51
|
Merae Alshahrani M. A glance at the emerging diagnostic biomarkers in the most prevalent genitourinary cancers. Saudi J Biol Sci 2022; 29:2072-2084. [PMID: 35531253 PMCID: PMC9073037 DOI: 10.1016/j.sjbs.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Genitourinary cancers comprise of a heterogenous group of cancers of which renal cell carcinoma, urothelial bladder carcinoma, and prostate adenocarcinoma are the most commonly encountered subtypes. A lot of research is ongoing using various strategies for exploration of novel biomarkers for genitourinary cancers. These biomarkers would not reduce the need for invasive diagnostic techniques but also could be used for early and accurate diagnosis to improve the clinical management required for the disease. Moreover, selecting the appropriate treatment regimen for the responsive patients based on these biomarkers would reduce the treatment toxicity as well as cost. Biomarkers identified using various advanced techniques like next generation sequencing and proteomics, which have been classified as immunological biomarkers, tissue-specific biomarkers and liquid biomarkers. Immunological biomarkers include markers of immunological pathways such as CTLA4, PD-1/PDl-1, tissue biomarkers include tissue specific molecules such as PSA antigen and liquid biomarkers include biomarkers detectable in urine, circulating cells etc. The purpose of this review is to provide a brief introduction to the most prevalent genitourinary malignancies, including bladder, kidney, and prostate cancers along with a major focus on the novel diagnostic biomarkers and the importance of targeting them prior to genitourinary cancers treatment. Understanding these biomarkers and their potential in diagnosis of genitourinary cancer would not help in early and accurate diagnosis as mentioned above but may also lead towards a personalized approach for better diagnosis, prognosis and specified treatment approach for an individual.
Collapse
|
52
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
53
|
Nelson VK, Pullaiah CP, Saleem Ts M, Roychoudhury S, Chinnappan S, Vishnusai B, Ram Mani R, Birudala G, Bottu KS. Natural Products as the Modulators of Oxidative Stress: An Herbal Approach in the Management of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:161-179. [PMID: 36472822 DOI: 10.1007/978-3-031-12966-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the most commonly diagnosed and frequently occurred cancer in the males globally. The current treatment strategies available to treat prostate cancer are not much effective and express various adverse effects. Hence, there is an urgent need to identify novel treatment that can improve patient outcome. From times immemorial, natural products are highly recognized for novel drug development for various diseases including cancer. Cancer cells generally maintain higher basal levels of reactive oxygen species (ROS) when compared to normal cells due to its high metabolic rate. However, initiation of excess intracellular ROS production can not be tolerated by the cancer cells and induce several cell death signals which are in contrast to normal cells. Therefore, small molecules of natural origin that induce ROS can potentially kill cancer cells in specific and provide a better opportunity to develop a novel drug therapy. In this review, we elaborated various classes of medicinal compounds and their mechanism of killing prostate cancer cells through direct or indirect ROS generation. This can generate a novel thought to develop promising drug candidate to treat prostate cancer patients.
Collapse
Affiliation(s)
- Vinod K Nelson
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (Autonomous), Anantapuramu, Andhra Pradesh, India.
| | - Chitikela P Pullaiah
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Chennai, Tamil Nadu, India
| | - Mohammed Saleem Ts
- College of Pharmacy, Riyadh ELM University, Riyadh, Kingdom of Saudi Arabia, Riyadh
| | | | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Beere Vishnusai
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ravishankar Ram Mani
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Geetha Birudala
- Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Kavya Sree Bottu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
54
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
55
|
Accuracy of 68Ga-PSMA PET/CT for lymph node and bone primary staging in prostate cancer. Urol Oncol 2021; 40:104.e17-104.e21. [PMID: 34911650 DOI: 10.1016/j.urolonc.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The aim of this study is to assess the accuracy of the 68Ga-PSMA PET/CT for lymph nodes and bones in the primary stage of prostate cancer. METHODS A total of 126 patients who were submitted to 68Ga-PSMA PET/CT from January 2016 to February 2019 for prostate cancer staging, detection of clinically significant lesions or active surveillance were included in this study. All studies were read by 2 experienced physicians (a nuclear physician and a radiologist). The reports were made in consensus and used by one of the authors to classify the exam in positive or negative. We evaluated presence of abnormal uptake in the prostate, lymph nodes, and bone. The reference standards were histopathological confirmation, confirmatory imaging exams and/or clinical follow-up showing lesion(s) regression after specific treatment, or typical osseous metastatic lesions and highly increased PSA levels. RESULTS Measurement of diagnostic performance indicated a sensitivity, specificity and accuracy of 75%, 96.3%, and 90.8%, respectively, for lymph node involvement, and 90.9%, 50%, and 76.5%, respectively for metastatic bone lesions. CONCLUSION This study showed high specificity and accuracy of 68Ga-PSMA PET/CT for lymph node and bone involvement in prostate cancer staging.
