51
|
Kong M, Peng Y, Qiu L. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomater 2023; 164:435-446. [PMID: 37040811 DOI: 10.1016/j.actbio.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a common chronic liver disease worldwide. By now, however, there isn't any FDA-approved specific drug for NAFLD treatment. It has been noticed that farnesoid X receptor (FXR), miR-34a and Sirtuin1 (SIRT1) is related to the occurrence and development of NAFLD. A oligochitosan-derivated nanovesicle (UBC) with esterase responsive degradability was designed to co-encapsulate FXR agonist (obeticholic acid, OCA) and miR-34a antagomir (anta-miR-34a) into the hydrophobic membrane and the center aqueous lumen of nanovesicles, respectively, by dialysis method. The action of UBC/OCA/anta-miR-34a loop on the regulation of lipid deposition via nanovesicles was evaluated on high-fat HepG2 cells and HFD-induced mice. The obtained dual drug-loaded nanovesicles UBC/OCA/anta-miR-34a could enhance the cellular uptake and intracellular release of OCA and anta-miR-34a, leading to the reduced lipid deposition in high-fat HepG2 cells. In NAFLD mice models, UBC/OCA/anta-miR-34a achieved the best curative effect on the recovery of body weight and hepatic function. Meanwhile, in vitro and vivo experiments validated that UBC/OCA/anta-miR-34a effectively activated the expression level of SIRT1 by enhancing the FXR/miR-34a/SIRT1 regulatory loop. This study provides a promising strategy for constructing oligochitosan-derivated nanovesicles to co-deliver OCA and anta-miR-34a for NAFLD treatment. STATEMENT OF SIGNIFICANCE: This study proposed a strategy to construct oligochitosan-derivated nanovesicles to co-deliver obeticholic acid and miR-34a antagomir for NAFLD treatment. Based on the FXR/miR-34a/SIRT1 action loop, this nanovesicle effectively exerted a synergetic effect of OCA and anta-miR-34a to significantly regulate lipid deposition and recover liver function in NAFLD mice.
Collapse
Affiliation(s)
- Mengjie Kong
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Peng
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
52
|
Puglisi A, Bognanni N, Vecchio G, Bayir E, van Oostrum P, Shepherd D, Platt F, Reimhult E. Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing. Biomolecules 2023; 13:573. [PMID: 36979508 PMCID: PMC10046162 DOI: 10.3390/biom13030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Core-shell superparamagnetic iron oxide nanoparticles hold great promise as a theranostic platform in biological systems. Herein, we report the biological effect of multifunctional cyclodextrin-appended SPIONs (CySPION) in mutant Npc1-deficient CHO cells compared to their wild type counterparts. CySPIONs show negligible cytotoxicity while they are strongly endocytosed and localized in the lysosomal compartment. Through their bespoke pH-sensitive chemistry, these nanoparticles release appended monomeric cyclodextrins to mobilize over-accumulated cholesterol and eject it outside the cells. CySPIONs show a high rate of transport across blood-brain barrier models, indicating their promise as a therapeutic approach for cholesterol-impaired diseases affecting the brain.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Noemi Bognanni
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir 35100, Turkey
| | - Peter van Oostrum
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
53
|
Curcumin-Loaded Chitosan Nanoparticle Preparation and Its Protective Effect on Celecoxib-induced Toxicity in Rat isolated Cardiomyocytes and Mitochondria. Drug Res (Stuttg) 2023; 73:125-136. [PMID: 36423624 DOI: 10.1055/a-1960-3092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory and tissue protective. In here we hypothesized that curcumin-loaded chitosan-coated solid lipid nanoparticles (CuCsSLN) are able to increase its overall bioavailability and hence its antioxidant and mitochondria;/lysosomal protective properties of curcumin. CuCsSLN were prepared using solvent diffusion technique for formation of solid lipid nanoparticles (SLNs) and electrostatic coating of positive-charged chitosan to negative surface of SLNs. CuCsSLN showed the encapsulation efficiency of 91.4±2.7%, the mean particle size of 208±9 nm, the polydispersity index of 0.34±0.07, and the zeta potential of+53.5±3.7 mV. The scanning electron microscope (SEM) images of nanoparticles verified their nanometric size and also spherical shape. Curcumin was released from CuCsSLN in a sustain release pattern up to 24 hours. Then isolated cardiomyocytes and mitochondria were simultaneously treated with (1) control (0.05% ethanol), (2) celecoxib (20 µg/ml) treatment, (3) celecoxib (20 µg/ml)+++CuCsSLN (1 µg/ml) treatment, (4) CuCsSLN (1 µg/ml) treatment, (5) celecoxib (20 µg/ml)+++curcumin (10 µM) treatment and (6) curcumin (10 µM) treatment for 4 h at 37°C. The results showed that celecoxib (20 µg/ml) induced a significant increase in cytotoxicity, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lipid peroxidation, oxidative stress and mitochondrial swelling while CuCsSLN and curcumin reverted the above toxic effect of celecoxib. Our data indicated that the effect of CuCsSLN in a number of experiments, is significantly better than that of curcumin which shows the role of chitosan nanoparticles in increasing effect of curcumin.
Collapse
|
54
|
Fedorenko S, Stepanov A, Bochkova O, Kholin K, Nizameev I, Voloshina A, Tyapkina O, Samigullin D, Kleshnina S, Akhmadeev B, Romashchenko A, Zavjalov E, Amirov R, Mustafina A. Specific nanoarchitecture of silica nanoparticles codoped with the oppositely charged Mn 2+ and Ru 2+ complexes for dual paramagnetic-luminescent contrasting effects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102665. [PMID: 36822334 DOI: 10.1016/j.nano.2023.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.
Collapse
Affiliation(s)
- Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia.
