51
|
Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, Onkar S, Lampenfeld C, Sartorius CA, Miller L, Rosenzweig M, Cohen O, Wagle N, Richer JK, Muller WJ, Buluwela L, Ali S, Bruno TC, Vignali DAA, Fang Y, Zhu L, Tseng GC, Gertz J, Atkinson JM, Lee AV, Oesterreich S. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun 2022; 13:2011. [PMID: 35440136 PMCID: PMC9019037 DOI: 10.1038/s41467-022-29498-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Olivia McGinn
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Yang Wu
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Amir Bahreini
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nolan M Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kai Ding
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sayali Onkar
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lori Miller
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Ofir Cohen
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William J Muller
- Goodman Cancer Centre and Departments of Biochemistry and Medicine, McGill University, Montreal, QC, Canada
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
52
|
Kramer CJH, Vreeswijk MPG, Thijssen B, Bosse T, Wesseling J. Beyond the snapshot: optimizing prognostication and prediction by moving from fixed to functional multidimensional cancer pathology. J Pathol 2022; 257:403-412. [PMID: 35438188 PMCID: PMC9324156 DOI: 10.1002/path.5915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The role of pathology in patient management has evolved over time from the retrospective review of cells, tissue, and disease (‘what happened’) to a prospective outlook (‘what will happen’). Examination of a static, two‐dimensional hematoxylin and eosin (H&E)‐stained tissue slide has traditionally been the pathologist's primary task, but novel ancillary techniques enabled by technological breakthroughs have supported pathologists in their increasing ability to predict disease status and behaviour. Nevertheless, the informational limits of 2D, fixed tissue are now being reached and technological innovation is urgently needed to ensure that our understanding of disease entities continues to support improved individualized treatment options. Here we review pioneering work currently underway in the field of cancer pathology that has the potential to capture information beyond the current basic snapshot. A selection of exciting new technologies is discussed that promise to facilitate integration of the functional and multidimensional (space and time) information needed to optimize the prognostic and predictive value of cancer pathology. Learning how to analyse, interpret, and apply the wealth of data acquired by these new approaches will challenge the knowledge and skills of the pathology community. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C J H Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - B Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Sivakumaran T, Krasovitsky M, Freimund A, Lee YC, Webber K, So J, Norris C, Friedlander M, Mileshkin L, Au-Yeung G. Treatment patterns after poly-ADP ribose polymerase (PARP) inhibitors in epithelial ovarian cancer patients. Int J Gynecol Cancer 2022; 32:906-912. [PMID: 35321889 DOI: 10.1136/ijgc-2021-003009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The primary objective of this study was to describe treatment patterns after poly-ADP ribose polymerase (PARP) inhibitor in patients with epithelial ovarian cancer. Secondary objectives were to evaluate duration of response, time to first subsequent therapy, progression-free survival and overall survival. METHODS This was a retrospective analysis of patients with epithelial ovarian cancer treated with PARP inhibitor therapy at six Australian gynecological oncology centers. Eligible patients were identified via clinics, trial databases and pharmacy dispensing logs between January 2005 and September 2019. Information regarding clinico-pathological characteristics and treatment outcomes were collated from medical records. RESULTS A total of 85 patients with epithelial ovarian cancer were identified. Of these, 61% had germline BRCA1/2 mutations, 9% had somatic BRCA1/2 mutations, 5% had confirmed homologous recombination deficiency and 25% were BRCA1/2 wildtype mutations. A total of seventy-seven (91%) patients received chemotherapy after PARP inhibitor, with fifty-six (72.7%) of these patients receiving platinum-based chemotherapy. Four patients (5%) had a complete response, 15 (20%) a partial response, 15 (20%) stable disease and 41 (55%) progressive disease. Median duration of response to chemotherapy was 7.0 months (range 0.2-20.4). Median time to first subsequent therapy was 17.6 and 15.1 months in patients who received a PARP inhibitor as maintenance therapy and treatment, respectively. Median progression-free survival of first line treatment after PARP inhibitor was 9.6, 3.5 and 4.6 months for platinum doublet, single agent platinum and non-platinum chemotherapy, respectively. Adjusting for age and FIGO (Federation of Gynecological Oncologists classification) stage progression-free survival did not differ between treatment groups (p=0.14). Median overall survival for the cohort was 69 months, and patients with platinum sensitive ovarian cancer had improved survival compared with those with platinum refractory or resistant disease. CONCLUSION Platinum doublet chemotherapy resulted in non-significant improved progression-free survival compared with other regimens, suggesting potential independent mechanisms of resistance between PARP inhibitor and platinum compounds.
Collapse
Affiliation(s)
- Tharani Sivakumaran
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Krasovitsky
- Department of Medical Oncology, Prince of Wales Hospital and Royal Hospital for Women, Randwick, New South Wales, Australia.,University of New South Wales Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Alison Freimund
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yeh Chen Lee
- Department of Medical Oncology, Prince of Wales Hospital and Royal Hospital for Women, Randwick, New South Wales, Australia.,University of New South Wales Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Kate Webber
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jane So
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
| | - Christie Norris
- Department of Medical Oncology, Prince of Wales Hospital and Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Michael Friedlander
- Department of Medical Oncology, Prince of Wales Hospital and Royal Hospital for Women, Randwick, New South Wales, Australia.,University of New South Wales Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Gynaecological Oncology, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia .,Oncology and Dysplasia, The Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
54
|
O’Sullivan Coyne G, Karlovich C, Wilsker D, Voth AR, Parchment RE, Chen AP, Doroshow JH. PARP Inhibitor Applicability: Detailed Assays for Homologous Recombination Repair Pathway Components. Onco Targets Ther 2022; 15:165-180. [PMID: 35237050 PMCID: PMC8885121 DOI: 10.2147/ott.s278092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.
