Rassidakis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathology and Cytology, Karolinska University Hospital and Karolinska Institute, Radiumhemmet, Stockholm, SE-17176, Sweden
| | - Elias Drakos
- Department of Pathology, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
54
|
Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, Liu L, Dong X, Zhang S, Wu G. MicroRNA-574-5p promotes metastasis of non-small cell lung cancer by targeting PTPRU. Sci Rep 2016; 6:35714. [PMID: 27761023 PMCID: PMC5071770 DOI: 10.1038/srep35714] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) has been associated with malignant behavior in a variety of cancers. Our previous study demonstrated that miRNA expression profiles are predictors for patients with advanced non-small cell lung cancer (NSCLC). We also showed that miRNAs are involved in small-cell lung cancer metastasis. Here, we used qRT-PCR to re-analyze our previous microarray results using serum samples from 75 patients with NSCLC. Surprisingly, we found that miR-574-5p and miR-874 were overexpressed in patients with metastatic advanced NSCLC but not in patients with non-metastatic advanced NSCLC. Additionally, miR-574-5p expression was correlated between matched serum and tissue samples from 68 patients. However, these 2 miRNAs are not prognostic factors for NSCLC. Transwell and wound-healing assays showed that miR-574-5p promotes the migration and invasion of NSCLC cells. Furthermore, miR-574-5p enhanced the tyrosine phosphorylation of β-catenin by repressing PTPRU expression in vitro. In conclusion, this study explored the expression of miR-574-5p in clinical samples and its molecular mechanisms in the metastasis of advanced NSCLC.
Collapse
Affiliation(s)
- Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing Guo
- Department of Oncology of the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shun Jiang
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| |
Collapse
|
55
|
Berlanga P, Muñoz L, Piqueras M, Sirerol JA, Sánchez-Izquierdo MD, Hervás D, Hernández M, Llavador M, Machado I, Llombart-Bosch A, Cañete A, Castel V, Font de Mora J. miR-200c and phospho-AKT as prognostic factors and mediators of osteosarcoma progression and lung metastasis. Mol Oncol 2016; 10:1043-53. [PMID: 27155790 PMCID: PMC5423177 DOI: 10.1016/j.molonc.2016.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/04/2023] Open
Abstract
Lung metastasis is the major cause of death in osteosarcoma patients. However, molecular mechanisms underlying this metastasis remain poorly understood. To identify key molecules related with pulmonary metastasis of pediatric osteosarcomas, we analyzed high-throughput miRNA expression in a cohort of 11 primary tumors and 15 lung metastases. Results were further validated with an independent cohort of 10 primary tumors and 6 metastases. In parallel, we performed immunohistochemical analysis of activated signaling pathways in 36 primary osteosarcomas. Only phospho-AKT associated with lower overall survival in primary tumors, supporting its role in osteosarcoma progression. CTNNB1 expression also associated with lower overall survival but was not strong enough to be considered an independent variable. Interestingly, miR-200c was overexpressed in lung metastases, implicating an inhibitory feed-back loop to PI3K-AKT. Moreover, transfection of miR200c-mimic in U2-OS cells reduced phospho-AKT levels but increased cellular migration and proliferation. Notably, miR-200c expression strongly correlated with miR-141 and with the osteogenic inhibitor miR-375, all implicated in epithelial to mesenchymal transition. These findings contrast epithelial tumors where reduced miR-200c expression promotes metastasis. Indeed, we noted that osteosarcoma cells in the lung also expressed the epithelial marker CDH1, revealing a change in their mesenchymal phenotype. We propose that miR-200c upregulation occurs late in osteosarcoma progression to provide cells with an epithelial phenotype that facilitates their integration in the metastatic lung niche. Thus, our findings identify phospho-AKT in the primary tumor and miR-200c later during tumor progression as prognostic molecules and potential therapeutic targets to prevent progression and metastasis of pediatric osteosarcomas.
Collapse
Affiliation(s)
- Pablo Berlanga
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Lisandra Muñoz
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | - Marta Piqueras
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | - J Antoni Sirerol
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain
| | | | - David Hervás
- Biostatistics Unit, Instituto de Investigación Sanitaria La Fe, Spain
| | | | | | - Isidro Machado
- Department of Pathology, Instituto Valenciano de Oncología, Spain
| | | | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Spain; Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain
| | - Jaime Font de Mora
- Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, Spain; Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Spain.
| |
Collapse
|
56
|
Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol. PLoS One 2016; 11:e0159459. [PMID: 27463381 PMCID: PMC4962986 DOI: 10.1371/journal.pone.0159459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023] Open
Abstract
Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin.
Collapse
|
57
|
Pan Y, Guo Y, Luo Y, Li H, Xu Y. MicroRNA expression profiling of Chinese follicular lymphoma by microarray: A preliminary study. Int Immunopharmacol 2016; 39:41-47. [PMID: 27409728 DOI: 10.1016/j.intimp.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been widely regarded as crucial regulators in various biological processes involved in carcinogenesis. However, the comprehensive miRNA profiles of Chinese follicular lymphoma (FL) remains completely unknown. METHODS The Exiqon miRCURY LNA™ microRNA Array (v.18.0) was used to detect the miRNA expression profiles of three Chinese FL samples, and compared to three reactive lymphatic nodes (RLN). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the selected miRNAs in different series. Three databases (miRAnda, miRBase and TargetScan) were used to predict the putative target genes. Bioinformatic analysis (gene ontology analysis and pathway analysis) was performed for further evaluation. RESULTS The microarray assay demonstrated that 1643 miRNAs were expressed; in which 103 miRNAs were upregulated and 68 miRNAs were downregulated, according to P-value (<0.05) and fold change (FC>2-fold). Furthermore, qRT-PCR was used to confirm that miR-17-5p, miR-20a-5p and miR-19a-3p were upregulated, and miR-3615 was downregulated (P<0.05). Bioinformatic analysis (gene ontology analysis and pathway analysis) was used for further evaluation. Pathway analysis indicated that 25 pathways corresponded to differentially expressed miRNAs (P-value cut-off is 0.05). Furthermore, miR-17-5p, miR-20a-5p and miR-19a-3p were validated by qRT-PCR in an independent series including five FL3a and five RLN cases. Data analysis revealed that the changing trend of miR-19a-3p and miR-17-5p expression in the independent series was basically identical with that of the microarray data. CONCLUSIONS Our results are the first to reveal the miRNA expression profiling of Chinese FL and three upregulated miRNAs. Furthermore, the expression of miR-19a-3p and miR-17-5p were found to be significantly upregulated in FL3a. Further study needs to be urgently performed to reveal its potential role in the pathogenesis of FL in the near future.