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Olga Bochkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Kirill Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Irek Nizameev
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Oksana Tyapkina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia; Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russia
| | - Sofiya Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Bulat Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Alexander Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rustem Amirov
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| |
Collapse
|
55
|
Delon LC, Faria M, Jia Z, Johnston S, Gibson R, Prestidge CA, Thierry B. Capturing and Quantifying Particle Transcytosis with Microphysiological Intestine-on-Chip Models. SMALL METHODS 2023; 7:e2200989. [PMID: 36549695 DOI: 10.1002/smtd.202200989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the intestinal transport of particles is critical in several fields ranging from optimizing drug delivery systems to capturing health risks from the increased presence of nano- and micro-sized particles in human environment. While Caco-2 cell monolayers grown on permeable supports are the traditional in vitro model used to probe intestinal absorption of dissolved molecules, they fail to recapitulate the transcytotic activity of polarized enterocytes. Here, an intestine-on-chip model is combined with in silico modeling to demonstrate that the rate of particle transcytosis is ≈350× higher across Caco-2 cell monolayers exposed to fluid shear stress compared to Caco-2 cells in standard "static" configuration. This relates to profound phenotypical alterations and highly polarized state of cells grown under mechanical stimulation and it is shown that transcytosis in the microphysiological model is energy-dependent and involves both clathrin and macropinocytosis mediated endocytic pathways. Finally, it is demonstrated that the increased rate of transcytosis through cells exposed to flow is explained by a higher rate of internal particle transport (i.e., vesicular cellular trafficking and basolateral exocytosis), rather than a change in apical uptake (i.e., binding and endocytosis). Taken together, the findings have important implications for addressing research questions concerning intestinal transport of engineered and environmental particles.
Collapse
Affiliation(s)
- Ludivine C Delon
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhengyang Jia
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel Gibson
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5050, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
56
|
Brunet MA, Gorman BL, Kraft ML. Depth Correction of 3D NanoSIMS Images Shows Intracellular Lipid and Cholesterol Distributions while Capturing the Effects of Differential Sputter Rate. ACS NANO 2022; 16:16221-16233. [PMID: 36218061 DOI: 10.1021/acsnano.2c05148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Knowledge of the distributions of drugs, metabolites, and drug carriers within cells is a prerequisite for the development of effective disease treatments. Intracellular component distribution may be imaged with high sensitivity and spatial resolution by using a NanoSIMS in the depth profiling mode. Depth correction strategies that capture the effects of differential sputtering without requiring additional measurements could enable producing accurate 3D NanoSIMS depth profiling images of intracellular component distributions. Here we describe an approach for depth correcting 3D NanoSIMS depth profiling images of cells that accounts for differential sputter rates. Our approach uses the secondary ion and secondary electron depth profiling images to reconstruct the cell's morphology at every raster plane. These cell morphology reconstructions are used to adjust the z-positions and heights of the voxels in the component-specific 3D NanoSIMS images. We validated this strategy using AFM topography data and reconstructions created from depth profiling images acquired with focused ion beam-secondary electron microscopy. Good agreement was found for the shapes and relative heights of the reconstructed morphologies. Application of this depth correction strategy to 3D NanoSIMS depth profiling images of a metabolically labeled cell better resolved the transport vesicles, organelles, and organellar membranes containing 18O-cholesterol and 15N-sphingolipids. Accurate 3D NanoSIMS images of intracellular component distributions may now be produced without requiring correlated analyses with separate instruments or the assumption of a constant sputter rate. This will allow visualization of the subcellular distributions of lipids, metabolites, drugs, and nanoparticles in 3D, information pivotal to understanding and treating disease.
Collapse
|
57
|
Klemm P, Solomun JI, Rodewald M, Kuchenbrod MT, Hänsch VG, Richter F, Popp J, Hertweck C, Hoeppener S, Bonduelle C, Lecommandoux S, Traeger A, Schubert S. Efficient Gene Delivery of Tailored Amphiphilic Polypeptides by Polyplex Surfing. Biomacromolecules 2022; 23:4718-4733. [PMID: 36269943 DOI: 10.1021/acs.biomac.2c00919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.
Collapse
Affiliation(s)
- Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marko Rodewald
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
58
|
Bondu C, Yen FT. Nanoliposomes, from food industry to nutraceuticals: Interests and uses. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
Ren Y, Wu W, Zhang X. The feasibility of oral targeted drug delivery: gut immune to particulates? Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
60
|
Two quality and stability indicating imaged CIEF methods for mRNA vaccines. Electrophoresis 2022; 43:1971-1983. [DOI: 10.1002/elps.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/07/2022]
|
61
|
Yang W, Frickenstein AN, Sheth V, Holden A, Mettenbrink EM, Wang L, Woodward AA, Joo BS, Butterfield SK, Donahue ND, Green DE, Thomas AG, Harcourt T, Young H, Tang M, Malik ZA, Harrison RG, Mukherjee P, DeAngelis PL, Wilhelm S. Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. NANO LETTERS 2022; 22:7119-7128. [PMID: 36048773 PMCID: PMC9486251 DOI: 10.1021/acs.nanolett.2c02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, demonstrating the potential for nanoparticle escape from intracellular vesicles. Competition with other glycosaminoglycan types inhibited the endocytosis of HEP-coated nanoparticles only partially. We further found that nanoparticle uptake into innate immune cells can be controlled by more than 3 orders of magnitude via systematically varying the HEP surface density. Our results suggest a substantial potential for HEP-coated nanoparticles to target innate immune cells for efficient intracellular delivery, including into the cytoplasm. This HEP nanoparticle surface engineering technology may be broadly used to develop efficient nanoscale devices for drug and gene delivery as well as possibly for gene editing and immuno-engineering applications.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alexis A. Woodward
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Bryan S. Joo
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sarah K. Butterfield
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Abigail G. Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Tekena Harcourt
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Hamilton Young
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Mulan Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Zain A. Malik
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Roger G. Harrison
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
62
|