Collapse
Affiliation(s)
- Geraldine O’Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
55
|
Batalini F, Xiong N, Tayob N, Polak M, Eismann J, Cantley LC, Shapiro GI, Adalsteinsson V, Winer EP, Konstantinopoulos PA, D'Andrea AD, Swisher EM, Matulonis UA, Wulf GM, Mayer EL. Phase 1b Clinical Trial with Alpelisib plus Olaparib for Patients with Advanced Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:1493-1499. [PMID: 35149538 DOI: 10.1158/1078-0432.ccr-21-3045] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE We had previously reported on the safety and the recommended phase 2 dose (RP2D) of olaparib in combination with the PI3Kα-specific inhibitor alpelisib in patients with high-grade serous ovarian cancer as studied in a phase 1b trial (NCT01623349). Here we report on the breast cancer cohort from that study. EXPERIMENTAL DESIGN Eligible patients had recurrent triple-negative breast cancer (TNBC), or recurrent breast cancer of any subtype with a germline BRCA mutation and were enrolled to a dose escalation or expansion cohort. After definition of the RP2D, secondary end points included safety and objective response rate (ORR). Exploratory analyses were performed using circulating free DNA (cfDNA). RESULTS 17 patients with TNBC were enrolled with a median of 3 prior lines of chemotherapy. The most common treatment-related grade 3-4 adverse events were hyperglycemia (18%) and rash (12%). The ORR was 18% (23% for patients treated at the RP2D) and 59% had disease control. The median duration of response was 7.4 months. Analysis of cfDNA tumor fractions (TFx) revealed that patients with TFx<15% after completion of the first cycle had a longer progression-free survival compared to those with TFx>15% (6.0 months vs 0.9 months, p=0.0001). CONCLUSIONS Alpelisib in combination with olaparib is tolerable in patients with pre-treated TNBC, with evidence of activity in non-BRCA carriers. CfDNA provided important prognostic information. Results highlight potential synergistic use of a PI3Ki to sensitize HR-proficient (BRCA wild-type) TNBC to PARPi and suggest the potential to expand the use of PARPi beyond BRCA-mutant tumors.
Collapse
Affiliation(s)
- Felipe Batalini
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Niya Xiong
- Data Science, Dana-Farber Cancer Institute
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute
| | - Madeline Polak
- Medical Gynecology Oncology Program, Dana-Farber Cancer Institute
| | | | | | | | | | - Eric P Winer
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | | | | | | | | | - Gerburg M Wulf
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Erica L Mayer
- Breast Oncology Center, Dana-Farber Cancer Institute
| |
Collapse
|
56
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
57
|
Brady SW, Gout AM, Zhang J. Therapeutic and prognostic insights from the analysis of cancer mutational signatures. Trends Genet 2022; 38:194-208. [PMID: 34483003 PMCID: PMC8752466 DOI: 10.1016/j.tig.2021.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The somatic mutations in each cancer genome are caused by multiple mutational processes, each of which leaves a characteristic imprint (or 'signature'), potentially caused by specific etiologies or exposures. Deconvolution of these signatures offers a glimpse into the evolutionary history of individual tumors. Recent work has shown that mutational signatures may also yield therapeutic and prognostic insights, including the identification of cell-intrinsic signatures as biomarkers of drug response and prognosis. For example, mutational signatures indicating homologous recombination deficiency are associated with poly(ADP)-ribose polymerase (PARP) inhibitor sensitivity, whereas APOBEC-associated signatures are associated with ataxia telangiectasia and Rad3-related kinase (ATR) inhibitor sensitivity. Furthermore, therapy-induced mutational signatures implicated in cancer progression have also been uncovered, including the identification of thiopurine-induced TP53 mutations in leukemia. In this review, we explore the various ways mutational signatures can reveal new therapeutic and prognostic insights, thus extending their traditional role in identifying disease etiology.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
58
|
Collet L, Péron J, Penault-Llorca F, Pujol P, Lopez J, Freyer G, You B. PARP Inhibitors: A Major Therapeutic Option in Endocrine-Receptor Positive Breast Cancers. Cancers (Basel) 2022; 14:599. [PMID: 35158866 PMCID: PMC8833594 DOI: 10.3390/cancers14030599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/01/2023] Open
Abstract
Recently, OlympiAD and EMBRACA trials demonstrated the favorable efficacy/toxicity ratio of PARPi, compared to chemotherapy, in patients with HER2-negative metastatic breast cancers (mBC) carrying a germline BRCA mutation. PARPi have been largely adopted in triple-negative metastatic breast cancer, but their place has been less clearly defined in endocrine-receptor positive, HER2 negative (ER+/ HER2-) mBC. The present narrative review aims at addressing this question by identifying the patients that are more likely benefit from PARPi. Frequencies of BRCA pathogenic variant (PV) carriers among ER+/HER2- breast cancer patients have been underestimated, and many experts assume than 50% of all BRCA1/2 mutated breast cancers are of ER+/HER2- subtype. Patients with ER+/HER2- BRCA-mutated mBC seemed to have a higher risk of early disease progression while on CDK4/6 inhibitors and PARPi are effective especially when prescribed before exposure to chemotherapy. The OLYMPIA trial also highlighted the utility of PARPi in patients with early breast cancers at high risk of relapse and carrying PV of BRCA. PARPi might also be effective in patients with HRD diseases, representing up to 20% of ER+/HER2- breast cancers. Consequently, the future implementation of early genotyping strategies for identifying the patients with high-risk ER+/HER2- HRD breast cancers likely to benefit from PARPi is of high importance.