Collapse
Affiliation(s)
- Yi Pan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Yan Guo
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ye Luo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hua Li
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yong Xu
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
58
|
Hernández-Sánchez M, Rodríguez-Vicente AE, Hernández JÁ, Lumbreras E, Sarasquete ME, Martín AÁ, Benito R, Vicente-Gutiérrez C, Robledo C, Heras NDL, Rodríguez JN, Alcoceba M, Coca AGD, Aguilar C, González M, Hernández-Rivas JM. MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion. Leuk Res 2016; 46:30-6. [DOI: 10.1016/j.leukres.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023]
|
59
|
Go H, Jang JY, Kim PJ, Kim YG, Nam SJ, Paik JH, Kim TM, Heo DS, Kim CW, Jeon YK. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:15035-49. [PMID: 25909227 PMCID: PMC4558134 DOI: 10.18632/oncotarget.3729] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The prognostic implications of miR-21, miR-17-92 and miR-155 were evaluated in diffuse large B-cell lymphoma (DLBCL) patients, and novel mechanism by which miR-21 contributes to the oncogenesis of DLBCL by regulating FOXO1 and PI3K/AKT/mTOR pathway was investigated. The expressions of miR-21, miR-17-92 and miR-155 measured by quantitative reverse-transcription-PCR were significantly up-regulated in DLBCL tissues (n=200) compared to control tonsils (P=0.012, P=0.001 and P<0.0001). Overexpression of miR-21 and miR-17-92 was significantly associated with shorter progression-free survival (P=0.003 and P=0.014) and overall survival (P=0.004 and P=0.012). High miR-21 was an independent prognostic factor in DLBCL patients treated with rituximab-combined chemotherapy. MiR-21 level was inversely correlated with the levels of FOXO1 and PTEN in DLBCL cell lines. Reporter-gene assay showed that miR-21 directly targeted and suppressed the FOXO1 expression, and subsequently inhibited Bim transcription in DLBCL cells. MiR-21 also down-regulated PTEN expression and consequently activated the PI3K/AKT/mTOR pathway, which further decreased FOXO1 expression. Moreover, miR-21 inhibitor suppressed the expression and activity of MDR1, thereby sensitizing DLBCL cells to doxorubicin. These data demonstrated that miR-21 plays an important oncogenic role in DLBCL by modulating the PI3K/AKT/mTOR/FOXO1 pathway at multiple levels resulting in strong prognostic implication. Therefore, targeting miR-21 may have therapeutic relevance in DLBCL.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Young Jang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University School of Denistry, Seoul, South Korea
| | - Young-Goo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Soo Jeong Nam
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
60
|
Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr Genomics 2016; 16:349-58. [PMID: 27047255 PMCID: PMC4763973 DOI: 10.2174/1389202916666150707160147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
Although it is now evident that microRNAs (miRNAs) play a critical regulatory role in many, if not all, pathological and physiological processes, remarkably they have only formally been recognized for less than fifteen years. These endogenously produced short non-coding RNAs have created a new paradigm of gene control and have utility as both novel biomarkers of cancer and as potential therapeutics. In this review we consider the role of miRNAs in lymphoid biology both under physiological (i.e. lymphopoiesis) and malignant (i.e. lymphomagenesis) conditions. In addition to the functional significance of aberrant miRNA expression in lymphomas we discuss their use as novel biomarkers, both as a in situ tumour biomarker and as a non-invasive surrogate for the tumour by testing miRNAs in the blood of patients. Finally we consider the use of these molecules as potential therapeutic agents for lymphoma (and other cancer) patients and discuss some of the hurdles yet to be overcome in order to translate this potential into clinical practice
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain; ; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK;; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
61
|
Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization. Int J Mol Sci 2016; 17:396. [PMID: 26999121 PMCID: PMC4813251 DOI: 10.3390/ijms17030396] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo.
Collapse
Affiliation(s)
- Graham C Gilchrist
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Allison Tscherner
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Thomas Nalpathamkalam
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Daniele Merico
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Jonathan LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
62
|
Osaka E, Kelly AD, Spentzos D, Choy E, Yang X, Shen JK, Yang P, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2016; 6:9125-39. [PMID: 25823817 PMCID: PMC4496207 DOI: 10.18632/oncotarget.3273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Andrew D Kelly
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
63
|
Meruvu S, Zhang J, Choudhury M. Mono-(2-ethylhexyl) Phthalate Increases Oxidative Stress Responsive miRNAs in First Trimester Placental Cell Line HTR8/SVneo. Chem Res Toxicol 2016; 29:430-5. [PMID: 26871967 DOI: 10.1021/acs.chemrestox.6b00038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phthalates, an endocrine disruptor group, cause oxidative stress (OS) in the placenta. However, no studies have reported OS-related miRNAs induced by phthalates. In the present study, we demonstrate that mono-(2-ethylhexyl) phthalate (MEHP) induces OS responsive miR-17-5p, miR-155-5p, and miR-126-3p in HTR8/SVneo in a dose- and time-dependent manner. Furthermore, MEHP altered the expression of phosphoinositide-3-kinase regulatory subunit 1α, phosphatase and tensin homolog, CDKN2A interacting protein, superoxide dismutase 2, and 3β-hydroxysterol-D24 reductase, which are involved in OS and predicted to be regulated by these miRNAs. Our results suggest that placental exposure to MEHP may result in aberrant miRNA expression leading to pregnancy complications.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center , Kingsville, Texas 78363, United States
| | - Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center , Kingsville, Texas 78363, United States
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center , Kingsville, Texas 78363, United States
| |
Collapse
|
64
|
Hedyotis diffusa plus Scutellaria barbata Induce Bladder Cancer Cell Apoptosis by Inhibiting Akt Signaling Pathway through Downregulating miR-155 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9174903. [PMID: 26989427 PMCID: PMC4773537 DOI: 10.1155/2016/9174903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Traditional Chinese medicine is increasingly used to treat cancer. Our clinical experiences identify Hedyotis diffusa plus Scutellaria barbata as the most common herb-pair (couplet medicinal) used for the core treatment of bladder cancer. This study aims to investigate the antitumor effect of the herb-pair in bladder cancer cells. The results show that Hedyotis diffusa plus Scutellaria barbata inhibited bladder cancer cell growth and clone formation in a dose-dependent and time-dependent manner. It also induced cell apoptosis through decreasing Akt activation and reducing the expression of antiapoptotic proteins Bcl-2 and Mcl-1. Further experiments showed that miR-155 was reduced by the herb-pair and miRNA-155 inhibitor induced cell apoptosis and suppressed Akt activation. Overexpression of miR-155 reversed herb-pair induced cell apoptosis through activating Akt pathway in both bladder cancer cell lines. The findings reveal that Hedyotis diffusa plus Scutellaria barbata reduce Akt activation through reducing miR-155 expression, resulting in cell apoptosis. It demonstrated the potential mechanism of Hedyotis diffusa plus Scutellaria barbata for the core treatment of bladder cancer.