Lo YL, Lin HC, Tseng WH. Tumor pH-functionalized and charge-tunable nanoparticles for the nucleus/cytoplasm-directed delivery of oxaliplatin and miRNA in the treatment of head and neck cancer. Acta Biomater 2022; 153:465-480. [PMID: 36115656 DOI: 10.1016/j.actbio.2022.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Prospective tumor pH-responsive and charge-convertible nanoparticles have been utilized to reduce side effects and improve the active tumor-targeting ability and nuclear/cytoplasmic localization of chemo- and gene therapeutics for the treatment of head and neck cancer (HNC). Oxaliplatin (Oxa) is a third-generation platinum compound that prevents DNA replication. miR-320 may regulate cancer cell apoptosis, resistance, and progression. Innovative nanoparticles incorporating miR-320 and Oxa were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The nanoparticles were coated with a charge/size-tunable shield to prevent peptide degradation and decoated at acidic tumor sites to expose peptides for active targeting. Results indicated that the designed nanoparticles exhibited a uniform size and satisfactory drug encapsulation efficiency. The nanoparticles displayed the pH-responsive release and uptake of Oxa and miR-320 into human tongue squamous carcinoma SAS cells. The nanoparticles successfully delivered Oxa and miR-320 to the nucleus and cytoplasm, respectively. This work is the first to demonstrate the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3β/FOXM1/β-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit the growth, progression, and multidrug resistance of cancer cells. In SAS-bearing mice, co-treatment with Oxa- and miR-320-loaded nanoparticles exhibited superior antitumor efficacy and remarkably decreased Oxa-associated toxicities. The nucleus/cytoplasm-localized nanoparticles with a tumor pH-sensitive and size/charge-adjustable coating may be a useful combinatorial spatiotemporal nanoplatform for nucleic acids and chemotherapeutics to achieve maximum therapeutic safety and efficacy against HNC. STATEMENT OF SIGNIFICANCE: Innovative nanoparticles incorporating miR-320 and oxaliplatin were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The tumor pH-sensitive and charge/size-adjustable shield of polyglutamic acid-PEG protected against peptide degradation during systemic circulation. This work represents the first example of the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3β/FOXM1/β-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit cancer cell growth, cancer cell progression, and multidrug resistance simultaneously. The versatile nanoparticles with a tumor pH-functionalized coating could deliver chemotherapeutics and miRNA to the nucleus/cytoplasm. The nanoparticles successfully reduced chemotherapy-associated toxicities and maximized the antitumor efficacy of combinatorial therapy against head and neck cancer.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Hua-Ching Lin
- Division of Colorectal Surgery, Surgical Department, Chen-Hsin General Hospital, Taipei, Taiwan; Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan
| | - Wei-Hsuan Tseng
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
63
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
64
|
Wu Q, Karthivashan G, Nakhaei-Nejad M, Anand BG, Giuliani F, Kar S. Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-amyloid toxicity: Potential significance in Alzheimer's disease pathology. Int J Biol Macromol 2022; 219:1180-1196. [PMID: 36030976 DOI: 10.1016/j.ijbiomac.2022.08.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid)(PLGA) nanoparticles have been used extensively in delivering drugs to target tissues due to their excellent biocompatibility. Evidence suggests that PLGA-conjugated drugs/agents can attenuate pathology in cellular/animal models of Alzheimer's disease (AD), which is initiated by increased level/aggregation of amyloid β (Aβ) peptide generated from amyloid precursor protein (APP). The beneficial effects were attributed to conjugated-drugs rather than to PLGA nanoparticles. Interestingly, we recently reported that PLGA without any drug/agent (native PLGA) can suppress Aβ aggregation/toxicity. However, very little is known about the internalization, subcellular localization or effects of PLGA in neurons. In this study, using primary mouse cortical neurons, we first showed that native PLGA is internalized by an energy-mediated clathrin-dependent/-independent pathway and is localized in endosomal-lysosomal-autophagic vesicles. By attenuating internalization, PLGA can protect neurons against Aβ-mediated toxicity. Additionally, PLGA treatment altered expression profiles of certain AD-associated genes and decreased the levels of APP, its cleaved products α-/β-CTFs and Aβ peptides in mouse as well as iPSC-derived neurons from control and AD patients. Collectively, these results suggest that native PLGA not only protects neurons against Aβ-induced toxicity but also influences the expression of AD-related genes/proteins - highlighting PLGA's implication in normal and AD-related pathology.
Collapse
Affiliation(s)
- Qi Wu
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Govindarajan Karthivashan
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Maryam Nakhaei-Nejad
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Bibin G Anand
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Fabrizio Giuliani
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
65
|
Ou YH, Liang J, Chng WH, Muthuramalingam RPK, Ng ZX, Lee CK, Neupane YR, Yau JNN, Zhang S, Lou CKL, Huang C, Wang JW, Pastorin G. Investigations on Cellular Uptake Mechanisms and Immunogenicity Profile of Novel Bio-Hybrid Nanovesicles. Pharmaceutics 2022; 14:1738. [PMID: 36015364 PMCID: PMC9413569 DOI: 10.3390/pharmaceutics14081738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes' membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs. Hence, this study was aimed at exploring the potential cytotoxicity and immune cells' activation by nCVTs, as well as the routes through which cells internalize these biohybrid systems. The endocytic pathways were selectively inhibited to establish if the presence of cellular components in nCVTs affected the internalization route in comparison to both liposomes (made up of synthetic lipids only) and nano-cellular membranes (made up of biological material only). As a result, nCVTs showed an 8-to-40-fold higher cellular internalization than liposomes within the first hour, mainly through receptor-mediated processes (i.e., clathrin- and caveolae-mediated endocytosis), and low immunostimulatory potential (as indicated by the level of IL-1α, IL-6, and TNF-α cytokines) both in vitro and in vivo. These data confirmed that nCVTs preserved surface cues from their parent U937 cells and can be rationally engineered to incorporate ligands that enhance the selective uptake and delivery toward target cells and tissues.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Jeremy Liang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Heng Chng
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | | | - Zi Xiu Ng
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Choon Keong Lee
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Ning Nicolette Yau
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
66
|
Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
67
|
Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- P. A. Flores de los Rios
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Legaria 694, Irrigación, Ciudad de México, México
| | - R. G. Casañas Pimentel
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Legaria 694, Irrigación, Ciudad de México, México
| | - E. San Martín Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Legaria 694, Irrigación, Ciudad de México, México
| |
Collapse
|
68
|
Papadimitriou L, Theodorou A, Papageorgiou M, Voutyritsa E, Papagiannaki A, Velonia K, Ranella A. pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Zhao Y, Liu N, Liu P, Fan T, Ma R, Hong H, Chen X, Xie Z, Zhang H, Wang Q, Chen T. Robust Boron Nanoplatform Provokes Potent Tumoricidal Activities via Inhibiting Heat Shock Protein. Asian J Pharm Sci 2022; 17:728-740. [DOI: 10.1016/j.ajps.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