Collapse
|
56
|
Sharma A, Kumar S, Pandey AK, Arora G, Sharma A, Seth A, Kumar R. Haralick texture features extracted from Ga-68 PSMA PET/CT to differentiate normal prostate from prostate cancer: a feasibility study. Nucl Med Commun 2021; 42:1347-1354. [PMID: 34392297 DOI: 10.1097/mnm.0000000000001469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Role of texture parameters on the basis of Ga-68 PSMA PET/CT in prostate cancer (Pca) is largely unexplored. Present work done is a preliminary study that aims to evaluate the role of Haralick texture features on the basis of Ga-68 PSMA PET/CT in Pca in which texture features were used to differentiate between normal prostate and Pca tissue. METHODS The study retrospectively enrolled patients in two groups: group 1 included 30 patients with biopsy-proven adenocarcinoma prostate and median age 64 years (range: 50-82 years) who underwent baseline Ga-68 PSMA PET/CT prior to therapy; group 2 included 24 patients with pathologies other than Pca and median age 53.5 years (range: 18-80 years) who underwent Ga-68 PSMA PET/CT as part of another study in our department. Patients in group 2 did not have any prostate pathology and served as controls for the study. The segmented images of prostate (3-D image) were used to calculate 11 Haralick texture features in MATLAB. SUVmax was also evaluated. All parameters were compared among the two groups using appropriate statistical analysis and P value <0.05 was considered significant. RESULTS All 11 Haralick texture features, as well as SUVmax, were significantly different among Pca and controls (P < 0.05). Among the texture features, contrast was most significant (P value of Mann-Whitney U <0.001) in differentiating Pca from normal prostate with AUROC curve of 82.9% with sensitivity and specificity 83.30% and 73.30%, respectively at cut-off 0.640. SUVmax was also significant with AUROC curve 94.0% and sensitivity and specificity 62.5% and 90%, respectively at cut-off 5.7. A significant negative correlation of SUVmax was observed with contrast. CONCLUSION Haralick texture features have a significant role in differentiating Pca and normal prostate.
Collapse
Affiliation(s)
| | | | - Anil Kumar Pandey
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | - Geetanjali Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | | | - Amlesh Seth
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| |
Collapse
|
57
|
Mendes B, Domingues I, Silva A, Santos J. Prostate Cancer Aggressiveness Prediction Using CT Images. Life (Basel) 2021; 11:life11111164. [PMID: 34833040 PMCID: PMC8618689 DOI: 10.3390/life11111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate Cancer (PCa) is mostly asymptomatic at an early stage and often painless requiring active surveillance screening. Transrectal Ultrasound Guided Biopsy (TRUS) is the principal method to diagnose PCa following a histological examination by observing cell pattern irregularities and assigning the Gleason Score (GS) according to the recommended guidelines. This procedure presents sampling errors and, being invasive may cause complications to the patients. External Beam Radiotherapy Treatment (EBRT) is presented as curative option for localised and locally advanced disease, as a palliative option for metastatic low-volume disease or after prostatectomy for prostate bed and pelvic nodes salvage. In the EBRT worflow a Computed Tomography (CT) scan is performed as the basis for dose calculations and volume delineations. In this work, we evaluated the use of data-characterization algorithms (radiomics) from CT images for PCa aggressiveness assessment. The fundamental motivation relies on the wide availability of CT images and the need to provide tools to assess EBRT effectiveness. We used Pyradiomics and Local Image Features Extraction (LIFEx) to extract features and search for a radiomic signature within CT images. Finnaly, when applying Principal Component Analysis (PCA) to the features, we were able to show promising results.