Collapse
|
65
|
Ni H, Tong R, Zou L, Song G, Cho WC. MicroRNAs in diffuse large B-cell lymphoma. Oncol Lett 2015; 11:1271-1280. [PMID: 26893730 DOI: 10.3892/ol.2015.4064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2015] [Indexed: 12/19/2022] Open
Abstract
The aberrant expression of microRNAs (miRs) has a significant impact on the biological characteristics of lymphocytes, and is important in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). It has been demonstrated, using miR profiling and detecting distinct miR signatures, that certain miRs may accurately distinguish different subtypes and prognostic classifications of DLBCL, as well as distinguish DLBCL from other more indolent lymphomas, including follicular lymphoma. miRs are excellent biomarkers for cancer diagnosis and prognosis. In DLBCL, specific miR expression profiles in the tissues of patients are associated with prognosis and clinical outcome. Over the past decade, there has been substantial investigation concerning the pathogenetic, diagnostic and prognostic roles of miRs in DLBCL. The aim of the present review is to describe the aberrant expression of miRs in DLBCL, and the functions, potential clinical use and possible therapeutic targets of miRs in this disease.
Collapse
Affiliation(s)
- Huiyun Ni
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rong Tong
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Linqing Zou
- Department of Anatomy, Nantong University College of Medicine, Nantong, Jiangsu 226001, P.R. China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong 999077, P.R. China
| |
Collapse
|
66
|
Abstract
A multifunctional microRNA, miR-155, has been recently recognized as an important modulator of numerous biological processes. In our previous in vitro studies, miR-155 was identified as a potential regulator of the endothelial morphogenesis. The present study demonstrates that in vivo inhibition of miR-155 supports cerebral vasculature after experimental stroke. Intravenous injections of a specific miR-155 inhibitor were initiated at 48 h after mouse distal middle cerebral artery occlusion (dMCAO). Microvasculature in peri-infarct area, infarct size, and animal functional recovery were assessed at 1, 2, and 3 weeks after dMCAO. Using in vivo two-photon microscopy, we detected improved blood flow and microvascular integrity in the peri-infarct area of miR-155 inhibitor-injected mice. Electron microscopy revealed that, in contrast to the control group, these animals demonstrated well preserved capillary tight junctions (TJs). Western blot analysis data indicate that improved TJ integrity in the inhibitor-injected animals could be associated with stabilization of the TJ protein ZO-1 and mediated by the miR-155 target protein Rheb. MRI analysis showed significant (34%) reduction of infarct size in miR-155 inhibitor-injected animals at 21 d after dMCAO. Reduced brain injury was confirmed by electron microscopy demonstrating decreased neuronal damage in the peri-infarct area of stroke. Preservation of brain tissue was reflected in efficient functional recovery of inhibitor-injected animals. Based on our findings, we propose that in vivo miR-155 inhibition after ischemia supports brain microvasculature, reduces brain tissue damage, and improves the animal functional recovery. Significance statement: In the present study, we investigated an effect of the in vivo inhibition of a microRNA, miR-155, on brain recovery after experimental cerebral ischemia. To our knowledge, this is the first report describing the efficiency of intravenous anti-miRNA injections in a mouse model of ischemic stroke. The role of miRNAs in poststroke revascularization has been unexplored and in vivo regulation of miRNAs during the subacute phase of stroke has not yet been proposed. Our investigation introduces a new and unexplored approach to cerebral regeneration: regulation of poststroke angiogenesis and recovery through direct modulation of specific miRNA activity. We expect that our findings will lead to the development of novel strategies for regulating neurorestorative processes in the postischemic brain.
Collapse
|
67
|
Zhang Y, Wei Z, Li J, Liu P. Molecular pathogenesis of lymphomas of mucosa-associated lymphoid tissue--from (auto)antigen driven selection to the activation of NF-κB signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1246-55. [PMID: 26612043 DOI: 10.1007/s11427-015-4977-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Lymphomas of mucosa-associated lymphoid tissue (MALT) are typically present at sites such as the stomach, lung or urinary tract, where lymphoid tissues scatter in mucosa lamina propria, intra- or sub-epithelial cells. The infection of certain pathogens, such as Helicobacter pylori, Chlamydophila psittaci, Borrelia burgdorferi, hepatitis C virus, or certain autoantigens cause these sites to generate a germinal center called the "acquired lymphoid tissue". The molecular pathogenesis of MALT lymphoma is a multi-step process. Receptor signaling, such as the contact stimulation of B cell receptors and CD4 positive T cells mediated by CD40/CD40-ligand and T helper cell type 2 cytokines like interleukin-4, contributes to tumor cell proliferation. A number of genetic alterations have been identified in MALT lymphoma, and among them are important translocations, such as t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21) and t(3;14)(p13;q32). Fusion proteins generated by these translocations share the same NF-κB signaling pathway, which is activated by the caspase activation and recruitment domain containing molecules of the membrane associated guanylate kinase family, B cell lymphoma-10 and MALT1 (CBM) protein complex. They act downstream of cell surface receptors, such as B cell receptors, T cell receptors, B cell activating factors and Toll-like receptors, and participate in the biological process of MALT lymphoma. The discovery of therapeutic drugs that exclusively inhibit the antigen receptor signaling pathway will be beneficial for the treatment of B cell lymphomas in the future.
Collapse
Affiliation(s)
- YiAn Zhang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
68
|
Zhuang Z, qin X, Hu H, Tian SY, Lu ZJ, Zhang TZ, Bai YL. Down-regulation of microRNA-155 attenuates retinal neovascularization via the PI3K/Akt pathway. Mol Vis 2015; 21:1173-84. [PMID: 26539029 PMCID: PMC4605754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/11/2015] [Indexed: 11/25/2022] Open
Abstract
PURPOSE We aimed to investigate the anti-angiogenic properties of miR-155 via in vitro and in vivo studies. METHODS miR-155 was knocked down using lentivirus-mediated RNA interference. The proliferation, migration, and tube formation of human retinal microvascular endothelial cells (HRMECs) were measured using BrdU, Transwell, and Matrigel assays, respectively. An oxygen-induced retinopathy (OIR) model was induced using neonatal C57BL/6J pups. Anti-miR-155 was intravitreally injected on postnatal day 12, and the retinal non-perfused areas and extent of neovascularization were measured on postnatal day 18 using transcardiovascular fluorescein isothiocyanate (FITC)-dextran perfusion and retina sections. A laser-induced choroidal neovascularization (CNV) model was induced in adult C57BL/6J mice. To evaluate the leakage areas, fundus fluorescein angiography was performed on day 14 after anti-miR-155 intravitreal injection. The neovascularization area of the CNV model was also examined in confocal and retina section studies. The expression levels of SHIP1 and p-Akt (Thr308, Ser473, and Thr450) were evaluated both in vitro and in vivo. RESULTS The expression of miR-155 was elevated in HRMECs after treatment with vascular endothelial growth factor (VEGF) and in neovascularized mouse model retinas. Anti-miR-155 lentivirus reduced the VEGF-induced proliferation, migration, and tube formation abilities of HRMECs. Anti-miR-155 attenuated retinal neovascularization in in vivo CNV and OIR models. In VEGF-treated HRMECs and retina neovascularization models, p-Akt (Ser473) was significantly upregulated, while SHIP1 was downregulated. Conversely, the inhibition of miR-155 restored the expression of SHIP1 and reduced the phosphorylation of effectors in the Akt (Ser473) signaling pathway. CONCLUSIONS The results revealed that the downregulation of miR-155 attenuated retinal neovascularization via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway.
