51
|
Expression of TGFβ-1 and EHD1 correlated with survival of non-small cell lung cancer. Tumour Biol 2014; 35:9371-80. [PMID: 24946721 DOI: 10.1007/s13277-014-2164-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022] Open
Abstract
Transforming growth factor-β1 (TGFβ-1) signaling is regulated by endocytotic pathway. To clarify the prognostic value of TGFβ-1 and to verify the involvement of endocytosis in drug resistance, we examined the expression of TGFβ-1 and Eps15 homology domain 1 (EHD1) in non-small cell lung cancer (NSCLC) and its association with tumor characteristics and survival of patients with NSCLC. Expression of TGFβ-1 and EHD1 was evaluated by immunohistochemistry in paraffin sections from 105 NSCLC patients. Overall survival (OS) was analyzed by Kaplan-Meier method, log-rank test, and multivariate Cox proportional hazard regression model. Positive immunostaining of TGFβ-1 and EHD1 was detected in 52.38 and 39.05 % of NSCLC samples, respectively. In non-adjuvant chemotherapy-treated group (P = 0.006) and epidermal growth factor receptor (EGFR) (+) group (P = 0.038), patients with TGFβ-1 expression had a longer OS. EHD1 negative expression predicted a longer OS (P = 0.003), especially in EGFR (+) (P = 0.006) and adjuvant chemotherapy-treated patients (P = 0.003). NSCLC patients with concurrent positive TGFβ-1 and negative EHD1 (combined markers) were significantly correlated with better OS (P = 0.001). American Joint Committee on Cancer (AJCC) status and combined markers were independent prognostic indicators for OS (HR (95 % CI) 1.576 (1.112-2.232), P = 0.011 and HR 0.349 (0.180-0.673), P = 0.002, respectively). We identified concordant TGFβ-1 positive and EHD1 negative as a strong favorable prognosis factor in NSCLC. Our results may help us to select and optimize strategies for individualized therapy.
Collapse
|
52
|
Kasabova M, Joulin-Giet A, Lecaille F, Gilmore BF, Marchand-Adam S, Saidi A, Lalmanach G. Regulation of TGF-β1-driven differentiation of human lung fibroblasts: emerging roles of cathepsin B and cystatin C. J Biol Chem 2014; 289:16239-51. [PMID: 24790080 DOI: 10.1074/jbc.m113.542407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung matrix homeostasis partly depends on the fine regulation of proteolytic activities. We examined the expression of human cysteine cathepsins (Cats) and their relative contribution to TGF-β1-induced fibroblast differentiation into myofibroblasts. Assays were conducted using both primary fibroblasts obtained from patients with idiopathic pulmonary fibrosis and human lung CCD-19Lu fibroblasts. Pharmacological inhibition and genetic silencing of Cat B diminished α-smooth muscle actin expression, delayed fibroblast differentiation, and led to an accumulation of intracellular 50-kDa TGF-β1. Moreover, the addition of Cat B generated a 25-kDa mature form of TGF-β1 in Cat B siRNA-pretreated lysates. Inhibition of Cat B decreased Smad 2/3 phosphorylation but had no effect on p38 MAPK and JNK phosphorylation, indicating that Cat B mostly disturbs TGF-β1-driven canonical Smad signaling pathway. Although mRNA expression of cystatin C was stable, its secretion, which was inhibited by brefeldin A, increased during TGF-β1-induced differentiation of idiopathic pulmonary fibrosis and CCD-19Lu fibroblasts. In addition, cystatin C participated in the control of extracellular Cats, because its gene silencing restored their proteolytic activities. These data support the notion that Cat B participates in lung myofibrogenesis as suggested for stellate cells during liver fibrosis. Moreover, we propose that TGF-β1 promotes fibrosis by driving the effective cystatin C-dependent inhibition of extracellular matrix-degrading Cats.
Collapse
Affiliation(s)
- Mariana Kasabova
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Alix Joulin-Giet
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Fabien Lecaille
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Brendan F Gilmore
- the Queen's University Belfast, School of Pharmacy, McClay Research Centre, Belfast, BT9 7BL, United Kingdom
| | - Sylvain Marchand-Adam
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Ahlame Saidi
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Gilles Lalmanach
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| |
Collapse
|
53
|
Collazo J, Zhu B, Larkin S, Martin SK, Pu H, Horbinski C, Koochekpour S, Kyprianou N. Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer Res 2014; 74:2362-73. [PMID: 24509905 PMCID: PMC4488067 DOI: 10.1158/0008-5472.can-13-3058] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cofilin (CFL) is an F-actin-severing protein required for the cytoskeleton reorganization and filopodia formation, which drives cell migration. CFL binding and severing of F-actin is controlled by Ser3 phosphorylation, but the contributions of this step to cell migration during invasion and metastasis of cancer cells are unclear. In this study, we addressed the question in prostate cancer cells, including the response to TGF-β, a critical regulator of migration. In cells expressing wild-type CFL, TGF-β treatment increased LIMK-2 activity and cofilin phosphorylation, decreasing filopodia formation. Conversely, constitutively active CFL (SerAla) promoted filipodia formation and cell migration mediated by TGF-β. Notably, in cocultures of prostate cancer epithelial cells and cancer-associated fibroblasts, active CFL promoted invasive migration in response to TGF-β in the microenvironment. Further, constitutively active CFL elevated the metastatic ability of prostate cancer cells in vivo. We found that levels of active CFL correlated with metastasis in a mouse model of prostate tumor and that in human prostate cancer, CFL expression was increased significantly in metastatic tumors. Our findings show that the actin-severing protein CFL coordinates responses to TGF-β that are needed for invasive cancer migration and metastasis.