Collapse
Affiliation(s)
- Bruno Mendes
- Centro de Investigação do Instituto Português de Oncologia do Porto (CI-IPOP), Grupo de Física Médica, Radiobiologia e Protecção Radiológica, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
- Correspondence:
| | - Inês Domingues
- Centro de Investigação do Instituto Português de Oncologia do Porto (CI-IPOP), Grupo de Física Médica, Radiobiologia e Protecção Radiológica, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Instituto Superior de Engenharia de Coimbra (ISEC), 3030-199 Coimbra, Portugal
| | - Augusto Silva
- IEETA, Universidade de Aveiro (UA), 3810-193 Aveiro, Portugal;
| | - João Santos
- Centro de Investigação do Instituto Português de Oncologia do Porto (CI-IPOP), Grupo de Física Médica, Radiobiologia e Protecção Radiológica, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-313 Porto, Portugal
| |
Collapse
|
58
|
Wolrab D, Jirásko R, Peterka O, Idkowiak J, Chocholoušková M, Vaňková Z, Hořejší K, Brabcová I, Vrána D, Študentová H, Melichar B, Holčapek M. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci Rep 2021; 11:20322. [PMID: 34645896 PMCID: PMC8514434 DOI: 10.1038/s41598-021-99586-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is a preferred method for efficient population screening, because blood collection is well embedded in clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% for prostate cancer. No association of statistical models with tumor stage is observed. The statistically most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective study has to be performed to verify clinical utility.
Collapse
Affiliation(s)
- Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ivana Brabcová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
- Comprehensive Cancer Center Nový Jičín, Hospital Nový Jičín, Nový Jičín, Czech Republic
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
59
|
A New Approach for Prostate Cancer Diagnosis by miRNA Profiling of Prostate-Derived Plasma Small Extracellular Vesicles. Cells 2021; 10:cells10092372. [PMID: 34572021 PMCID: PMC8467918 DOI: 10.3390/cells10092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Vesicular miRNA has emerged as a promising marker for various types of cancer, including prostate cancer (PC). In the advanced stage of PC, the cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant portion of circulating vesicles and may mediate a detectable change in the plasma vesicular miRNA profile. However, SEVs secreted by small tumor in the prostate gland constitute a tiny fraction of circulating vesicles and cause undetectable miRNA pattern changes. Thus, the isolation and miRNA profiling of a specific prostate-derived fraction of SEVs can improve the diagnostic potency of the methods based on vesicular miRNA analysis. Prostate-specific membrane antigen (PSMA) was selected as a marker of prostate-derived SEVs. Super-paramagnetic beads (SPMBs) were functionalized by PSMA-binding DNA aptamer (PSMA-Apt) via a click reaction. The efficacy of SPMB-PSMA-Apt complex formation and PSMA(+)SEVs capture were assayed by flow cytometry. miRNA was isolated from the total population of SEVs and PSMA(+)SEVs of PC patients (n = 55) and healthy donors (n = 30). Four PC-related miRNAs (miR-145, miR-451a, miR-143, and miR-221) were assayed by RT-PCR. The click chemistry allowed fixing DNA aptamers onto the surface of SPMB with an efficacy of up to 89.9%. The developed method more effectively isolates PSMA(+)SEVs than relevant antibody-based technology. The analysis of PC-related miRNA in the fraction of PSMA(+)SEVs was more sensitive and revealed distinct diagnostic potency (AUC: miR-145, 0.76; miR-221, 0.7; miR-451a, 0.65; and miR-141, 0.64) than analysis of the total SEV population. Thus, isolation of prostate-specific SEVs followed by analysis of vesicular miRNA might be a promising PC diagnosis method.