Collapse
Affiliation(s)
- Zhi Zhuang
- Medical College, Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - Xiao- qin
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - He Hu
- Medical College, Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - Shi-yuan Tian
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - Zhan-jun Lu
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - Tian-zi Zhang
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| | - Yu-ling Bai
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia, China
| |
Collapse
|
69
|
Abstract
Preclinical Research MicroRNA (miR)-155 and cyclooxygenase (COX)-2 are both elevated in numerous cancers including colorectal cancer. MiR-155 enhances COX-2 expression and is an established regulator of epithelial-mesenchymal transition and inflammation. Inhibition of miR-155 or COX-2 exhibit similar negative effects on tumorigenicity. Thus, it is hypothesized that miR-155 may be a promising target for antagonizing COX-2 expression in colorectal and other cancers.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
70
|
Wang Y, Sun D, Wang J, Dou A, Zheng C. Predictive value of microRNAs as novel biomarkers in detection of lymphoma. Int J Clin Exp Med 2015; 8:14479-14489. [PMID: 26550438 PMCID: PMC4613123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) have attracted many attentions in lymphoma diagnostic research. The inconsistence of diagnostic performance in these existed literatures leading us to conduct this meta-analysis. In order to have a scientific and reliable study, all related articles were screened from Medline, Embase, CNKI and other databases. The sensitivity and specificity of each involved research were used to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the curve (AUC). The QUADAS-2 tool was applied to estimate the quality of included studies. In addition, Deeks' funnel plot asymmetry test was performed to estimate publication bias. Overall, 14 studies from 6 articles were included to evaluate the whole test performance. The overall pooled results were as follows: sensitivity was 0.91 (95% CI: 0.83-0.95), specificity was 0.84 (95% CI: 0.75-0.90), the AUC was 0.93 (95% CI: 0.91-0.95), positive likelihood ratio-PLR was 5.5 (95% CI: 3.5-8.8), negative likelihood ratio-NLR was 0.11 (95% CI: 0.06-0.21), and diagnostic odds ratio-DOR was 50 (95% CI: 19-128). In summary, results from meta-analysis showed that miRNAs analysis might significantly increase the diagnostic accuracy of lymphoma. Further massive prospective studies still needed to validate our conclusion before clinical application.
Collapse
Affiliation(s)
- Yongjing Wang
- Department of Hematology, The Second Hospital of Shandong UniversityJinan 250033, Shandong, P. R. China
| | - Dianshui Sun
- Cancer Center, The Second Hospital of Shandong UniversityJinan 250033, Shandong, P. R. China
| | - Juandong Wang
- Department of Hematology, The Second Hospital of Shandong UniversityJinan 250033, Shandong, P. R. China
| | - Aixia Dou
- Department of Hematology, The Second Hospital of Shandong UniversityJinan 250033, Shandong, P. R. China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong UniversityJinan 250033, Shandong, P. R. China
| |
Collapse
|
71
|
SILAC-Based Quantitative Proteomic Analysis of Diffuse Large B-Cell Lymphoma Patients. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:841769. [PMID: 26060582 PMCID: PMC4427854 DOI: 10.1155/2015/841769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/23/2015] [Indexed: 01/08/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, is a heterogeneous disease where the outcome for patients with early relapse or refractory disease is very poor, even in the era of immunochemotherapy. In order to describe possible differences in global protein expression and network patterns, we performed a SILAC-based shotgun (LC-MS/MS) quantitative proteomic analysis in fresh-frozen tumor tissue from two groups of DLBCL patients with totally different clinical outcome: (i) early relapsed or refractory and (ii) long-term progression-free patients. We could identify over 3,500 proteins; more than 1,300 were quantified in all patients and 87 were significantly differentially expressed. By functional annotation analysis on the 66 proteins overexpressed in the progression-free patient group, we found an enrichment of proteins involved in the regulation and organization of the actin cytoskeleton. Also, five proteins from actin cytoskeleton regulation, applied in a supervised regression analysis, could discriminate the two patient groups. In conclusion, SILAC-based shotgun quantitative proteomic analysis appears to be a powerful tool to explore the proteome in DLBCL tumor tissue. Also, as progression-free patients had a higher expression of proteins involved in the actin cytoskeleton protein network, such a pattern indicates a functional role in the sustained response to immunochemotherapy.
Collapse
|
72
|
[The progress of diagnostic and prognostic molecular markers of lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:354-7. [PMID: 25916304 PMCID: PMC7342629 DOI: 10.3760/cma.j.issn.0253-2727.2015.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Helou YA, Salomon AR. Protein networks and activation of lymphocytes. Curr Opin Immunol 2015; 33:78-85. [PMID: 25687331 DOI: 10.1016/j.coi.2015.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.
Collapse
Affiliation(s)
- Ynes A Helou
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
74
|
MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. ACTA ACUST UNITED AC 2015; 1:21-30. [PMID: 26618104 DOI: 10.1007/s40495-014-0013-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are endogenous small non-coding RNAs of 20-22 nucleotides that repress gene expression at the post-transcriptional level. There is growing interest in the role of miRNAs in cancer chemoprevention, and several naturally occurring chemopreventive agents have been found to be modulators of miRNA expression both in vitro and in vivo. Moreover, these chemopreventive phytochemicals commonly possess anti-oxidative and/or anti-inflammatory properties, and Nrf2 has been extensively studied as a molecular target in cancer prevention. The crosstalk between miRNAs and the traditional cellular signaling pathways of chemoprevention remain to be fully elucidated. This review summarizes the data regarding the potential interactions between miRNAs and anti-oxidative and anti-inflammatory pathways. Cellular redox homeostasis can affect the biogenesis and processing of miRNAs, which in turn regulate the Nrf2 pathway of detoxifying/anti-oxidative genes. We also discuss the miRNA regulatory mechanisms in relation to inflammation-related cancer signaling pathways.
Collapse
|
75
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
76
|
Abstract
Although the current WHO classification (Swerdlow et al. WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer, Lyon, 2008 [1]) for hematolymphoid neoplasms has delineated lymphomas based on the combined morphologic, immunophenotypic, and genotypic findings, further refinement is necessary especially in regard to therapeutics and prognostic implications. High-throughput gene expression profiling (GEP) using microarray technology (Schena et al. Science 270:467-470, 1995 [2]; Augenlicht et al. Proc Natl Acad Sci USA 88:3286-3289, 1991 [3]) was developed about 20 years ago, and further refinement of the technology and analytical approaches has enabled us to routinely evaluate practically the entire transcriptome at a time. GEP has helped to improve the classification and prognostication of non-Hodgkin lymphomas (NHL) as well as improved our understanding of their pathophysiology and response to new therapeutics. In this paper, we will briefly review how this revolutionary tool has transformed our understanding of lymphomas and given us insight into targeted therapeutics. We will also discuss the current efforts in adapting the findings to routine clinical practice, the evolution of the research technology and directions in the future.