Collapse
Affiliation(s)
- Laetitia Collet
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Julien Péron
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Frédérique Penault-Llorca
- Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Center, UMR INSERM 1240, University Clermont Auvergne, 63011 Clermont-Ferrand, France;
| | - Pascal Pujol
- Department of Cancer Genetics, CHU Montpellier, UMR IRD 224-CNRS 5290, Université Montpellier, 34295 Montpellier, France;
- Centre de Recherches Écologiques et Évolutives sur le Cancer (CREEC), UMR 224 CNRS-5290, University of Montpellier, 34394 Montpellier, France
| | - Jonathan Lopez
- Biochemistry and Molecular Biology Department, Hopital Lyon Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Gilles Freyer
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Benoît You
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
59
|
Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23:348. [PMID: 35008774 PMCID: PMC8745585 DOI: 10.3390/ijms23010348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | | |
Collapse
|
60
|
Prados-Carvajal R, Irving E, Lukashchuk N, Forment JV. Preventing and Overcoming Resistance to PARP Inhibitors: A Focus on the Clinical Landscape. Cancers (Basel) 2021; 14:44. [PMID: 35008208 PMCID: PMC8750220 DOI: 10.3390/cancers14010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are now a first-line maintenance treatment in ovarian cancer and have been approved in other cancer types, including breast, pancreatic and prostate. Despite their efficacy, and as is the case for other targeted therapies, resistance to PARPi has been reported clinically and is generating a growing patient population of unmet clinical need. Here, we discuss the mechanisms of resistance that have been described in pre-clinical models and focus on those that have been already identified in the clinic, highlighting the key challenges to fully characterise the clinical landscape of PARPi resistance and proposing ways of preventing and overcoming it.
Collapse
Affiliation(s)
- Rosario Prados-Carvajal
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| | - Elsa Irving
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| | - Natalia Lukashchuk
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Josep V. Forment
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| |
Collapse
|
61
|
van Wijk LM, Nilas AB, Vrieling H, Vreeswijk MPG. RAD51 as a functional biomarker for homologous recombination deficiency in cancer: a promising addition to the HRD toolbox? Expert Rev Mol Diagn 2021; 22:185-199. [PMID: 34913794 DOI: 10.1080/14737159.2022.2020102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carcinomas with defects in the homologous recombination (HR) pathway are sensitive to PARP inhibitors (PARPi). A robust method to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. Currently available DNA-based HRD tests either scan HR-related genes such as BRCA1 and BRCA2 for the presence of pathogenic variants or identify HRD-related genomic scars or mutational signatures by using whole-exome or whole-genome sequencing data. As an alternative to DNA-based tests, functional HRD tests have been developed that assess the actual ability of tumors to accumulate RAD51 protein at DNA double strand breaks as a proxy for HR proficiency. AREAS COVERED This review presents an overview of currently available HRD tests and discuss the pros and cons of the different methodologies including their sensitivity for the identification of HRD tumors, their concordance with other HRD tests, and their capacity to predict therapy response. EXPERT OPINION With the increasing use of PARP inhibitors in the treatment of several cancers there is an urgent need to implement HRD testing in routine clinical practice. To this end, calibration of HRD thresholds and clinical validation of both DNA-based and RAD51-based HRD tests should have top-priority in the coming years.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Andreea B Nilas
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
62
|
Yordanova M, Hubert A, Hassan S. Expanding the Use of PARP Inhibitors as Monotherapy and in Combination in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:1270. [PMID: 34959671 PMCID: PMC8709256 DOI: 10.3390/ph14121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is known to be associated with a poor prognosis and limited therapeutic options. Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics that have demonstrated efficacy as monotherapy in metastatic BRCA-mutant (BRCAMUT) TNBC patients. Improved efficacy of PARPi has been demonstrated in BRCAMUT breast cancer patients who have either received fewer lines of chemotherapy or in chemotherapy-naïve patients in the metastatic, adjuvant, and neoadjuvant settings. Moreover, recent trials in smaller cohorts have identified anti-tumor activity of PARPi in TNBC patients, regardless of BRCA-mutation status. While there have been concerns regarding the efficacy and toxicity of the use of PARPi in combination with chemotherapy, these challenges can be mitigated with careful attention to PARPi dosing strategies. To better identify a patient subpopulation that will best respond to PARPi, several genomic biomarkers of homologous recombination deficiency have been tested. However, gene expression signatures associated with PARPi response can integrate different pathways in addition to homologous recombination deficiency and can be implemented in the clinic more readily. Taken together, PARPi have great potential for use in TNBC patients beyond BRCAMUT status, both as a single-agent and in combination.
Collapse
Affiliation(s)
- Mariya Yordanova
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Audrey Hubert
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
63
|
Fugger K, Hewitt G, West SC, Boulton SJ. Tackling PARP inhibitor resistance. Trends Cancer 2021; 7:1102-1118. [PMID: 34563478 DOI: 10.1016/j.trecan.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Homologous recombination-deficient (HRD) tumours, including those harbouring mutations in the BRCA genes, are hypersensitive to treatment with inhibitors of poly(ADP-ribose) polymerase (PARPis). Despite high response rates, most HRD cancers ultimately develop resistance to PARPi treatment through reversion mutations or genetic/epigenetic alterations to DNA repair pathways. Counteracting these resistance pathways, thereby increasing the potency of PARPi therapy, represents a potential strategy to improve the treatment of HRD cancers. In this review, we discuss recent insights derived from genetic screens that have identified a number of novel genes that can be targeted to improve PARPi treatment of HRD cancers and may provide a means to overcome PARPi resistance.
Collapse
Affiliation(s)
- Kasper Fugger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Artios Pharma Ltd. B940, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| |
Collapse
|
64
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
65
|
Funingana IG, Reinius MAV, Petrillo A, Ang JE, Brenton JD. Can integrative biomarker approaches improve prediction of platinum and PARP inhibitor response in ovarian cancer? Semin Cancer Biol 2021; 77:67-82. [PMID: 33607245 DOI: 10.1016/j.semcancer.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Epithelial ovarian carcinoma (EOC) encompasses distinct histological, molecular and genomic entities that determine intrinsic sensitivity to platinum-based chemotherapy. Current management of each subtype is determined by factors including tumour grade and stage, but only a small number of biomarkers can predict treatment response. The recent incorporation of PARP inhibitors into routine clinical practice has underscored the need to personalise ovarian cancer treatment based on tumour biology. In this article, we review the strengths and limitations of predictive biomarkers in current clinical practice and highlight integrative strategies that may inform the development of future personalised medicine programs and composite biomarkers.