Collapse
|
60
|
Xu B, Li G, Kong C, Chen M, Hu B, Jiang Q, Li N, Zhou L. A multicenter retrospective study on evaluation of predicative factors for positive biopsy of prostate cancer in real-world setting. Curr Med Res Opin 2021; 37:1617-1625. [PMID: 34192993 DOI: 10.1080/03007995.2021.1949270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the predictors for positive biopsy in prostate cancer (PCa) patients and develop a risk-stratification score model for positive biopsy rate in patients with prostate specific antigen (PSA) in the gray zone. METHODS In this retrospective, multicenter, real-world study, Chinese patients receiving prostate biopsy for the first time were included. The study evaluated the positive biopsy rate, predictors for positive biopsy and a risk prediction model for PSA 4-10 ng/mL PCa was developed. The univariate and multivariate logistic regression analyses were used to identify the risk factors. RESULTS A total of 2426 patients were included in the study. The biopsy positive rate was 47.57%, 25.77%, and 60.57% among overall patients, total PSA (t-PSA) 4-10 ng/mL patients, and PSA > 10 ng/mL patients respectively. Elderly age 60-74, ≥75, multi parametric magnetic resonance imaging (MP-MRI), pre-operative PSA > 10 and PSA density (PSAD) significantly increased the positive rate in overall population, and elderly age, MP-MRI, positive digital rectal examination and f-PSA were significant predictors for positive biopsy in PSA 4-10 ng/mL population. A risk prediction model for positive biopsy rate in patients with PSA in the gray zone was developed. Area under curve (AUC) was associated with low accuracy for all the variables used such as tPSA (0.53), PSAD (0.57), frequency of puncture (0.53) and MP-MRI (0.64) in prediction of biopsy positive rate. CONCLUSION Our study evaluated the significant predicative factors for positive biopsy and the PCa risk prediction model developed might help Clinicians to avoid unnecessary biopsy in patients with PSA in gray zone.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuize Kong
- Department of Urology, First hospital of China Medical University, Shenyang, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bin Hu
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningchen Li
- Department of Urology, Peking University Shougang Hospital, Peking University Health Science Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| |
Collapse
|
61
|
Dai Z, Liu Y, Huangfu Z, Wang L, Liu Z. Magnetic Resonance Imaging (MRI)-Targeted Biopsy in Patients with Prostate-Specific Antigen (PSA) Levels <20 ng/mL: A Single-Center Study in Northeastern China. Med Sci Monit 2021; 27:e930234. [PMID: 34365459 PMCID: PMC8359686 DOI: 10.12659/msm.930234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background We investigated the feasibility of applying magnetic resonance imaging (MRI)-targeted biopsy (TB) in patients with prostate-specific antigen (PSA) levels <20 ng/mL. Material/Methods We retrospectively analyzed 218 patients with PSA levels <20 ng/mL and suspicious lesions according to the Prostate Imaging Recording and Data System version 2.0 (PI-RADS v2). All 218 men underwent transperineal MRI-TB, followed by template-guided 12-core systematic biopsy (SB). Of the 218 patients undergoing TB, 100 received MRI-ultrasound-assisted software fusion biopsy (FB) and 118 received cognitive biopsy (CB). Clinically significant prostate cancer (csPCa) was defined as a Gleason score ≥3+4. Results The overall TB positive rate was similar to that of SB (P=0.156), but with a higher diagnostic rate for csPCa (P=0.034). SB misdiagnosed csPCa in 11.47% of cases; TB misdiagnosed csPCa in 5.50% of cases. SB+TB detected more tumors with a Gleason score of 7 than did SB alone (43 vs 22). Detection rates of csPCa were similar for CB and FB (P=0.217). In total, 47 men had 2 MRI-determined suspicious areas. Of 265 suspicious areas, 143 (53.96%) had a PI-RADS v2 score of 3; 92 (34.71%) had a score of 4; and 30 (11.32%) had a score of 5. The positive detection rates for csPCa in patients with PI-RADS v2 scores of 3, 4, and 5, were 11.19%, 48.91%, and 80.00%, respectively. Conclusions TB increased the positive biopsy detection rate but missed some cases of csPCa. TB combined with SB may be the most suitable biopsy for patients with PSA <20 ng/mL.