|
70
|
Bang JH, Ryu YC, Kim KA, Hwang BH. Targeted Delivery of Self-assembled Nanocomplex between Fusion Peptides and siRNAs for Breast Cancer Treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Batiuskaite D, Bruzaite I, Snitka V, Ramanavicius A. Assessment of TiO2 Nanoparticle Impact on Surface Morphology of Chinese Hamster Ovary Cells. MATERIALS 2022; 15:ma15134570. [PMID: 35806697 PMCID: PMC9267787 DOI: 10.3390/ma15134570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
The process of nanoparticles entering the cells of living organisms is an important step in understanding the influence of nanoparticles on biological processes. The interaction of nanoparticles with the cell membrane is the first step in the penetration of nanoparticles into cells; however, the penetration mechanism is not yet fully understood. This work reported the study of the interaction between TiO2 nanoparticles (TiO2-NPs) and Chinese hamster ovary (CHO) cells using an in vitro model. The characterization of crystalline phases of TiO2 NPs was evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD) spectrum, and atomic force microscopy (AFM). Interaction of these TiO2 nanoparticles (TiO2- NPs) with the CHO cell membrane was investigated using atomic force microscopy (AFM) and Raman spectroscopy. The XRD analysis result showed that the structure of the TiO2 particles was in the rutile phase with a crystallite size of 60 nm, while the AFM result showed that the particle size distribution had two peaks with 12.1 nm and 60.5 nm. The TEM analysis confirmed the rutile phase of TiO2 powder. Our study showed that exposure of CHO cells to TiO2-NPs caused morphological changes in the cell membranes and influenced the viability of cells. The TiO2-NPs impacted the cell membrane surface; images obtained by AFM revealed an ‘ultra structure‘ with increased roughness and pits on the surface of the membrane. The depth of the pits varied in the range of 40–80 nm. The maximal depth of the pits after the treatment with TiO2-NPs was 100% higher than the control values. It is assumed that these pits were caveolae participating in the endocytosis of TiO2-NPs. The research results suggest that the higher maximal depth of the pits after the exposure of TiO2-NPs was determined by the interaction of these TiO2-NPs with the cell’s plasma membrane. Moreover, some of pits may have been due to plasma membrane damage (hole) caused by the interaction of TiO2-NPs with membrane constituents. The analysis of AFM images demonstrated that the membrane roughness was increased with exposure time of the cells to TiO2-NPs dose. The average roughness after the treatment for 60 min with TiO2-NPs increased from 40 nm to 78 nm. The investigation of the membrane by Raman spectroscopy enabled us to conclude that TiO2-NPs interacted with cell proteins, modified their conformation, and potentially influenced the structural damage of the plasma membrane.
Collapse
Affiliation(s)
- Danute Batiuskaite
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 58 K. Donelaicio Str., LT-44248 Kaunas, Lithuania;
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio Av. 11, LT-10223 Vilnius, Lithuania;
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, 65 Studentu Str., LT-51369 Kaunas, Lithuania;
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 24 Naugarduko Str., LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Correspondence: ; Tel.: +37-060-032-332
| |
Collapse
|
72
|
Wang K, Lu X, Lu Y, Wang J, Lu Q, Cao X, Yang Y, Yang Z. Nanomaterials in Animal Husbandry: Research and Prospects. Front Genet 2022; 13:915911. [PMID: 35846144 PMCID: PMC9280890 DOI: 10.3389/fgene.2022.915911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-inflammatory, antiviral, and anti-cancer treatments are potential applications of nanomaterials in biology. To explore the latest discoveries in nanotechnology, we reviewed the published literature, focusing on co-assembled nanoparticles for anti-inflammatory and anti-tumor properties, and their applications in animal husbandry. The results show that nanoparticles have significant anti-inflammation and anti-tumor effects, demonstrating broad application prospects in animal breeding. Furthermore, pooled evidence suggests that the mechanism is to have a positive impact on inflammation and tumors through the specific drug loading by indirectly or directly targeting the disease sites. Because the precise regulatory mechanism remains unclear, most studies have focused on regulating particular sites or even specific genes in the nucleus by targeting functional co-assembled nanoparticles. Hence, despite the intriguing scenarios for nanotechnology in farmed animals, most results cannot yet be translated into field applications. Overall, nanomaterials outperformed similar materials in terms of anti-inflammatory and anti-tumor. Nanotechnology also has promising applications in animal husbandry and veterinary care, and its application and development in animal husbandry remain an exciting area of research.
Collapse
Affiliation(s)
- Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| |
Collapse
|
73
|
Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022; 14:pharmaceutics14061246. [PMID: 35745818 PMCID: PMC9228176 DOI: 10.3390/pharmaceutics14061246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% w/v). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox® eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox® eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.
Collapse
|
74
|
Trends in advanced oral drug delivery system for curcumin: A systematic review. J Control Release 2022; 348:335-345. [PMID: 35654170 DOI: 10.1016/j.jconrel.2022.05.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Although curcumin is globally recognized for its health benefits, its clinical application has been restricted by its poor aqueous solubility and stability. To overcome these limitations, nanocarrier-based drug delivery systems (NDS) are one of the most effective approaches being extensively explored over the last few decades to improve curcumin's physicochemical and pharmacological effects. Various NDS could provide productive platforms for addressing the formulation challenge of curcumin, but evidence of such systems has not been summarized. This study aimed to systematically review current evidence of lipid and polymer-based NDS for an oral delivery of curcumin focusing on in vivo models and clinical studies. Among the 48 included studies, 3 studies were randomized controlled clinical trials, while 45 studies were animal models. To date, only five curcumin NDS have been studied in healthy volunteers: γ-cyclodextrin, phytosome, liposome, microemulsion and solid dispersion, while most curcumin NDS have been studied in animal models. Most included studies found that NDS could increase oral bioavailability of curcumin as compared to free curcumin. In conclusion, this systematic review showed evidence of the positive effect of NDS for enhancement of oral bioavailability of curcumin. EXECUTIVE SUMMARY: Curcumin is globally recognized for its health benefits, but its clinical application has been limited by its poor aqueous solubility and stability, which causes poor absorption in the gastrointestinal tract (GI tract) via oral administration. Nanocarrier-based drug delivery systems (NDS) are considered as a productive platform to solve the formulation challenge of curcumin, but evidence of such systems has not been summarized. This study aimed to systematically review current evidence of lipid and polymer-based NDS for an oral delivery of curcumin focusing on in vivo models and clinical studies. Overall, most studies found that all studied NDS could increase the absorption of curcumin as compared to free curcumin. Curcumin was rapidly absorbed and exhibited a long residence time after oral administration of curcumin NDS. In summary, this systematic review showed positive impacts of NDS for enhancement of oral absorption of curcumin.