Collapse
Affiliation(s)
- Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marika A V Reinius
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy; University of Study of Campania "L.Vanvitelli", Naples, Italy.
| | - Joo Ern Ang
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James D Brenton
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
66
|
Veliparib monotherapy following carboplatin/paclitaxel plus veliparib combination therapy in patients with germline BRCA-associated advanced breast cancer: results of exploratory analyses from the phase III BROCADE3 trial. Ann Oncol 2021; 33:299-309. [PMID: 34861374 DOI: 10.1016/j.annonc.2021.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In the BROCADE3 trial (NCT02163694), addition of the poly(ADP-ribose) polymerase (PARP) inhibitor, veliparib, to carboplatin/paclitaxel improved progression-free survival (PFS) (hazard ratio [HR] 0.71, 95% confidence interval 0.57-0.88; P=0.002) in patients with advanced HER2-negative, germline BRCA1/2-mutated breast cancer. A subset of patients discontinued both carboplatin and paclitaxel prior to progression and continued on veliparib/placebo maintenance monotherapy until progression. Analyses in this patient subgroup are reported. PATIENTS AND METHODS Patients were randomized 2:1 to veliparib plus carboplatin/paclitaxel or placebo plus carboplatin/paclitaxel. Veliparib (120 mg twice daily [BID]) or placebo was given on days -2 to 5, carboplatin (AUC 6 mg/mL) on day 1, and paclitaxel (80 mg/m2) on days 1, 8, and 15 of 21-day cycles. Patients who discontinued both carboplatin and paclitaxel prior to progression received blinded study drug monotherapy at an increased dose of 300-400 mg BID continuously. PFS was the primary endpoint. Exploratory analyses were performed in the subgroup of patients who received blinded study drug as monotherapy. A time-varying Cox model including data from all patients was also used to evaluate treatment effect in the combination and monotherapy phases. RESULTS 136 of 337 patients randomized to veliparib plus carboplatin/paclitaxel and 58/172 patients randomized to placebo plus carboplatin/paclitaxel discontinued both carboplatin and paclitaxel prior to progression and continued on blinded veliparib or placebo monotherapy. In this blinded monotherapy subgroup, investigator-assessed median PFS from randomization was 25.7 months with veliparib versus 14.6 months with placebo. HRs from a time-varying Cox model favored veliparib during both combination therapy and monotherapy. Any-grade adverse events (AEs) occurring in the monotherapy phase were primarily gastrointestinal. The most common grade ≥3 AEs were neutropenia and anemia (4% each with veliparib; 5% and 2%, respectively, with placebo). CONCLUSIONS Veliparib maintenance monotherapy had a tolerable safety profile and may extend PFS following combination chemotherapy.
Collapse
|
67
|
Chiang YC, Lin PH, Cheng WF. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front Oncol 2021; 11:675972. [PMID: 34722237 PMCID: PMC8551835 DOI: 10.3389/fonc.2021.675972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
68
|
Abstract
ABSTRACT Despite representing only 5% of all annual cancer diagnoses in the United States, pancreatic cancer is projected to become the second leading cause of cancer-related death within the next 10 years. Progress in the treatment of advanced pancreatic cancer has been slow. Systemic therapies rely on combination cytotoxic agents, with limited options at progression. Recently, poly(ADP-ribose) polymerase inhibitors have demonstrated clinical activity in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, and PALB2. In this review, we discuss the development of poly(ADP-ribose) polymerase inhibitors in pancreatic cancer, relevant clinical trials, and future directions.
Collapse
Affiliation(s)
- Timothy J Brown
- Abramson Cancer Center, The University of Pennsylvania, Philadelphia, PA 19121
| | - Kim A Reiss
- Abramson Cancer Center, The University of Pennsylvania, Philadelphia, PA 19121
| |
Collapse
|
69
|
Kordes M, Tamborero D, Lagerstedt-Robinson K, Yachnin J, Rosenquist R, Löhr JM, Gustafsson Liljefors M. Discordant Reporting of a Previously Undescribed Pathogenic Germline BRCA2 Variant in Blood and Tumor Tissue in a Patient With Pancreatic Adenocarcinoma. JCO Precis Oncol 2021; 5:974-980. [PMID: 34994625 DOI: 10.1200/po.21.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maximilian Kordes
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - David Tamborero
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Yachnin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Phase-I Unit, Center for Clinical Cancer Studies, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J-Matthias Löhr
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Gustafsson Liljefors
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Zhou Y, Chen Y, Huang X, Tan Y, Hu R, Li C, Niu M. A Supramolecular Nanomedicine Based on Bendamustine and MDM2-Targeted D-peptide Inhibitor for Breast Cancer Therapy. Adv Healthc Mater 2021; 10:e2100980. [PMID: 34558228 DOI: 10.1002/adhm.202100980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Bendamustine (BEN) is a FDA-approved bifunctional DNA-alkylating chemotherapy drug, but it suffers from short half-life, instability, and poor biocompatibility in the clinical application. Due to unique biostability of d-amino acid-containing peptides (D-peptides), constructing D-peptide-small molecule drug conjugates is emerging as a promising strategy for cancer therapy. Here, a high-affinity MDM2-targeted D-peptide (peptide 5) is discovered by applying structure-based drug design (SBDD). Taking the advantages of d-amino acids, a novel self-assembling D-peptide-small molecule drug conjugate (BEN-FF-peptide 5) is developed by simultaneously conjugating small molecule drug BEN and peptide 5 to the self-assembling peptide. In vitro results demonstrate that BEN-FF-peptide 5 exhibits superior cellular uptake ability, good biostability in human serum and strong inhibitory effect on the growth of human breast cancer (MCF-7) cells. In vivo study reveals that BEN-FF-peptide 5 significantly inhibits the growth of MCF-7 cells-derived xenograft in nude mice with no obvious side effects. This work provides a useful strategy to construct D-peptide-small molecule drug conjugates for high-efficacy and low-toxicity cancer therapy.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Yaxin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xing Huang
- Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing 210009 China
| | - Yingying Tan
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Rong Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Chong Li
- Medical Research Institute College of Pharmaceutical Sciences Southwest University Chongqing 400715 China
| | - Miao‐Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
71
|
PARP inhibitor sensitivity in BRCA-related metastatic breast cancer: an OlympiAD later. Ann Oncol 2021; 32:1460-1462. [PMID: 34678412 DOI: 10.1016/j.annonc.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
|
72
|
Pan JN, Lei L, Ye WW, Wang XJ, Cao WM. BRCA1 Reversion Mutation Confers Resistance to Olaparib and Camrelizumab in a Patient with Breast Cancer Liver Metastasis. J Breast Cancer 2021; 24:474-480. [PMID: 34652076 PMCID: PMC8561137 DOI: 10.4048/jbc.2021.24.e39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Reversion mutations are associated with clinical resistance to poly(ADP-ribose) polymerase inhibitors (PARPi). Here, we describe the detection of a BRCA1 reversion mutation in a 39-year-old woman with metastatic breast cancer harboring a heterozygous germline BRCA1 exons 7–8 deletion who received PARPi olaparib combined with immune checkpoint inhibitor camrelizumab as third-line therapy. During progression from the olaparib and camrelizumab combination therapy, we identified via genomic sequencing a novel 7-base pair somatic deletion in BRCA1 (c.617_623delACAAATC). Sequence analyses indicated that this mutation realigned the reading frame of BRCA1, which potentially led to the reversal of its normal function and conferred resistance to PARPi.