Collapse
Affiliation(s)
- Zhihong Dai
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yangyang Liu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Zhao Huangfu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Liang Wang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Zhiyu Liu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
62
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
63
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
64
|
Bernstein DE, Piedad J, Hemsworth L, West A, Johnston ID, Dimov N, Inal JM, Vasdev N. Prostate cancer and microfluids. Urol Oncol 2021; 39:455-470. [PMID: 33934962 DOI: 10.1016/j.urolonc.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
Microfluidic systems aim to detect sample matter quickly with high sensitivity and resolution, on a small scale. With its increased use in medicine, the field is showing significant promise in prostate cancer diagnosis and management due, in part, to its ability to offer point-of-care testing. This review highlights some of the research that has been undertaken in respect of prostate cancer and microfluidics. Firstly, this review considers the diagnosis of prostate cancer through use of microfluidic systems and analyses the detection of prostate specific antigen, proteins, and circulating tumor cells to highlight the scope of current advancements. Secondly, this review analyses progressions in the understanding of prostate cancer physiology and considers techniques used to aid treatment of prostate cancer, such as the creation of a micro-environment. Finally, this review highlights potential future roles of microfluidics in assisting prostate cancer, such as in exosomal analysis. In conclusion, this review shows the vast scope and application of microfluidic systems and how these systems will ensure advancements to future prostate cancer management.
Collapse
Affiliation(s)
- Darryl Ethan Bernstein
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
| | - John Piedad
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Lara Hemsworth
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Alexander West
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Ian D Johnston
- School of Physics, Engineering & Computer Science, University of Hertfordshire, UK
| | - Nikolay Dimov
- School of Physics, Engineering & Computer Science, University of Hertfordshire, UK
| | - Jameel M Inal
- School of Life and Medical Sciences, University of Hertfordshire, UK; School of Human Sciences, London Metropolitan University, UK
| | - Nikhil Vasdev
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK; School of Life and Medical Sciences, University of Hertfordshire, UK.
| |
Collapse
|
65
|
Marima R, Hull R, Mathabe K, Setlai B, Batra J, Sartor O, Mehrotra R, Dlamini Z. Prostate cancer racial, socioeconomic, geographic disparities: targeting the genomic landscape and splicing events in search for diagnostic, prognostic and therapeutic targets. Am J Cancer Res 2021; 11:1012-1030. [PMID: 33948343 PMCID: PMC8085879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of deaths in men globally. This is a heterogeneous and complex disease that urgently warrants further insight into its pathology. Developed countries have thus far the highest PCa incidence rates, with comparatively low mortality rates. Even though PCa in the Asian population seems to have high incidence and mortality rates, the African countries are emerging as the focal center for this disease. It has also been reported that the Sub-Saharan (SSA) countries have both the highest incidence and mortality rates. To date, few studies have reported the link between PCa and African populations. Adequate evidence is still missing to fully comprehend this relationship. While it has been brought to attention that racial, geographical and socioeconomic status are contributing factors, men of African descent across the globe, irrespective of their geographical position have higher PCa incidence and mortality rates compared to their white counterparts. To date, hormone therapy is the mainstay treatment of PCa, while the dysregulation of androgen receptor (AR) signaling is a hallmark of PCa. One of the emerging problems with this therapeutic approach is resistance to antiandrogens, and that AR splice isoforms implicated in the progression of PCa lack the therapeutic ligand-binding domain (LBD) target. AR splice variants targeted therapy is emerging and in clinical trials. Leveraging PCa transcriptomics is key towards PCa precision medicine. The aim of this review is to outline the PCa epidemiology globally and in Africa, PCa associated risk factors, discuss AR signaling and PCa mechanisms, the role of dysregulated splicing in PCa as novel prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| | - Kgomotso Mathabe
- Department of Urology, Faculty of Health Sciences, University of PretoriaHatfield 0028, South Africa
| | - Botle Setlai
- Department of Surgery, Faculty of Health Sciences, University of PretoriaHatfield 0028, South Africa
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre - Queensland, Translational Research InstituteBrisbane 4102, Australia
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane 4102, Australia
| | - Oliver Sartor
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
- Tulane Cancer Center, Tulane Medical SchoolNew Orleans, LA 70112, United States
| | - Ravi Mehrotra
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
- India Cancer Research Consortium (ICMR-DHR) Department of Health ResearchRed Cross Road, New Delhi 110001, India
| | - Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| |
Collapse
|
66
|
The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review. Int J Mol Sci 2021; 22:ijms22073608. [PMID: 33808504 PMCID: PMC8036576 DOI: 10.3390/ijms22073608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.