Collapse
|
75
|
Jeitler R, Glader C, Tetyczka C, Zeiringer S, Absenger-Novak M, Selmani A, Fröhlich E, Roblegg E. Investigation of Cellular Interactions of Lipid-Structured Nanoparticles With Oral Mucosal Epithelial Cells. Front Mol Biosci 2022; 9:917921. [PMID: 35677878 PMCID: PMC9170126 DOI: 10.3389/fmolb.2022.917921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid-based nanosystems enable intracellular delivery of drugs in the oral cavity for the treatment of local diseases. To rationally design such systems, suitable matrix compositions and particle properties need to be identified, and manufacturing technologies that allow reproducible production have to be applied. This is a prerequisite for the reliable and predictable performance of in-vitro biological studies. Here, we showed that solid lipid nanoparticles (SLN, palmitic acid) and nanostructured lipid carriers (NLC, palmitic acid and oleic acid in different ratios) with a size of 250 nm, a negative zeta potential, and a polydispersity index (PdI) of less than 0.3 can be reproducibly prepared by high-pressure homogenization using quality by design and a predictive model. SLN and NLC were colloidally stable after contact with physiological fluid and did not form agglomerates. The in-vitro studies clearly showed that besides particle size, surface charge and hydrophobicity, matrix composition had a significant effect. More specifically, the addition of the liquid lipid oleic acid increased the cellular uptake capacity without changing the underlying uptake mechanism. Regardless of the matrix composition, caveolin-mediated endocytosis was the major route of uptake, which was confirmed by particle localization in the endoplasmic reticulum. Thus, this work provides useful insights into the optimal composition of lipid carrier systems to enhance the intracellular uptake capacity of drugs into the oral mucosa.
Collapse
Affiliation(s)
- R. Jeitler
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - C. Glader
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - C. Tetyczka
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - S. Zeiringer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - M. Absenger-Novak
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - A. Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - E. Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - E. Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
- *Correspondence: E. Roblegg,
| |
Collapse
|
76
|
Zeng X, Jiang W, Du Z, Kokini JL. Encapsulation of tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities: A review. Crit Rev Food Sci Nutr 2022:1-14. [PMID: 35549567 DOI: 10.1080/10408398.2022.2075313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As a major class of dietary polyphenols, tannins are demonstrated to have various health-promoting properties. Although tannins have been widely utilized in food, pharmaceutical and many other industries, the applications of tannins are quite limited due to their poor stability, sensory attributes and bioavailability. Encapsulation helps improve all of these properties. Complex coacervation, one of the most effective encapsulation techniques, is known for its simplicity, low cost, scalability and reproducibility in encapsulation of functional components. In recent years, complex coacervation has been successfully used for encapsulation of tannins and tannin-rich plant extracts. In this article, the research progress in encapsulating tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities is critically reviewed for the first time. Encapsulation of tannins and tannin-rich plant extracts can effectively improve their sensory characteristics, stabilities, bioavailability, anti-hypercholesterolemia, anti-diabetic, antioxidant, anticancer and antimicrobial activities. In particular, the enhancement of biological activities of tannins and tannin-rich plant extracts is usually correlated to their improved physicochemical properties imparted by the encapsulation technique. Moreover, we introduce the issues that need to be further resolved in future studies on encapsulation of tannins and tannin-rich plant extracts by complex coacervation.
Collapse
Affiliation(s)
- Xiangquan Zeng
- Department of Food Quality and Safety, School of Food and Health, Beijing Technology and Business University, Beijing, PR China.,Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jozef L Kokini
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
77
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
78
|
Huang L, Liao Y, Li C, Ma Z, Liu Z. Multifunctional manganese-containing vaccine delivery system Ca@MnCO 3/LLO for tumor immunotherapy. BIOMATERIALS ADVANCES 2022; 136:212752. [PMID: 35929287 DOI: 10.1016/j.bioadv.2022.212752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
The ideal vaccine delivery systems can not only deliver antigens in intelligent manners but also act as adjuvants. Recently found that Mn2+ can effectively stimulate anti-tumor immune responses, and Ca2+ can regulate autophagy to promote the cross-presentation of antigens. Thus, we constructed such a manganese-containing multimode vaccine delivery system by using calcium-doped manganese carbonate microspheres (Ca@MnCO3) and perforin-listeria hemolysin (LLO), as termed as Ca@MnCO3/LLO. The two components Ca@MnCO3 and LLO, not only act as vaccine adjuvants by themselves, but also contribute to achieve cellular immunity. Among them, Ca@MnCO3 microspheres as an excellent Mn2+ and Ca2+ reservoir, can continuously release adjuvants Mn2+ and Ca2+ to enhance immune response in dendritic cells, while LLO can contribute to induce lysosomal escape. Particularly, Ca2+ was added firstly to MnCO3 microspheres to improve the stability and load capacity of the microspheres. Along with the degradation of intracellular Ca@MnCO3 microspheres, and the lysosomal membrane-lytic effects of perforin LLO, the Mn2+, Ca2+ and OVA were released to the cytoplasm. These outcomes cooperatively promote antigen cross-presentation, elicit CD8+ T cell proliferation, and finally achieve prominent anti-tumor effects. The results indicate that the manganese-containing vaccine delivery system Ca@MnCO3/LLO provides a promising platform for the construction of tumor vaccines.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yang Liao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Chenghua Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhiguo Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
79
|
Targeting vascular inflammation through emerging methods and drug carriers. Adv Drug Deliv Rev 2022; 184:114180. [PMID: 35271986 PMCID: PMC9035126 DOI: 10.1016/j.addr.2022.114180] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.
Collapse
|
80
|
Vieira AM, Silvestre OF, Silva BF, Ferreira CJ, Lopes I, Gomes AC, Espiña B, Sárria MP. pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine (Lond) 2022; 17:717-739. [PMID: 35481356 DOI: 10.2217/nnm-2022-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.