Collapse
Affiliation(s)
- Jia-Ni Pan
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Lei
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wei-Wu Ye
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
73
|
Xu J, Keenan TE, Overmoyer B, Tung NM, Gelman RS, Habin K, Garber JE, Ellisen LW, Winer EP, Goss PE, Yeap BY, Chabner BA, Isakoff SJ. Phase II trial of veliparib and temozolomide in metastatic breast cancer patients with and without BRCA1/2 mutations. Breast Cancer Res Treat 2021; 189:641-651. [PMID: 34417675 DOI: 10.1007/s10549-021-06292-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE We evaluated the efficacy and safety of poly-(adenosine diphosphate-ribose) polymerase (PARP) 1 and 2 inhibitor veliparib and temozolomide in metastatic breast cancer patients with and without germline BRCA1/2 mutations. METHODS In this single-arm phase II trial, patients with metastatic breast cancer received veliparib 30 to 40 mg twice daily on days 1 to 7 with concurrent temozolomide 150 mg/m2 on days 1 to 5 of a 28-day cycle. The primary cohort was unselected for BRCA mutation status, and an expansion cohort enrolled only BRCA1/2 carriers. The primary endpoint was objective response rate (ORR) in each cohort. Secondary endpoints included progression-free survival (PFS), clinical benefit rate (CBR), and evaluation of safety and tolerability. RESULTS In the primary cohort of 41 unselected patients, which included 9 BRCA mutation carriers, the ORR was 10% and clinical benefit rate at 4 months (CBR) was 27%. In the expansion cohort of 21 BRCA1/2 carriers, the ORR was 14% and CBR was 43%. Among all 30 BRCA1/2 carriers, the ORR was 23% versus 0% among non-carriers. In the subset of BRCA1/2 carriers, the ORR was 32% among platinum-naïve patients versus 9% among platinum-exposed patients. The median PFS was 3.3 months among BRCA1/2 carriers compared to 1.8 months among non-carriers (HR: 0.48, p = 0.006). A longer median PFS of 6.2 months was observed among BRCA1/2 carriers who had no prior platinum therapy. The most common grade 3 and 4 toxicities were thrombocytopenia (32%) and neutropenia (21%) that generally improved with dose modifications. CONCLUSION Veliparib and temozolomide demonstrated clinical activity in platinum-naïve BRCA-associated metastatic breast cancer with manageable toxicity at doses of veliparib well below the single-agent active dose. Although the study did not meet its primary endpoint in unselected nor BRCA-associated breast cancer, this regimen was further evaluated in the BROCADE 2 study. TRIAL REGISTRATION NCT01009788 (ClinicalTrials.gov), November 9, 2009.
Collapse
Affiliation(s)
- Jing Xu
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA.,Sanofi US, 50 Binney St, Cambridge, MA, 02142, USA
| | - Tanya E Keenan
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Beth Overmoyer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Nadine M Tung
- Beth Israel Deaconess Medical Center, Boston, USA.,Harvard Medical School, Boston, USA
| | - Rebecca S Gelman
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Karleen Habin
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA
| | - Judy E Garber
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Eric P Winer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Paul E Goss
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Beow Y Yeap
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Bruce A Chabner
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA. .,Harvard Medical School, Boston, USA.
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| |
Collapse
|
74
|
Puhalla SL, Diéras V, Arun BK, Kaufman B, Wildiers H, Han HS, Ayoub JP, Stearns V, Yuan Y, Helsten T, Riley-Gillis B, Murphy E, Kundu MG, Wu M, Maag D, Ratajczak CK, Ramathal CY, Friedlander M. Relevance of Platinum-free Interval and BRCA Reversion Mutations for Veliparib Monotherapy after Progression on Carboplatin/Paclitaxel for g BRCA Advanced Breast Cancer (BROCADE3 Crossover). Clin Cancer Res 2021; 27:4983-4993. [PMID: 34131001 PMCID: PMC9401555 DOI: 10.1158/1078-0432.ccr-21-0748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Safety, efficacy, and exploratory biomarker analyses were evaluated in patients with advanced HER2-negative germline breast cancer susceptibility gene (gBRCA)-associated breast cancer enrolled in the BROCADE3 trial who received crossover veliparib monotherapy after disease progression on placebo plus carboplatin/paclitaxel. PATIENTS AND METHODS Eligible patients (N = 513) were randomized 2:1 to veliparib plus carboplatin/paclitaxel or placebo plus carboplatin/paclitaxel; patients had variable platinum-free intervals (PFI) at progression. In the placebo arm, patients were eligible to receive crossover veliparib monotherapy (300-400 mg twice daily continuous). Antitumor activity and adverse events were assessed during crossover veliparib treatment. BRCA reversion mutations at crossover were analyzed retrospectively using next-generation sequencing on plasma circulating tumor DNA (ctDNA). RESULTS Seventy-five patients in the placebo plus carboplatin/paclitaxel arm received ≥1 dose of crossover veliparib postprogression (mean treatment duration: 154 days). Eight of 50 (16%) patients with measurable disease had a RECIST v1.1 response. Activity was greater in patients with PFI ≥180 days compared with <180 days [responses in 23.1% (3/13) vs. 13.5% (5/37) of patients]. BRCA reversion mutations that restored protein function were detected in ctDNA from 4 of 28 patients tested, and the mean duration of crossover veliparib monotherapy was <1 month in these 4 patients versus 7.49 months in patients lacking reversion mutations. The most frequent adverse events were nausea (61%), vomiting (29%), and fatigue (24%). CONCLUSIONS Crossover veliparib monotherapy demonstrated limited antitumor activity in patients who experienced disease progression on placebo plus carboplatin/paclitaxel. PFI appeared to affect veliparib activity. BRCA reversion mutations may promote cross-resistance and limit veliparib activity following progression on platinum.