Collapse
|
77
|
Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 2014; 125:1137-45. [PMID: 25498913 DOI: 10.1182/blood-2014-04-566778] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We studied the global microRNA (miRNA) expression in diffuse large B-cell lymphoma (DLBCL; n = 79), Burkitt lymphoma (BL; n = 36), primary mediastinal B-cell lymphoma (PMBL; n = 12), B-cell lines (n = 11), and normal subsets of naïve B cells, centroblasts (CBs), and peripheral blood B cells along with their corresponding gene expression profiles (GEPs). The normal B-cell subsets have well-defined miRNA signatures. The CB miRNA signature was significantly associated with germinal center B-cell (GCB)-DLBCL compared with activated B-cell (ABC)-DLBCL (P = .002). We identified a 27-miRNA signature that included v-myc avian myelomatosis viral oncogene homolog (MYC) targets and enabled the differentiation of BL from DLBCL, a distinction comparable with the "gold standard" GEP-defined diagnosis. Distinct miRNA signatures were identified for DLBCL subgroups, including GCB-DLBCL, activated B-cell (ABC)-DLBCL, and PMBL. Interestingly, most of the unclassifiable-DLBCL by GEP showed a strong similarity to the ABC-DLBCL by miRNA expression profiling. Consistent results for BL and DLBCL subgroup classification were observed in formalin-fixed, paraffin-embedded tissue, making such tests practical for clinical use. We also identified predictive miRNA biomarker signatures in DLBCL, including high expression of miR-155, which is significantly associated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) treatment failure. This finding was further supported by the observation that high expression of miR-155 sensitizes cells to v-akt murine thymoma viral oncogene homolog-1 inhibitors in vitro, suggesting a novel treatment option for resistant DLBCL.
Collapse
|
78
|
Ji WG, Zhang XD, Sun XD, Wang XQ, Chang BP, Zhang MZ. miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. ACTA ACUST UNITED AC 2014; 34:882-888. [DOI: 10.1007/s11596-014-1368-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/29/2014] [Indexed: 01/06/2023]
|
79
|
Zheng RL, Jiang YJ, Wang X. Role of microRNAs on therapy resistance in Non-Hodgkin's lymphoma. Int J Clin Exp Med 2014; 7:3818-3832. [PMID: 25550890 PMCID: PMC4276148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
Non-Hodgkin's lymphoma (NHL) is a heterogeneous group of malignancies that originate in lymphatic hematopoietic tissue. Chemotherapy has been used as the main therapy for NHL all the time, and local radiotherapy is also a necessary approach to supplementary treatment. However, resistance of tumor cells to chemo- and radiotherapy often prevent a successful long-term treatment of NHL. MicroRNAs (miRNAs) are a class of approximately 22-nucleotide endogenous non-coding RNAs that play an important regulatory role in gene expression, involving in the process of cell proliferation and differentiation. Alterations of miRNAs have been reported in a variety of human cancers, such as lymphomas, and will critically influence the tumor development and progression. Recently, there is increasing evidence that miRNAs could also influence sensitivity of tumor cells to chemo- and radiotherapy, revealing a crucial role of microRNAs in resistance to anticancer treatment. Therefore, understanding the role of miRNAs in chemo- and radio-resistance of tumor and targeting specific miRNAs will open novel avenues for lymphoma treatment and improve the prognosis of NHL patients. This review outlines the role of miRNAs associated with chemo-and radiotherapy resistance in NHL.
Collapse
Affiliation(s)
- Rong-Li Zheng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University Shandong 250021, People's Republic of China
| | - Yu-Jie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University Shandong 250021, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University Shandong 250021, People's Republic of China
| |
Collapse
|
80
|
Nemes K, Csóka M, Nagy N, Márk Á, Váradi Z, Dankó T, Kovács G, Kopper L, Sebestyén A. Expression of Certain Leukemia/Lymphoma Related microRNAs and its Correlation with Prognosis in Childhood Acute Lymphoblastic Leukemia. Pathol Oncol Res 2014; 21:597-604. [DOI: 10.1007/s12253-014-9861-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
|
81
|
De Tullio G, De Fazio V, Sgherza N, Minoia C, Serratì S, Merchionne F, Loseto G, Iacobazzi A, Rana A, Petrillo P, Silvestris N, Iacopino P, Guarini A. Challenges and opportunities of microRNAs in lymphomas. Molecules 2014; 19:14723-81. [PMID: 25232701 PMCID: PMC6271734 DOI: 10.3390/molecules190914723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control the expression of many target messenger RNAs (mRNAs) involved in normal cell functions (differentiation, proliferation and apoptosis). Consequently their aberrant expression and/or functions are related to pathogenesis of many human diseases including cancers. Haematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate commitment, differentiation, proliferation, and apoptosis of hematopoietic stem cells (HSC). Alterations on this network could affect the normal haematopoiesis, leading to the development of haematological malignancies such as lymphomas. The incidence of lymphomas is rising and a significant proportion of patients are refractory to standard therapies. Accurate diagnosis, prognosis and therapy still require additional markers to be used for diagnostic and prognostic purpose and evaluation of clinical outcome. The dysregulated expression or function of miRNAs in various types of lymphomas has been associated with lymphoma pathogenesis. Indeed, many recent findings suggest that almost all lymphomas seem to have a distinct and specific miRNA profile and some miRNAs are related to therapy resistance or have a distinct kinetics during therapy. MiRNAs are easily detectable in fresh or paraffin-embedded diagnostic tissue and serum where they are highly stable and quantifiable within the diagnostic laboratory at each consultation. Accordingly they could be specific biomarkers for lymphoma diagnosis, as well as useful for evaluating prognosis or disease response to the therapy, especially for evaluation of early relapse detection and for greatly assisting clinical decisions making. Here we summarize the current knowledge on the role of miRNAs in normal and aberrant lymphopoiesis in order to highlight their clinical value as specific diagnosis and prognosis markers of lymphoid malignancies or for prediction of therapy response. Finally, we discuss their controversial therapeutic role and future applications in therapy by modulating miRNA.