Collapse
Affiliation(s)
- Ana Mg Vieira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Oscar F Silvestre
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Bruno Fb Silva
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Celso Jo Ferreira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
| | - Ivo Lopes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Andreia C Gomes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal.,Institute of Science & Innovation for Biosustainability (IB-S), University of Minho, Braga, 4710-057, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
81
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
82
|
Fliedel L, Alhareth K, Mignet N, Fournier T, Andrieux K. Placental Models for Evaluation of Nanocarriers as Drug Delivery Systems for Pregnancy Associated Disorders. Biomedicines 2022; 10:936. [PMID: 35625672 PMCID: PMC9138319 DOI: 10.3390/biomedicines10050936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-associated disorders affect around 20% of pregnancies each year around the world. The risk associated with pregnancy therapeutic management categorizes pregnant women as "drug orphan" patients. In the last few decades, nanocarriers have demonstrated relevant properties for controlled drug delivery, which have been studied for pregnancy-associated disorders. To develop new drug dosage forms it is mandatory to have access to the right evaluation models to ensure their usage safety and efficacy. This review exposes the various placental-based models suitable for nanocarrier evaluation for pregnancy-associated therapies. We first review the current knowledge about nanocarriers as drug delivery systems and how placenta can be used as an evaluation model. Models are divided into three categories: in vivo, in vitro, and ex vivo placental models. We then examine the recent studies using those models to evaluate nanocarriers behavior towards the placental barrier and which information can be gathered from these results. Finally, we propose a flow chart on the usage and the combination of models regarding the nanocarriers and nanoparticles studied and the intended therapeutic strategy.
Collapse
Affiliation(s)
- Louise Fliedel
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Khair Alhareth
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Thierry Fournier
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| |
Collapse
|
83
|
Piao Z, Patel M, Park JK, Jeong B. Poly(l-alanine- co-l-lysine)- g-Trehalose as a Biomimetic Cryoprotectant for Stem Cells. Biomacromolecules 2022; 23:1995-2006. [PMID: 35412815 DOI: 10.1021/acs.biomac.1c01701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(l-alanine-co-l-lysine)-graft-trehalose (PAKT) was synthesized as a natural antifreezing glycopolypeptide (AFGP)-mimicking cryoprotectant for cryopreservation of mesenchymal stem cells (MSCs). FTIR and circular dichroism spectra indicated that the content of the α-helical structure of PAK decreased after conjugation with trehalose. Two protocols were investigated in cryopreservation of MSCs to prove the significance of the intracellularly delivered PAKT. In protocol I, MSCs were cryopreserved at -196 °C for 7 days by a slow-cooling procedure in the presence of both PAKT and free trehalose. In protocol II, MSCs were preincubated at 37 °C in a PAKT solution, followed by cryopreservation at -196 °C in the presence of free trehalose for 7 days by the slow-cooling procedure. Polymer and trehalose concentrations were varied by 0.0-1.0 and 0.0-15.0 wt %, respectively. Cell recovery was significantly improved by protocol II with preincubation of the cells in the PAKT solution. The recovered cells from protocol II exhibited excellent proliferation and maintained multilineage potentials into osteogenic, chondrogenic, and adipogenic differentiation, similar to MSCs recovered from cryopreservation in the traditional 10% dimethyl sulfoxide system. Ice recrystallization inhibition (IRI) activity of the polymers/trehalose contributed to cell recovery; however, intracellularly delivered PEG-PAKT was the major contributor to the enhanced cell recovery in protocol II. Inhibitor studies suggested that macropinocytosis and caveolin-dependent endocytosis are the main mechanisms for the intracellular delivery of PEG-PAKT. 1H NMR and FTIR spectra suggested that the intracellular PEG-PAKTs interact with water and stabilize the cells during cryopreservation.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
84
|
Integrating of lipophilic platinum(IV) prodrug into liposomes for cancer therapy on patient-derived xenograft model. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. J Control Release 2022; 350:60-79. [DOI: 10.1016/j.jconrel.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
86
|
Pelargonidin-3-O-Glucoside Encapsulated Pectin-Chitosan-Nanoliposomes Recovers Palmitic Acid-Induced Hepatocytes Injury. Antioxidants (Basel) 2022; 11:antiox11040623. [PMID: 35453309 PMCID: PMC9025254 DOI: 10.3390/antiox11040623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Pelargonidin-3-O-glucoside (Pg) is a well-known anthocyanin derivative possessing potential biological activity. Nonetheless, the bioactivity of Pg is limited due to instability in the physiological environment. Functionalized nanoliposomes using chitosan and/or pectin coating is an excellent carrier system for nanoencapsulation of food bioactive compounds such as Pg. Therefore, this study aimed to investigate the protective effect of Pg-loaded pectin–chitosan coated nanoliposomes against palmitic acid (PA)-induced hepatocytes injury in L02 cells. Firstly, Pg-loaded pectin–chitosan coated nanoliposomes were characterized using the DLS, HPLC, TEM, and cellular uptake study in L02 cells. Thereafter, we assayed the protective effect against PA-induced lipotoxicity, ROS and O2•− generation, mitochondrial dysfunction (MMP), and GSH depletion. Results showed that Pg-loaded nanoliposomes significantly reduced the PA-induced L02 cells toxicity via suppressing ROS production, O2•− generation, MMP collapse, and GSH reduction, whereas the free-Pg samples were not effective. On the contrary, the chitosan and/or pectin coated nanoliposomes showed higher results compared to coating-free nanoliposomes. Altogether, the results of our study ensured that Pg-loaded pectin–chitosan coated nanoliposomes was capable of reducing PA-induced hepatocytes injury. Thus, pectin–chitosan coated nanoliposomes can be useful for hepatocellular delivery of hydrophilic compounds with greater biological activity.