Collapse
Affiliation(s)
- Shannon L Puhalla
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Véronique Diéras
- Institut Curie, Paris, France
- Centre Eugène Marquis, Rennes, France
| | - Banu K Arun
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Hyo S Han
- Moffitt Cancer Center, Tampa, Florida
| | - Jean-Pierre Ayoub
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Yuan Yuan
- City of Hope Cancer Center, Duarte, California
| | - Teresa Helsten
- University of California San Diego Moores Cancer Center, La Jolla, California
| | | | | | | | | | | | | | | | - Michael Friedlander
- Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
75
|
Hodgson D, Lai Z, Dearden S, Barrett JC, Harrington EA, Timms K, Lanchbury J, Wu W, Allen A, Senkus E, Domchek SM, Robson M. Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol 2021; 32:1582-1589. [PMID: 34500047 DOI: 10.1016/j.annonc.2021.08.2154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Presence of a germline BRCA1 and/or BRCA2 mutation (gBRCAm) may sensitize tumors to poly(ADP-ribose) polymerase (PARP) inhibition via inactivation of the second allele, resulting in gene-specific loss of heterozygosity (gsLOH) and homologous recombination deficiency (HRD). Here we explore whether tissue sample testing provides an additional route to germline testing to inform treatment selection for PARP inhibition. PATIENTS AND METHODS In this prespecified exploratory analysis, BRCA1 and/or BRCA2 mutations in blood samples (gBRCAm) and tumor tissue (tBRCAm) were analyzed from patients with human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer and known gBRCAm, enrolled in the phase III OlympiAD trial. The frequency and nature of tBRCAm, HRD score status [HRD-positive (score ≥42) versus HRD-negative (score <42) using the Myriad myChoice® CDx test] and rates of gsLOH were determined, and their impact on clinical efficacy (objective response rate and progression-free survival) was explored. RESULTS Tissue samples from 161/302 patients yielded tBRCAm, HRD and gsLOH data for 143 (47%), 129 (43%) and 125 (41%) patients, respectively. Concordance between gBRCAm and tBRCAm was 99%. gsLOH was observed in 118/125 (94%) patients [BRCA1m, 73/76 (96%); BRCA2m, 45/49 (92%)]. A second mutation event was recorded for two of the three BRCA1m patients without gsLOH. The incidence of HRD-negative was 16% (21/129) and was more common for BRCA2m (versus BRCA1m) and/or for hormone receptor-positive (versus triple-negative) disease. Olaparib antitumor activity was observed irrespective of HRD score. CONCLUSIONS gBRCAm identified in patients with HER2-negative metastatic breast cancer by germline testing in blood was also identified by tumor tissue testing. gsLOH was common, indicating a high rate of biallelic inactivation in metastatic breast cancer. Olaparib activity was seen regardless of gsLOH status or HRD score. Thus, additional tumor testing to inform PARP inhibitor treatment selection may not be supported for these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - K Timms
- Myriad Genetics, Salt Lake City, USA
| | | | - W Wu
- AstraZeneca, Gaithersburg, USA
| | - A Allen
- AstraZeneca, Gaithersburg, USA
| | - E Senkus
- Medical University of Gdańsk, Gdańsk, Poland
| | - S M Domchek
- Basser Center, University of Pennsylvania, Philadelphia, USA
| | - M Robson
- Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
76
|
Zhou L, Xiang J, He Y. Research progress on the association between environmental pollutants and the resistance mechanism of PARP inhibitors in ovarian cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49491-49506. [PMID: 34370190 DOI: 10.1007/s11356-021-15852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yinyan He
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
77
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G, Fagotti A. Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol 2021; 77:144-166. [PMID: 34464704 DOI: 10.1016/j.semcancer.2021.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) remains a fatal malignancy because most patients experience recurrent disease, which is resistant to chemotherapy. The outcomes for patients with platinum-resistant OC are poor, response rates to further chemotherapy are low and median survival is lower than 12 months. The complexity of platinum-resistant OC, which comprises a heterogeneous spectrum of diseases, is indeed far from being completely understood. Therefore, comprehending tumors' biological behaviour to identify reliable biomarkers, which may predict responses to therapies, is a demanding challenge to improve OC management. In the age of precision medicine, efforts to overcome platinum resistance in OC represent a dynamic and vast field in which innovative drugs and clinical trials rapidly develop. This review will present the exceptional biochemical environment implicated in OC and highlights mechanisms of chemoresistance. Furthermore, innovative molecules and new therapeutic opportunities are presented, along with currently available therapies and ongoing clinical trials.