Collapse
Affiliation(s)
- Giacoma De Tullio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy.
| | - Vincenza De Fazio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Sgherza
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Carla Minoia
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Simona Serratì
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Francesca Merchionne
- Haematology and Bone Marrow Transplantation Unit, Antonio Perrino Hospital, Brindisi 72100, Italy
| | - Giacomo Loseto
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Angela Iacobazzi
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Antonello Rana
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Patrizia Petrillo
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Pasquale Iacopino
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Attilio Guarini
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| |
Collapse
|
82
|
Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 2014; 12:231. [PMID: 25141911 PMCID: PMC4145234 DOI: 10.1186/s12967-014-0231-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
Activation of the PI3K/AKT pathway, a common mechanism in all subtypes of endometrial cancers (endometrioid and non-endometrioid tumors), has important roles in contributing to epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) features. MicroRNAs (miRNAs) are small non-coding RNA molecules that concurrently affect multiple target genes, and regulate a wide range of genes involved in modulating EMT and CSC properties. Here we overview the recent advances revealing the impact of miRNAs on EMT and CSC phenotypes in tumors including endometrial cancer via regulating PI3K/AKT pathway. MiRNAs are crucial mediators of EMT and CSC through targeting PTEN-PI3K-AKT-mTOR axis. In endometrial cancer cells, miRNAs can activate or attenuate EMT and CSC by targeting PTEN and other EMT-associated genes, such as Twist1, ZEB1 and BMI-1. More detailed studies of miRNAs will deepen our understanding of the molecular basis underlying PI3K/AKT-induced endometrial cancer initiation and progression. Targeting key signaling components of PI3K/AKT pathway by restoring or inhibiting miRNA function holds promise as a potential therapeutic approach to suppress EMT and CSC in endometrial cancer.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo 0608638, Japan.
| | | | | | | | | | | |
Collapse
|
83
|
Wang K, Xu Z, Wang N, Xu T, Zhu M. MicroRNA and gene networks in human diffuse large B-cell lymphoma. Oncol Lett 2014; 8:2225-2232. [PMID: 25289101 PMCID: PMC4186561 DOI: 10.3892/ol.2014.2438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 07/23/2014] [Indexed: 12/29/2022] Open
Abstract
Molecular biologists have collected considerable data regarding the involvement of genes and microRNAs (miRNAs) in cancer. However the underlying mechanisms of cancer with regard to genes and miRNAs remain unclear. The aim of the present study was to evaluate diffuse large B-cell lymphoma (DLBCL) and construct regulatory networks of genes and miRNAs to gradually reveal the underlying mechanisms of DLBCL development. The first differential expression network that is presented is an experimentally validated network of miRNAs and genes. This network presents known biological regulatory associations among miRNAs and genes in the human body. The second network is a DLBCL differential expression network. Differentially expressed gene and miRNA data regarding DLBCL were collected and, based on the first network and the differentially expressed data, the second network was inferred, which demonstrates the irregular regulatory associations that may lead to the occurrence of DLBCL. The third network is a DLBCL-associated network. This network is comprised of non-differentially expressed genes and miRNAs that contribute to numerous DLBCL processes. The similarities and differences among the three networks were extracted and compared to distinguish key regulatory associations; furthermore, important signaling pathways in DLBCL were identified. The present study partially clarified the pathogenesis of DLBCL and provided an improved understanding of the underlying molecular mechanisms, as well as a potential treatment for DLBCL.
Collapse
Affiliation(s)
- Kunhao Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China ; Department of Economics, Changchun University, Changchun, Jilin 130022, P.R. China
| | - Zhiwen Xu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ning Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ting Xu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Minghui Zhu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
84
|
Campo S, Allegra A, D'Ascola A, Alonci A, Scuruchi M, Russo S, Avenoso A, Gerace D, Campo GM, Musolino C. MiRNome expression is deregulated in the peripheral lymphoid compartment of multiple myeloma. Br J Haematol 2014; 165:801-13. [PMID: 24620752 DOI: 10.1111/bjh.12828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in the regulation of gene expression. Selected groups of miRNAs are differentially expressed in various types of cancers. Alterations in miRNAs gene expression have been shown in cells from the B-cell malignancy, multiple myeloma (MM). However, although MM is a disease of plasma cells, abnormalities have been detected in the peripheral blood of the patients. The goal of our study was to analyse the entire miRNome in peripheral lymphocytes of MM patients using reverse transcription quantitative polymerase chain reaction. Using in silica analysis, we also evaluated some of the most interesting and significant pathways. Analysis revealed that MM samples had a distinct miRNA profile compared to the controls. This resulted in the identification of 203 miRNAs, 85 of which were over-expressed and 118 under-expressed. Of these, 184 possessed validated or highly predicted mRNA targets. We identified 12 354 mRNA targets of the transcriptome: 36·4% of the related proteins are involved in death processes while the 21% are required for growth and cell proliferation. We have demonstrated that miRNAs are differentially expressed in the peripheral blood of MM patients compared to controls, affecting some pathways involved in the anti-apoptotic process, cell proliferation and maybe anti-angiogenesis.
Collapse
Affiliation(s)
- Salvatore Campo
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Wu PY, Zhang XD, Zhu J, Guo XY, Wang JF. Low expression of microRNA-146b-5p and microRNA-320d predicts poor outcome of large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone. Hum Pathol 2014; 45:1664-73. [PMID: 24931464 DOI: 10.1016/j.humpath.2014.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Although diffuse large B-cell lymphoma (DLBCL) encompasses a biologically and clinically diverse set of diseases, increasing evidence has pointed to an important role of microRNAs (miRs) in the pathogenesis of DLBCL. We report here that low expression of miR-146b-5p and miR-320d is associated with poor prognosis of DLBCL patients treated with the standard cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) regimen and that this is related to the inhibitory effect of these miRs on DLBCL cell proliferation. Analysis of a retrospective cohort of 106 primary nodal DLBCL samples from patients who were treated with CHOP showed that, when the median survival period (40.8 months) was used as the cutoff point, miR-146b-5p and miR-320d were expressed at lower levels in DLBCLs with poor prognosis. Indeed, whereas low expression of miR-146b-5p was correlated with reduced progression-free survival, low expression of miR-320d was associated with decreases in both progression-free survival and overall survival. Moreover, miR-146b-5p and miR-320d were expressed at significantly lower levels in DLBCLs with the MYC t(8;14) translocation. Functional studies demonstrated that overexpression of miR-146b-5p or miR-320d inhibited DLBCL cell proliferation, wheareas knockdown of miR-146b-5p or miR-320d promoted proliferation of DLBCL cells. Taken together, these results suggest that low expression of miR-146b-5p and miR-320d may be predictive of compromised responses of a subset of DLBCL patients to treatment with the CHOP regimen and that restoration of these miRs may be useful to improve the therapeutic efficacy of CHOP.
Collapse
Affiliation(s)
- Peng Yan Wu
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, PR China
| | - Xu Dong Zhang
- Priority Research Centre for Cancer Research, University of Newcastle, Newcastle, New South Wales 2300, Australia; Melanoma Research Laboratory, University of Newcastle, Newcastle, New South Wales 2300, Australia; Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi 030013, PR China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai 200025, PR China
| | - Xiang Yun Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi 030013, PR China
| | - Jin Fen Wang
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, PR China.
| |
Collapse
|
86
|
Chen Z, Ma T, Huang C, Hu T, Li J. The pivotal role of microRNA-155 in the control of cancer. J Cell Physiol 2014; 229:545-50. [PMID: 24122356 DOI: 10.1002/jcp.24492] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are emerging as important gene expression regulators linked to various biological processes at a posttranscriptional level. miRNAs have been known to play important roles in cell proliferation, cell differentiation, and apoptosis. Recently, accumulate studies indicate that up-regulation of miR-155 has been described in several types of human tumors. miR-155 has been considered to act as an oncogene or a tumor suppressor, depending on tumor system. Silencing oncomiRs or gene therapy approaches could be an effective therapeutic approach against tumor. Here we review the current knowledge on the functional role of miR-155 in the control of various cancers.