Collapse
|
87
|
Cao Y, Tan YF, Wong YS, Aminuddin M, Ramya B, Liew MWJ, Liu J, Venkatraman SS. Designing siRNA/chitosan-methacrylate complex nanolipogel for prolonged gene silencing effects. Sci Rep 2022; 12:3527. [PMID: 35241750 PMCID: PMC8894398 DOI: 10.1038/s41598-022-07554-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite immense revolutionary therapeutics potential, sustaining release of active small interfering RNA (siRNA) remains an arduous challenge. The development of nanoparticles with siRNA sustained release capabilities provides an avenue to enhance the therapeutic efficacy of gene-based therapy. Herein, we present a new system based on the encapsulation of siRNA/chitosan-methacrylate (CMA) complexes into liposomes to form UV crosslinkable Nanolipogels (NLGs) with sustained siRNA-release properties in vitro. We demonstrated that the CMA nanogel in NLGs can enhance the encapsulation efficiency of siRNA and provide sustained release of siRNA up to 28 days. To understand the particle mechanism of cellular entry, multiple endocytic inhibitors have been used to investigate its endocytosis pathways. The study saw positively charged NLGs entering cells via multiple endocytosis pathways, facilitating endosomal escape and slowly releasing siRNA into the cytoplasm. Transfection experiments confirmed that the crosslinked NLG delivery system provides effective transfection and prolonged silencing effect up to 14 days in cell cultures. We expect that this sustained-release siRNA NLG platform would be of interest in both fundamental biological studies and in clinical applications to extend the use of siRNA-based therapies.
Collapse
Affiliation(s)
- Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Fei Tan
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Muhammad Aminuddin
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Bhuthalingam Ramya
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Melvin Wen Jie Liew
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
88
|
GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids Surf B Biointerfaces 2022; 211:112330. [PMID: 35032851 DOI: 10.1016/j.colsurfb.2022.112330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Radiotherapy is one of the main treatment modalities for glioma, but the therapeutic efficacy is often limited by the radioresistance of tumor cells. The radiosensitization effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on tumors have been confirmed by previous studies. To enhance the specific killing effect of irradiation on tumor cells, targeted modification of radiosensitizers is urgently needed. Herein, we developed polyethylene glycol (PEG)-coated Ag@Au core-shell nanoparticles (PSGNPs) modified with GMT8 aptamer (GSGNPs) and evaluated their radiosensitization effects on glioma cells through in vivo and in vitro experiments. Transmission electron microscope image showed that the prepared PSGNPs had a spherical core-shell structure with an average size of 11 nm. The ultraviolet-visible absorption spectra and Fourier transform infrared spectra displayed that GMT8 was successfully conjugated to PSGNPs. The results of dark-field imaging revealed that the targeting ability of GSGNPs to U87 glioma cells was much better than that to normal human microvascular endothelial cells. Additionally, it was also found that the endocytic pathways of GSGNPs mainly involved clathrin-mediated endocytosis and macropinocytosis. The sensitization enhancement ratio of GSGNPs was calculated to be 1.62, which was higher than that of PSGNPs. In vivo imaging results showed that GSGNPs exhibited good tumor targeting and retention capabilities, and the fluorescence intensity ratio of Cy5-GSGNPs to Cy5-PSGNPs reached a peak at 4 h after injection. More importantly, the median survival time of mice bearing U87 glioma was significantly prolonged after intravenous administration of GSGNPs combined with radiotherapy. This work demonstrated that GSGNPs could be used as an effective nano-radiosensitizer for targeted radiotherapy of glioma.
Collapse
|
89
|
Defining Endocytic Pathways of Fucoidan-Coated PIBCA Nanoparticles from the Design of their Surface Architecture. Pharm Res 2022; 39:1135-1150. [PMID: 35233729 PMCID: PMC8887940 DOI: 10.1007/s11095-022-03202-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/13/2022] [Indexed: 12/02/2022]
Abstract
Purpose This work investigated the endocytic pathways taken by poly(isobutylcyanoacrylate) (PIBCA) nanoparticles differing in their surface composition and architecture, assuming that this might determine their efficiency of intracellular drug delivery. Methods Nanoparticles (A0, A25, A100, R0, R25 ) were prepared by anionic or redox radical emulsion polymerization using mixtures of dextran and fucoidan (0, 25, 100 % in fucoidan). Cell uptake was evaluated by incubating J774A.1 macrophages with nanoparticles. Endocytic pathways were studied by incubating cells with endocytic pathway inhibitors (chlorpromazine, genistein, cytochalasin D, methyl-ß-cyclodextrin and nocodazole) and nanoparticle uptake was evaluated by flow cytometry and confocal microscopy. Results The fucoidan-coated PIBCA nanoparticles A25 were internalized 3-fold more efficiently than R25 due to the different architecture of the fucoidan chains presented on the surface. Different fucoidan density and architecture led to different internalization pathway preferred by the cells. Large A100 nanoparticles with surface was covered with fucoidan chains in a loop and train configuration were internalized the most efficiently, 47-fold compared with A0, and 3-fold compared with R0 and R25 through non-endocytic energy-independent pathways and reached the cell cytoplasm. Conclusion Internalization pathways of PIBCA nanoparticles by J774A.1 macrophages could be determined by nanoparticle fucoidan surface composition and architecture. In turn, this influenced the extent of internalization and localization of accumulated nanoparticles within cells. The results are of interest for rationalizing the design of nanoparticles for potential cytoplamic drug delivery by controlling the nature of the nanoparticle surface. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03202-4.
Collapse
|
90
|
Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. NANOMATERIALS 2022; 12:nano12040690. [PMID: 35215018 PMCID: PMC8877036 DOI: 10.3390/nano12040690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/07/2022]
Abstract
The approval of new nanomedicines requires a deeper understanding of the interaction between cells and nanoparticles (NPs). Silica (SiO2) and gold (Au) NPs have shown great potential in biomedical applications, such as the delivery of therapeutic agents, diagnostics, and biosensors. NP-cell interaction and internalization can trigger several cellular responses, including gene expression regulation. The identification of differentially expressed genes in response to NP uptake contributes to a better understanding of the cellular processes involved, including potential side effects. We investigated gene regulation in human macrophages and lung epithelial cells after acute exposure to spherical 60 nm SiO2 NPs. SiO2 NPs uptake did not considerably affect gene expression in epithelial cells, whereas five genes were up-regulated in macrophages. These genes are principally related to inflammation, chemotaxis, and cell adhesion. Nuclear receptor NR4A1, an important modulator of inflammation in macrophages, was found to be up-regulated. The expression of this gene was also increased upon 1 h of macrophage exposure to spherical 50 nm AuNPs and 200 nm spherical SiO2 NPs. NR4A1 can thus be an important immediate regulator of inflammation provoked by NP uptake in macrophages.