Collapse
|
67
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
68
|
Satapathy S, Singh H, Kumar R, Mittal BR. Diagnostic Accuracy of 68Ga-PSMA PET/CT for Initial Detection in Patients With Suspected Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2021; 216:599-607. [PMID: 32755196 DOI: 10.2214/ajr.20.23912] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND. Early diagnosis is important in the overall management of prostate cancer (PCa). Gallium-68-labeled prostate-specific membrane antigen (PSMA) PET/CT has an established role in the detection of recurrent disease and staging of patients with intermediate- to high-risk PCa. However, only a small number of studies have evaluated its role in the initial diagnosis of PCa. OBJECTIVE. This systematic review was conducted to evaluate the diagnostic performance of 68Ga-PSMA PET/CT in the initial detection of PCa in patients with clinical or biochemical findings suspicious for PCa. EVIDENCE ACQUISITION. This systematic review followed PRISMA guidelines. Searches in PubMed, Scopus, and Embase were conducted using relevant keywords, and articles published through April 30, 2020, were included. Using histopathology results as the reference standard, the numbers of true- and false-positives and true- and false-negatives were extracted. Pooled estimates of diagnostic test accuracy-including sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and summary ROC (SROC) curve-were generated using bivariate random-effects meta-analysis. EVIDENCE SYNTHESIS. Seven studies comprising 389 patients were included in the systematic review and meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for the initial diagnosis of PCa using 68Ga-PSMA PET/CT were 0.97 (95% CI, 0.90-0.99), 0.66 (95% CI, 0.52-0.78), 2.86 (95% CI, 1.95-4.20), and 0.05 (95% CI, 0.01-0.15), respectively. The test had high accuracy; the area under the SROC curve was 0.91 (95% CI, 0.88-0.93). CONCLUSION. Gallium-68-labeled PSMA PET/CT had excellent sensitivity and negative likelihood ratio in the initial diagnosis of PCa in patients with clinical or biochemical findings suspicious for PCa. CLINICAL IMPACT. Gallium-68-labeled PSMA PET/CT had high diagnostic accuracy for the initial detection of PCa in patients with clinical or biochemical findings suspicious for PCa and has potential utility as a rule-out test for these patients.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- All authors: Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Harmandeep Singh
- All authors: Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Rajender Kumar
- All authors: Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Bhagwant Rai Mittal
- All authors: Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| |
Collapse
|
69
|
Xie J, Rice MA, Chen Z, Cheng Y, Hsu EC, Chen M, Song G, Cui L, Zhou K, Castillo JB, Zhang CA, Shen B, Chin FT, Kunder CA, Brooks JD, Stoyanova T, Rao J. In Vivo Imaging of Methionine Aminopeptidase II for Prostate Cancer Risk Stratification. Cancer Res 2021; 81:2510-2521. [PMID: 33637565 DOI: 10.1158/0008-5472.can-20-2969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is one of the most common malignancies worldwide, yet limited tools exist for prognostic risk stratification of the disease. Identification of new biomarkers representing intrinsic features of malignant transformation and development of prognostic imaging technologies are critical for improving treatment decisions and patient survival. In this study, we analyzed radical prostatectomy specimens from 422 patients with localized disease to define the expression pattern of methionine aminopeptidase II (MetAP2), a cytosolic metalloprotease that has been identified as a druggable target in cancer. MetAP2 was highly expressed in 54% of low-grade and 59% of high-grade cancers. Elevated levels of MetAP2 at diagnosis were associated with shorter time to recurrence. Controlled self-assembly of a synthetic small molecule enabled design of the first MetAP2-activated PET imaging tracer for monitoring MetAP2 activity in vivo. The nanoparticles assembled upon MetAP2 activation were imaged in single prostate cancer cells with post-click fluorescence labeling. The fluorine-18-labeled tracers successfully differentiated MetAP2 activity in both MetAP2-knockdown and inhibitor-treated human prostate cancer xenografts by micro-PET/CT scanning. This highly sensitive imaging technology may provide a new tool for noninvasive early-risk stratification of prostate cancer and monitoring the therapeutic effect of MetAP2 inhibitors as anticancer drugs. SIGNIFICANCE: This study defines MetAP2 as an early-risk stratifier for molecular imaging of aggressive prostate cancer and describes a MetAP2-activated self-assembly small-molecule PET tracer for imaging MetAP2 activity in vivo.