Collapse
Affiliation(s)
- Zhaolin Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University (AMU), School of Pharmacy, Anhui Medical University, Hefei, China
| | | | | | | | | |
Collapse
|
87
|
Abstract
The activation of T cells is a tightly regulated process that has evolved to maximize protective immune responses to pathogens while minimizing damage to self-tissues. A delicate balance of cell-intrinsic, costimulatory, and transcriptional pathways as well as micro-environmental cues such as local cytokines controls the magnitude and nature of T-cell responses in vivo. The discovery of functional small noncoding RNAs called micro-RNAs (miRNAs) has introduced new mechanisms that contribute to the regulation of protein translation and cellular responses to stimuli. miRNAs are short (approximately 22 bp) RNA species, which bind to mRNAs and suppress translation. Due to their short length and imperfect base pairing requirements, each miRNA has the potential to regulate various pathways through the translational inhibition of multiple mRNAs. The human and mouse genomes each encode hundreds of miRNAs, and studying the function of miRNAs has led to the realization that they play important roles in diverse biological processes from development and cancer to immunity. This review focuses on the function of mir-155 in T cells and the impact of this miRNA on autoimmunity, tumor immunity, and pathogen-induced immunity.
Collapse
|
88
|
Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, Lu H, Fan D. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2014; 34:759-67. [PMID: 24504735 DOI: 10.1161/atvbaha.113.302701] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE microRNA-155 (miR155) plays a critical role in immunity and macrophage inflammation. We aim to investigate the role of miR155 in atherogenesis. APPROACH AND RESULTS Quantitative real-time polymerase chain reaction showed that miR155 was expressed in mouse and human atherosclerotic lesions. miR155 expression in macrophages was correlated positively with proinflammatory cytokine expression. Lentivirus-mediated overexpression of miR155 in macrophages enhanced their inflammatory response to lipopolysaccharide through targeting suppressor of cytokine signaling-1 and impaired cholesterol efflux from acetylated low-density lipoprotein-loaded macrophages, whereas deficiency of miR155 blunted macrophage inflammatory responses and enhanced cholesterol efflux possibly via enhancing lipid loading-induced macrophage autophagy. We next examined the atherogenesis in apolipoprotein E-deficient (apoE(-/-)) and miR155(-/-)/apoE(-/-) (double knockout) mice fed a Western diet. Compared with apoE(-/-) mice, the double knockout mice developed less atherosclerosis lesion in aortic root, with reduced neutral lipid content and macrophages. Flow cytometric analysis showed that there were increased number of regulatory T cells and reduced numbers of Th17 cells and CD11b+/Ly6C(high) cells in the spleen of double knockout mice. Peritoneal macrophages from the double knockout mice had significantly reduced proinflammatory cytokine expression and secretion both in the absence and presence of lipopolysaccharide stimulation. To determine whether miR155 in leukocytes contributes to atherosclerosis, we performed a bone marrow transplantation study. Deficiency of miR155 in bone marrow-derived cells suppressed atherogenesis in apoE(-/-) mice, demonstrating that hematopoietic cell-derived miR155 plays a critical role. CONCLUSIONS miR155 deficiency attenuates atherogenesis in apoE(-/-) mice by reducing inflammatory responses of macrophages, enhancing macrophage cholesterol efflux and resulting in an antiatherogenic leukocyte profile. Targeting miR155 may be a promising strategy to halt atherogenesis.
Collapse
Affiliation(s)
- Fen Du
- From the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Wuhan University, Wuhan, PR China (F.D.); the Department of Cell Biology and Anatomy (F.D., F.Y., Y.W., Y.H, H.L., D.F.) and the Department of Pathology, Microbiology, and Immunology (K.C.), University of South Carolina School of Medicine, Columbia; Department of Nutrition and Food Hygiene, the Fourth Military Medical University, Xi'an, Shaanxi, PR China (F.Y.); and Department of Basic Medical Science, School of Medicine, Shock/Trauma Research Center, University of Missouri, Kansas City (M.F.)
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Koens L, Qin Y, Leung WY, Corver WE, Jansen PM, Willemze R, Vermeer MH, Tensen CP. MicroRNA profiling of primary cutaneous large B-cell lymphomas. PLoS One 2013; 8:e82471. [PMID: 24358187 PMCID: PMC3865085 DOI: 10.1371/journal.pone.0082471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs). However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs) are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) and primary cutaneous follicle center lymphoma (PCFCL) are characterized by an activated B-cell (ABC)-genotype and a germinal center B-cell (GCB)-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL.
Collapse
Affiliation(s)
- Lianne Koens
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yongjun Qin
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands ; Biotechnology Center, Shanxi Academy of Agricultural Sciences, Taiynan, China
| | - Wai Y Leung
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patty M Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
90
|
MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 2013; 9:e1003697. [PMID: 24130493 PMCID: PMC3795043 DOI: 10.1371/journal.ppat.1003697] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/26/2013] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7) reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3′-untranslated region of Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment. microRNA-155 (miR-155) plays an essential role in regulating the host immune response by post-transcriptionally repressing the expression of target genes. However, little is known regarding its activity in modulating autophagy, an important host defense mechanism against intracellular bacterial infection. Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects approximately one-third of the global population, and causes 1.5 million deaths annually. The present study explores a novel role of miR-155 in the host response against mycobacterial infection. Our data demonstrates that mycobacterial infection triggers the expression of miR-155, and the induction of miR-155 in turn activates autophagy by targeting Rheb, a negative regulator of autophagy. miR-155-promoted autophagy accelerates the maturation of the mycobacterial phagosome, thus decreasing the survival of intracellular mycobacteria in macrophages. These findings contribute to a better understanding of the host defense mechanisms against mycobacterial infection, providing useful information for development of potential therapeutic interventions against tuberculosis.
Collapse
|
91
|
Mazan-Mamczarz K, Gartenhaus RB. Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res 2013; 37:1420-8. [PMID: 24054860 DOI: 10.1016/j.leukres.2013.08.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression at the post-transcriptional level through its sequence complementation with target mRNAs. An individual miRNA species can simultaneously influence the expression of multiple genes and conversely, several miRNAs can synchronously control expression of specific gene product mRNA levels. Thus, miRNAs expression in cells has to be precisely regulated and alterations in miRNA levels may cause an aberrant expression of genes involved in oncogenic pathways and consequently result in cancer development. Indeed, miRNA expression is often deregulated in many cancers, including B-cell lymphomas. Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of B-cell lymphomas with different genetic backgrounds, morphologic features, and responses to therapy. Over the past decade, miRNAs emerged as a new tool for understanding DLBCL biology, and promising candidate molecular markers in DLBCL classification and treatment. In this review, we will focus on miRNAs aberrantly expressed in DLBCL and discuss the putative mechanisms of this deregulation. Additionally, we will summarize miRNAs' involvement in the identification of DLBCL subgroups, and their potential role as diagnostic/prognostic biomarkers as well as specific therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Krystyna Mazan-Mamczarz
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
92
|
|
93
|
Bodo J, Zhao X, Sharma A, Hill BT, Portell CA, Lannutti BJ, Almasan A, Hsi ED. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways. Br J Haematol 2013; 163:72-80. [PMID: 23889282 DOI: 10.1111/bjh.12498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/21/2013] [Indexed: 02/02/2023]
Abstract
Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.