Collapse
Affiliation(s)
- Claudia Marchetti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Francesca De Felice
- Division of Radiotherapy and Oncology, Policlinico Umberto I, Roma, Italy; Università La Sapienza, Roma, Italy
| | - Alessia Romito
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy
| | - Valentina Iacobelli
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Polyclinic Umberto I, Rome, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
78
|
Breast Cancer Heterogeneity. Diagnostics (Basel) 2021; 11:diagnostics11091555. [PMID: 34573897 PMCID: PMC8468623 DOI: 10.3390/diagnostics11091555] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Breast tumor heterogeneity is a major challenge in the clinical management of breast cancer patients. Both inter-tumor and intra-tumor heterogeneity imply that each breast cancer (BC) could have different prognosis and would benefit from specific therapy. Breast cancer is a dynamic entity, changing during tumor progression and metastatization and this poses fundamental issues to the feasibility of a personalized medicine approach. The most effective therapeutic strategy for patients with recurrent disease should be assessed evaluating biopsies obtained from metastatic sites. Furthermore, the tumor progression and the treatment response should be strictly followed and radiogenomics and liquid biopsy might be valuable tools to assess BC heterogeneity in a non-invasive way.
Collapse
|
79
|
Franchet C, Hoffmann JS, Dalenc F. Recent Advances in Enhancing the Therapeutic Index of PARP Inhibitors in Breast Cancer. Cancers (Basel) 2021; 13:cancers13164132. [PMID: 34439286 PMCID: PMC8392832 DOI: 10.3390/cancers13164132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Two to three percent of breast cancer patients harbor germline mutation of either BRCA1 or BRCA2 genes. Their tumor cells are deficient in homologous recombination, a BRCA-dependent DNA repair machinery. These deficient cells survive thanks to the PARP-mediated alternative pathway. Therefore, PARP inhibitors have already shown some level of efficiency in the treatment of metastatic breast cancer patients. Unfortunately, some tumor cells inevitably resist PARP inhibitors by different mechanisms. In this review, we (i) present the notion of homologous recombination deficiency and its evaluation methods, (ii) detail the PARP inhibitor clinical trials in breast cancer, (iii) briefly describe the mechanisms to PARP inhibitors resistance, and (iv) discuss some strategies currently under evaluation to enhance the therapeutic index of PARP inhibitors in breast cancer. Abstract As poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with the deficiency of DNA double-strand (DSB) break repair by homologous recombination (HR), PARP inhibitors (PARPi) are currently used to treat breast cancers with mutated BRCA1/2 HR factors. Unfortunately, the increasingly high rate of PARPi resistance in clinical practice has dented initial hopes. Multiple resistance mechanisms and acquired vulnerabilities revealed in vitro might explain this setback. We describe the mechanisms and vulnerabilities involved, including newly identified modes of regulation of DSB repair that are now being tested in large cohorts of patients and discuss how they could lead to novel treatment strategies to improve the therapeutic index of PARPi.
Collapse
Affiliation(s)
- Camille Franchet
- Laboratoire de Pathologie and Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France;
| | - Jean-Sébastien Hoffmann
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, 31037 Toulouse, France;
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France
- Correspondence:
| |
Collapse
|
80
|
Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines 2021; 9:biomedicines9081024. [PMID: 34440228 PMCID: PMC8392860 DOI: 10.3390/biomedicines9081024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) malignancies are a major global health burden, with high mortality rates. The identification of novel therapeutic strategies is crucial to improve treatment and survival of patients. The poly (ADP-ribose) polymerase (PARP) enzymes involved in the DNA damage response (DDR) play major roles in the development, progression and treatment response of cancer, with PARP inhibitors (PARPi) currently used in the clinic for breast, ovarian, fallopian, primary peritoneal, pancreatic and prostate cancers with deficiencies in homologous recombination (HR) DNA repair. This article examines the current evidence for the role of the DDR PARP enzymes (PARP1, 2, 3 and 4) in the development, progression and treatment response of GI cancers. Furthermore, we discuss the role of HR status as a predictive biomarker of PARPi efficacy in GI cancer patients and examine the pre-clinical and clinical evidence for PARPi and cytotoxic therapy combination strategies in GI cancer. We also include an analysis of the genomic and transcriptomic landscape of the DDR PARP genes and key HR genes (BRCA1, BRCA2, ATM, RAD51, MRE11, PALB2) in GI patient tumours (n = 1744) using publicly available datasets to identify patients that may benefit from PARPi therapeutic approaches.
Collapse
|
81
|
Mc Cormack BA, González-Cantó E, Agababyan C, Espinoza-Sánchez NA, Tomás-Pérez S, Llueca A, Marí-Alexandre J, Götte M, Gilabert-Estellés J. miRNAs in the Era of Personalized Medicine: From Biomarkers to Therapeutics. Int J Mol Sci 2021; 22:8154. [PMID: 34360918 PMCID: PMC8348078 DOI: 10.3390/ijms22158154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in personalized medicine has considerably increased [...].
Collapse
Affiliation(s)
- Bárbara A. Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Obstetrics and Gynaecology Service, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Nancy A. Espinoza-Sánchez
- Research Laboratory, Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany;
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Antoni Llueca
- Department of Medicine, University Jaume I, 12071 Castellón, Spain;
- Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), General University Hospital of Castellón, 12004 Castellón, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Martin Götte
- Research Laboratory, Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany;
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (B.A.M.C.); (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Obstetrics and Gynaecology Service, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
82
|
Hobbs EA, Litton JK, Yap TA. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer. Expert Opin Pharmacother 2021; 22:1825-1837. [PMID: 34309473 DOI: 10.1080/14656566.2021.1952181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION BRCA1 and BRCA2 (BRCA1/2) mutation breast cancers constitute an uncommon, but unique group of breast cancers that present at a younger age, and are underscored by genomic instability and accumulation of DNA damage. Talazoparib is a potent poly(ADP-ribose) polymerase (PARP) inhibitor that exploits impaired DNA damage response mechanisms in this population of patients and results in significant efficacy. Based on the results of the EMBRACA trial, talazoparib was approved for the treatment of patients with advanced germline BRCA1/2 mutant breast cancer. AREAS COVERED In this review, the authors highlight the relevant clinical trials of talazoparib, as well as, safety, tolerability, and quality of life considerations. They also examine putative response and resistance mechanisms, and rational combinatorial therapeutic strategies under development. EXPERT OPINION Talazoparib has been a major advance in the treatment of germline BRCA1/2 mutation breast cancer with both clinical efficacy and improvement in quality of life compared to standard cytotoxic chemotherapy. To date, the optimal sequencing of talazoparib administration in the metastatic setting has not yet been established. A deeper understanding of response and resistance mechanisms, and more broadly, the DNA repair pathway, will lead to additional opportunities in targeting this pathway and open up therapeutic indications to a broader patient population.