Collapse
Affiliation(s)
- Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Zixin Chen
- Department of Chemistry, Stanford University, Stanford, California
| | - Yunfeng Cheng
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Guosheng Song
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kaixiang Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Chiyuan A Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - James D Brooks
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.,Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California. .,Department of Chemistry, Stanford University, Stanford, California
| |
Collapse
|
70
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
71
|
Kawahara R, Recuero S, Srougi M, Leite KRM, Thaysen-Andersen M, Palmisano G. The Complexity and Dynamics of the Tissue Glycoproteome Associated With Prostate Cancer Progression. Mol Cell Proteomics 2021; 20:100026. [PMID: 33127837 PMCID: PMC8010466 DOI: 10.1074/mcp.ra120.002320] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
The complexity and dynamics of the immensely heterogeneous glycoproteome of the prostate cancer (PCa) tumor microenvironment remain incompletely mapped, a knowledge gap that impedes our molecular-level understanding of the disease. To this end, we have used sensitive glycomics and glycoproteomics to map the protein-, cell-, and tumor grade-specific N- and O-glycosylation in surgically removed PCa tissues spanning five histological grades (n = 10/grade) and tissues from patients with benign prostatic hyperplasia (n = 5). Quantitative glycomics revealed PCa grade-specific alterations of the oligomannosidic-, paucimannosidic-, and branched sialylated complex-type N-glycans, and dynamic remodeling of the sialylated core 1- and core 2-type O-glycome. Deep quantitative glycoproteomics identified ∼7400 unique N-glycopeptides from 500 N-glycoproteins and ∼500 unique O-glycopeptides from nearly 200 O-glycoproteins. With reference to a recent Tissue and Blood Atlas, our data indicate that paucimannosidic glycans of the PCa tissues arise mainly from immune cell-derived glycoproteins. Furthermore, the grade-specific PCa glycosylation arises primarily from dynamics in the cellular makeup of the PCa tumor microenvironment across grades involving increased oligomannosylation of prostate-derived glycoproteins and decreased bisecting GlcNAcylation of N-glycans carried by the extracellular matrix proteins. Furthermore, elevated expression of several oligosaccharyltransferase subunits and enhanced N-glycoprotein site occupancy were observed associated with PCa progression. Finally, correlations between the protein-specific glycosylation and PCa progression were observed including increased site-specific core 2-type O-glycosylation of collagen VI. In conclusion, integrated glycomics and glycoproteomics have enabled new insight into the complexity and dynamics of the tissue glycoproteome associated with PCa progression generating an important resource to explore the underpinning disease mechanisms.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, Brazil; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Saulo Recuero
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Katia R M Leite
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
72
|
S VS, Royea R, Buckman KJ, Benardis M, Holmes J, Fletcher RL, Eyk N, Rajendra Acharya U, Ellenhorn JDI. An introduction to the Cyrcadia Breast Monitor: A wearable breast health monitoring device. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105758. [PMID: 33007593 DOI: 10.1016/j.cmpb.2020.105758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The most common breast cancer detection modalities are generally limited by radiation exposure, discomfort, high costs, inter-observer variabilities in image interpretation, and low sensitivity in detecting cancer in dense breast tissue. Therefore, there is a clear need for an affordable and effective adjunct modality that can address these limitations. The Cyrcadia Breast Monitor (CBM) is a non-invasive, non-compressive, and non-radiogenic wearable device developed as an adjunct to current modalities to assist in the detection of breast tissue abnormalities in any type of breast tissue. METHODS The CBM records thermodynamic metabolic data from the breast skin surface over a period of time using two wearable biometric patches consisting of eight sensors each and a data recording device. The acquired multi-dimensional temperature time series data are analyzed to determine the presence of breast tissue abnormalities. The objective of this paper is to present the scientific background of CBM and also to describe the history around the design and development of the technology. RESULTS The results of using the CBM device in the initial clinical studies are also presented. Twenty four-hour long breast skin temperature circadian rhythm data was collected from 93 benign and 108 malignant female study subjects in the initial clinical studies. The predictive model developed using these datasets could differentiate benign and malignant lesions with 78% accuracy, 83.6% sensitivity and 71.5% specificity. A pilot study of 173 female study subjects is underway, in order to validate this predictive model in an independent test population. CONCLUSIONS The results from the initial studies indicate that the CBM may be valuable for breast health monitoring under physician supervision for confirmation of any abnormal changes, potentially prior to other methods, such as, biopsies. Studies are being conducted and planned to validate the technology and also to evaluate its ability as an adjunct breast health monitoring device for identifying abnormalities in difficult-to-diagnose dense breast tissue.