Collapse
|
91
|
Ho HM, Craig DQM, Day RM. Design of Experiment Approach to Modeling the Effects of Formulation and Drug Loading on the Structure and Properties of Therapeutic Nanogels. Mol Pharm 2022; 19:602-615. [PMID: 35061948 PMCID: PMC9097514 DOI: 10.1021/acs.molpharmaceut.1c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/19/2023]
Abstract
The physical properties of nanoparticles may affect the uptake mechanism, biodistribution, stability, and other physicochemical properties of drug delivery systems. This study aimed to first develop a model exploring the factors controlling the nanogel physical properties using a single drug (propranolol), followed by an evaluation of whether these models can be applied more generally to a range of drugs. Size, polydispersity, ζ potential, and encapsulation efficiency were investigated using a design of experiment (DOE) approach to optimize formulations by systematically identifying the effects of, and interactions between, parameters associated with nanogel formulation and drug loading. Three formulation factors were selected, namely, chitosan concentration, the ratio between the chitosan and cross-linker─sodium triphosphate─and the ratio between the chitosan and drug. The results indicate that the DOE approach can be used not only to model but also to predict the size and polydispersity index (PDI). To explore the application of these prediction models with other drugs and to identify the relationship between the drug structure and nanogel properties, nanogels loaded with 12 structurally distinct drugs and 6 structurally similar drugs were fabricated at the optimal condition for propranolol in the model. The measured size, PDI, and ζ potential of the nanogels could not be modeled using distinct DOE parameters for dissimilar drugs, indicating that each drug requires a separate analysis. Nevertheless, for drugs with structural similarities, various linear and nonlinear trends were observed in the size, PDI, and ζ potential of nanogels against selected molecular descriptors, indicating that there are indeed relationships between the drug molecular structure and the performance outcomes, which may be modeled and predicted using the DOE approach. In conclusion, the study demonstrates that DOE models can be applied to model and predict the influence of formulation and drug loading on key performance parameters. While distinct models are required for structurally unrelated drugs, it was possible to establish correlations for the drug series investigated, which were based on polarity, hydrophobicity, and polarizability, thereby elucidating the importance of the interactions between the drug and the nanogels based on the nanogel properties and thus deepening the understanding of the drug-loading mechanisms in nanogels.
Collapse
Affiliation(s)
- Hei Ming
Kenneth Ho
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
- Centre
for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, U.K.
| | - Duncan Q. M. Craig
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Richard M. Day
- Centre
for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, U.K.
| |
Collapse
|
92
|
Shahabadi N, Akbari A, Karampour F, Falsafi M, Zendehcheshm S. In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on γ-Fe 2O 3@SiO 2 as new nanoparticles. J Biomol Struct Dyn 2022; 41:2300-2320. [PMID: 35120416 DOI: 10.1080/07391102.2022.2030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, nanoparticles with both anticancer and antibacterial features were synthesized through loading chlorogenic acid (CGA) of essential oils on magnetic nanoparticles (MNPs). Characterization of γ-Fe2O3@SiO2-CGA MNPs was performed using Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) that show effective coating of the MNPs with SiO2 and CGA ligand and spherical shape of the nanoparticles with a mean diameter of 16 nm, respectively. The cytotoxicity study demonstrated that γ-Fe2O3@SiO2-CGA MNPs had fewer toxic effects on normal cells (Huvec) than on cancerous cells (U-87 MG, A-2780 and A-549), and could be a new potential candidate for use in biological and pharmaceutical applications. The interaction of calf thymus deoxyribonucleic acid (ct-DNA) with γ-Fe2O3@SiO2-CGA MNPs indicated that the anticancer activity might be associated with the DNA binding properties of γ-Fe2O3@SiO2-CGA MNPs. Moreover, the interaction of γ-Fe2O3@SiO2-CGA MNPs with human serum albumin (HSA) suggests that the native conformation of HSA was preserved at the level of secondary structure, indicating that the γ-Fe2O3@SiO2-CGA MNPs do not show any cytotoxicity effect when they are injected into the blood. Antibacterial tests were performed and represented γ-Fe2O3@SiO2-CGA MNPs attained better antibacterial function than CGA as free.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Akbari
- Chemistry Department, Payame Noor University, Tehran, Iran
| | | | | | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
93
|
Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
94
|
Chen R, Zhai YY, Sun L, Wang Z, Xia X, Yao Q, Kou L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J Pharm Sci 2022; 17:268-283. [PMID: 35582636 PMCID: PMC9091614 DOI: 10.1016/j.ajps.2022.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
|
95
|
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030860. [PMID: 35164121 PMCID: PMC8839758 DOI: 10.3390/molecules27030860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.
Collapse
|
96
|
Kebede L, Masoomi Dezfooli S, Seyfoddin A. Medicinal Cannabis Pharmacokinetics and Potential Methods of Delivery. Pharm Dev Technol 2022; 27:202-214. [PMID: 35084279 DOI: 10.1080/10837450.2022.2035748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evidence of cannabis exhibiting polypharmacological properties has been accumulating for the past few decades, particularly for its analgesic and anti-inflammatory abilities. However, inconsistent dosage forms and erratic absorption levels prevent medicinal cannabis products from becoming mainstream recommendations for pain management. Current cannabis products fail to address the undesirable characteristics associated with cannabinoids such as low solubility, poor bioavailability, and lack of specificity, all of which contribute to low therapeutic effect. In this narrative view, the pharmacokinetics of cannabis products and possible methods of drug delivery, in the form of carrier systems, will be explored. The incorporation of cannabinoids into carrier systems provides an opportunity to improve absorption levels, increase bioavailability and reduce adverse events allowing for a greater therapeutic effect.
Collapse
Affiliation(s)
- Lidya Kebede
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Seyedehsara Masoomi Dezfooli
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
97
|
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12:1297. [PMID: 35079042 PMCID: PMC8789857 DOI: 10.1038/s41598-022-05301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain.
| | - Josefa Álvarez-Fuentes
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Mercedes Fernández-Arévalo
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Lucía Martín-Banderas
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| |
Collapse
|
98
|
Wang L, Wang B, Liu E, Zhao Y, He B, Wang C, Xing G, Tang Z, Zhou Y, Qu S. Polyetherimide functionalized carbon dots with enhanced red emission in aqueous solution for bioimaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
99
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
100
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|