Collapse
Affiliation(s)
- Juraj Bodo
- Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Bianchi G, Sacco A, Kumar S, Rossi G, Ghobrial I, Roccaro A. Candidate genes of Waldenström's macroglobulinemia: current evidence and research. Appl Clin Genet 2013; 6:33-42. [PMID: 23935380 PMCID: PMC3735036 DOI: 10.2147/tacg.s42690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Waldenström's macroglobulinemia (WM) is a relatively uncommon, indolent malignancy of immunoglobulin M-producing B cells. The World Health Organization classifies it as a lymphoplasmacytic lymphoma and patients typically present with anemia, hepatosplenomegaly and diffuse lymphadenopathies. Historically, the genetic characterization of the disease has been hampered by the relatively low proliferative rate of WM cells, thus making karyotyping challenging. The use of novel technologies such as fluorescence in situ hybridization, gene array, and whole genome sequencing has contributed greatly to establishing candidate genes in the pathophysiology of WM and to identifying potential treatment targets, such as L265P MYD88. The discovery of microRNAs and the recognition of epigenetics as a major modulatory mechanism of oncogene expression and/or oncosuppressor silencing have aided in further understanding the pathogenesis of WM. Once thought to closely resemble multiple myeloma, a cancer of terminally differentiated, immunoglobulin-secreting plasma cells, WM appears to genetically cluster with other indolent B-cell lymphomas such as chronic lymphocytic leukemia/small cell lymphoma. The relative high incidence of familial cases of WM and other B-cell malignancies has been helpful in identifying high-risk gene candidates. In this review, we focus on the established genes involved in the pathogenesis of WM, with special emphasis on the key role of derangement of the nuclear factor kappa B signaling pathway and epigenetic mechanisms.
Collapse
Affiliation(s)
- Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Rossi
- Department of Hematology, Spedali Civili di Brescia, Brescia, Italy
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aldo Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
95
|
Li P, Grgurevic S, Liu Z, Harris D, Rozovski U, Calin GA, Keating MJ, Estrov Z. Signal transducer and activator of transcription-3 induces microRNA-155 expression in chronic lymphocytic leukemia. PLoS One 2013; 8:e64678. [PMID: 23750211 PMCID: PMC3672147 DOI: 10.1371/journal.pone.0064678] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/16/2013] [Indexed: 01/09/2023] Open
Abstract
MicroRNA (miR) abnormalities play a key role in the pathogenesis of chronic lymphocytic leukemia (CLL). High levels of miR-155 have been detected in human neoplasms, and overexpression of miR-155 has been found to induce lymphoma in mice. High levels of miR-155 were detected in CLL cells and STAT3, which is known to induce miR-21 and miR-181b-1 expression, is constitutively activated in CLL. Given these findings, we hypothesized that STAT3 induces miR-155. Sequence analysis revealed that the miR-155 promoter harbors two putative STAT3 binding sites. Therefore, truncated miR-155 promoter constructs and STAT3 small interfering RNA (siRNA) were co-transfected into MM1 cells. Of the two putative binding sites, STAT3-siRNA reduced the luciferase activity of the construct containing the 700–709 bp STAT3 binding site, suggesting that this site is involved in STAT3-induced transcription. Electrophoretic mobility shift assay confirmed that STAT3 bound to the miR-155 promoter in CLL cells, and chromatin immunoprecipitation and luciferase assay confirmed that STAT3 bound to the 700–709 bp but not the 615–624 bp putative STAT3 binding site in CLL cells. Finally, STAT3-small hairpin RNA downregulated miR-155 gene expression, suggesting that constitutively activated STAT3 binds to the miR-155 gene promoter. Together, these results suggest that STAT3 activates miR-155 in CLL cells.
Collapse
Affiliation(s)
- Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Srdana Grgurevic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
96
|
Abstract
MicroRNAs (miRNAs) have become one of the hottest topics in biology over recent years, but remarkably have only been formally recognized for just over 10 years. These endogenously produced short (19-24 nt) non-coding RNAs have introduced an entirely new paradigm in our understanding of gene control and it is now evident that miRNAs play a crucial regulatory role in many, if not all, physiological and pathological processes. In this review we provide an overview of the role and potential clinical utility for miRNAs in hematological malignancies and their function in normal hematopoiesis. Although still in its infancy, the miRNA field has already added much to our understanding of hematological processes, and provides us with novel tools as both biomarkers and therapeutic agents for hematological malignancies.
Collapse
|
97
|
Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013; 253:167-84. [PMID: 23550646 DOI: 10.1111/imr.12050] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| | | | - Carlo M. Croce
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| |
Collapse
|
98
|
Lind EF, Elford AR, Ohashi PS. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. THE JOURNAL OF IMMUNOLOGY 2012; 190:1210-6. [PMID: 23275599 DOI: 10.4049/jimmunol.1202700] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have begun to define the role of micro-RNAs in regulating the immune response. Micro-RNA155 (mir-155) has been shown to play a role in germinal center formation, T cell inflammation, and regulatory T cell development. In this study, we evaluated the role of mir-155 in cytotoxic T cell function. We report in this study that mice lacking mir-155 have impaired CD8(+) T cell responses to infections with lymphocytic choriomeningitis virus and the intracellular bacteria Listeria monocytogenes. We show by a series of adoptive transfer studies that the impaired CD8(+) T cell response to L. monocytogenes is T cell intrinsic. In addition, we observed that CD8(+) T cells lacking mir-155 have impaired activation of the prosurvival Akt pathway after TCR cross-linking. These data suggest that mir-155 may be a good target for therapies aimed at modulating immune responses.
Collapse
Affiliation(s)
- Evan F Lind
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|
99
|
Huang TC, Pinto SM, Pandey A. Proteomics for understanding miRNA biology. Proteomics 2012; 13:558-67. [PMID: 23125164 DOI: 10.1002/pmic.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology.
Collapse
Affiliation(s)
- Tai-Chung Huang
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
100
|
Abstract
The relatively recent discovery of microRNAs (miRNAs) has exposed an extra layer of gene expression regulation that affects many physiological and pathological processes of biology. Dysregulation of miRNAs is a ubiquitous feature of cancer in general, including lymphomas. The identity of these aberrantly-expressed miRNAs has been thoroughly investigated in all but a few types of lymphomas, however their functional role in lymphomagenesis much less so. This review focuses on those miRNAs that have an experimentally confirmed functional role in the pathogenesis of the most frequent forms of lymphoma. In particular, the MIR15A/16-1 cluster, MIR21, MIR155, MIR17HG (MIR17-92 cluster), MIR34A and MIR125B, which have in vivo animal model evidence for their involvement in lymphomagenesis, are highlighted.
Collapse
|