Collapse
Affiliation(s)
- Vinitha Sree S
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States; Cyrcadia Asia, Ltd., Hong Kong.
| | | | - Kevin J Buckman
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States; Adventist Health Lodi Memorial Hospital, Lodi, CA 95240, United States
| | - Matt Benardis
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States
| | - Jim Holmes
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States
| | - Ronald L Fletcher
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States
| | - Ng Eyk
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - U Rajendra Acharya
- School of Engineering, Division of ECE, Ngee Ann Polytechnic, Singapore 599489; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan
| | - Joshua D I Ellenhorn
- Cyrcadia Health, 1325 Airmotive Way, Ste. 175-L, Reno, NV 89502, United States; Cyrcadia Asia, Ltd., Hong Kong; Surgery Group LA, Cedars-Sinai Medical Towers, Los Angeles, CA 90048, United States; John Wayne Cancer Clinics, Santa Monica, CA 90404, United States
| |
Collapse
|
73
|
Davey M, Benzina S, Savoie M, Breault G, Ghosh A, Ouellette RJ. Affinity Captured Urinary Extracellular Vesicles Provide mRNA and miRNA Biomarkers for Improved Accuracy of Prostate Cancer Detection: A Pilot Study. Int J Mol Sci 2020; 21:ijms21218330. [PMID: 33172003 PMCID: PMC7664192 DOI: 10.3390/ijms21218330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Serum prostate-specific antigen (sPSA) testing has helped to increase early detection of and decrease mortality from prostate cancer. However, since sPSA lacks specificity, an invasive prostate tissue biopsy is required to confirm cancer diagnosis. Using urinary extracellular vesicles (EVs) as a minimally invasive biomarker source, our goal was to develop a biomarker panel able to distinguish prostate cancer from benign conditions with high accuracy. We enrolled 56 patients in our study, 28 negative and 28 positive for cancer based on tissue biopsy results. Using our Vn96 peptide affinity method, we isolated EVs from post-digital rectal exam urines and used quantitative polymerase chain reaction to measure several mRNA and miRNA targets. We identified a panel of seven mRNA biomarkers whose expression ratio discriminated non-cancer from cancer with an area under the curve (AUC) of 0.825, sensitivity of 75% and specificity of 84%. We also identified two miRNAs whose combined score yielded an AUC of 0.744. A model pairing the seven mRNA and two miRNA panels yielded an AUC of 0.843, sensitivity of 79% and specificity of 89%. Addition of EV-derived PCA3 levels and clinical characteristics to the biomarker model further improved test accuracy. An AUC of 0.955, sensitivity of 86% and specificity of 93% were obtained. Hence, Vn96-isolated urinary EVs are a clinically applicable and minimally invasive source of mRNA and miRNA biomarkers with potential to improve on the accuracy of prostate cancer screening and diagnosis.
Collapse
Affiliation(s)
- Michelle Davey
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Sami Benzina
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Marc Savoie
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Guy Breault
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
- Correspondence:
| |
Collapse
|
74
|
|