Collapse
Affiliation(s)
- Joanne Collazo
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Beibei Zhu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Spencer Larkin
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Sarah K. Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Pu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Craig Horbinski
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Shahriar Koochekpour
- Departments of Cancer Genetics and Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Natasha Kyprianou
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
54
|
Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Hölttä E. Osteopontin promotes the invasive growth of melanoma cells by activating integrin αvβ3 and down-regulating tetraspanin CD9. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:842-58. [PMID: 24412090 DOI: 10.1016/j.ajpath.2013.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
Overexpression of osteopontin (OPN) is strongly associated with the invasiveness/metastasis of many cancers, including melanomas. However, the molecular mechanisms of OPN in these processes remain poorly understood. We found that forced expression of OPN in early vertical-growth-phase melanoma cells dramatically increased their migration/invasion and growth/survival in a three-dimensional collagen I gel. Neutralizing antibodies to OPN, integrin β1, and integrin αvβ3, but not to CD44, negated the effects of OPN. Conversely, knocking down OPN in metastatic melanoma cells abrogated the invasive growth. OPN overexpression activated and OPN knockdown inactivated αvβ3 and αvβ5 integrins, negligibly affecting their expression. We further found OPN expression to inversely correlate with tetraspanin CD9 expression. Early-stage melanoma cells displayed low OPN and high CD9 expression, and conversely, metastatic cells displayed high OPN and low CD9 expression. Overexpression of OPN in vertical-growth-phase melanoma cells induced down-regulation of CD9, and knockdown of OPN in metastatic melanoma cells up-regulated CD9. Reversion of these CD9 changes abolished the effects of OPN. Furthermore, knockdown of CD9 in early-stage melanoma cells stimulated their invasive capacity in three-dimensional collagen. Similarly, microarray analyses of benign nevi and primary melanomas from different stages revealed an inverse correlation between OPN and CD9. These data suggest that OPN promotes melanoma cell invasion by activating integrin αvβ3 and down-regulating CD9, a putative metastasis suppressor.
Collapse
Affiliation(s)
- Miao Yin
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Soikkeli
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology, Helsinki University Central Hospital, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
55
|
Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. Oncogene 2013; 33:3364-73. [PMID: 23893239 DOI: 10.1038/onc.2013.303] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Despite progress in the understanding of the biology and genetics of melanoma, no effective treatment against this cancer is available. The adjacent microenvironment has an important role in melanoma progression. Defining the molecular signals that control the bidirectional dialog between malignant cells and the surrounding stroma is crucial for efficient targeted therapy. Our study aimed at defining the role of sphingosine-1-phosphate (S1P) in melanoma-stroma interactions. Transcriptomic analysis of human melanoma cell lines showed increased expression of sphingosine kinase-1 (SPHK1), the enzyme that produces S1P, as compared with normal melanocytes. Such an increase was also observed by immunohistochemistry in melanoma specimens as compared with nevi, and occurred downstream of ERK activation because of BRAF or NRAS mutations. Importantly, migration of melanoma cells was not affected by changes in SPHK1 activity in tumor cells, but was stimulated by comparable modifications of S1P-metabolizing enzymes in cocultured dermal fibroblasts. Reciprocally, incubation of fibroblasts with the conditioned medium from SPHK1-expressing melanoma cells resulted in their differentiation to myofibroblasts, increased production of matrix metalloproteinases and enhanced SPHK1 expression and activity. In vivo tumorigenesis experiments showed that the lack of S1P in the microenvironment prevented the development of orthotopically injected melanoma cells. Finally, local tumor growth and dissemination were enhanced more efficiently by coinjection of wild-type skin fibroblasts than by fibroblasts from Sphk1(-/-) mice. This report is the first to document that SPHK1/S1P modulates the communication between melanoma cells and dermal fibroblasts. Altogether, our findings highlight SPHK1 as a potential therapeutic target in melanoma progression.
Collapse
|
56
|
Perrot CY, Javelaud D, Mauviel A. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma. Ann Dermatol 2013; 25:135-44. [PMID: 23717002 PMCID: PMC3662904 DOI: 10.5021/ad.2013.25.2.135] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma.
Collapse
Affiliation(s)
- Carole Yolande Perrot
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Alain Mauviel
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| |
Collapse
|