Collapse
Affiliation(s)
- Evthokia A Hobbs
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Breast Medical Oncology Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
83
|
Imyanitov E, Sokolenko A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors. World J Clin Oncol 2021; 12:544-556. [PMID: 34367927 PMCID: PMC8317650 DOI: 10.5306/wjco.v12.i7.544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular pathogenesis of tumors arising in BRCA1/2 germ-line mutation carriers usually includes somatic inactivation of the remaining allele of the involved gene. Consequently, BRCA1/2-driven cancers are sensitive to platinum-based therapy and poly (ADP-ribose) polymerase inhibitors (PARPi). Long-term exposure to these drugs may result in the emergence of secondary BRCA1/2 mutations, which restore the open-reading frame of the affected allele. This platinum/PARPi cross-resistance mechanism applies both for BRCA1 and BRCA2 genes and has been repeatedly validated in various laboratory models and multiple clinical studies. There are some other routes associated with the partial rescue of BRCA1/2 function or the development of BRCA1/2-independent pathways for genomic maintenance; however, their actual clinical relevance remains to be established. In addition, studies on the short-term neoadjuvant therapy for ovarian cancer revealed that even chemonaive BRCA1-driven tumors contain a small proportion of BRCA1-proficient cells. These pre-existing cells with retained BRCA1 heterozygosity rapidly repopulate the tumor mass during platinum exposure, but become outcompeted by BRCA1-deficient cells during therapy holidays. Understanding of the platinum/PARPi resistance pathways has led to the development of novel therapeutic approaches, which aim to improve the management of BRCA1/2-related cancers and are currently undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg 191015, Russia
| | - Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
| |
Collapse
|
84
|
Palleschi M, Tedaldi G, Sirico M, Virga A, Ulivi P, De Giorgi U. Moving beyond PARP Inhibition: Current State and Future Perspectives in Breast Cancer. Int J Mol Sci 2021; 22:ijms22157884. [PMID: 34360649 PMCID: PMC8346118 DOI: 10.3390/ijms22157884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most frequent and lethal tumor in women and finding the best therapeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first, clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 mutations. Recent evidence indicates that PARPis have the potential to be used both in monotherapy and combination strategies in breast cancer treatment. In this review, we show the mechanism of action of PARPis and discuss the latest clinical applications in different breast cancer treatment settings, including the use as neoadjuvant and adjuvant approaches. Furthermore, as a class, PARPis show many similarities but also certain critical differences which can have essential clinical implications. Finally, we report the current knowledge about the resistance mechanisms to PARPis. A systematic PubMed search, using the entry terms “PARP inhibitors” and “breast cancer”, was performed to identify all published clinical trials (Phase I-II-III) and ongoing trials (ClinicalTrials.gov), that have been reported and discussed in this review.
Collapse
Affiliation(s)
- Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Gianluca Tedaldi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
- Correspondence: ; Tel.: +39-0543-739232; Fax: +39-0543-739221
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| |
Collapse
|
85
|
Conteduca V, Scarpi E, Farolfi A, Brighi N, Rossi L, Gurioli G, Lolli C, Schepisi G, Bleve S, Gianni C, Virga A, Altavilla A, Burgio SL, Menna C, De Giorgi U. Melphalan as a Promising Treatment for BRCA-Related Ovarian Carcinoma. Front Oncol 2021; 11:716467. [PMID: 34367999 PMCID: PMC8336462 DOI: 10.3389/fonc.2021.716467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Melphalan, as a bifunctional alkylating agent has been shown to be selectively efficient in BRCA-deficient case reports of epithelial ovarian cancer (EOC). The clinical benefit of melphalan on unselected platinum-resistant EOC population and stratified by BRCA status has not been clearly elucidated. We aimed to determine the response to melphalan in patients with recurrent EOC after platinum-based therapy. Material and Methods This retrospective observational study included patients with recurrent EOC treated with melphalan between February 2007 to July 2020. Eligibility criteria included having a histological confirmation of EOC, previous treatment with carboplatin plus paclitaxel regimens, and disease recurrence during treatment with or within 6 months of the end of the platinum-based chemotherapy. Results A total of 75 platinum-resistant EOC patients were enrolled. Median age was 69 years (range 41-82). Median of previous therapies before melphalan was 4 (range 1-7). We observed a median follow-up of 32 months (range 1-62), progression-free survival (PFS) and overall survival (OS) of 3.6 months (range 2.9-4.7) and 9.5 months (range 8.0-14.1), respectively. In the whole population, 1 complete response, 6 partial responses and 37 stable diseases were registered with an overall clinical benefit rate of 58.7%. In BRCA1/2 mutant patients, we showed a significant longer PFS compared to BRCA1/2 wild type patients (6.2 versus 2.6 months; hazard ratio (HR) 0.25, 95% confidence interval (CI) 0.10-0.61; p=0.002). Moreover, a trend was seen for BRCA1/2 mutants to have a better OS (25.9 versus 8.0 months; HR 0.38; 95% CI 0.12-1.19; p=0.097). Conclusions Our study represents the largest cohort of heavily-pretreated EOC patients receiving melphalan treatment. Here, we report a considerable clinical activity of melphalan chemotherapy, more evident in a subset of BRCA1/2 mutated patients. Prospective studies to validate these findings are warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Lorena Rossi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
86
|
Do KT, Kochupurakkal B, Kelland S, de Jonge A, Hedglin J, Powers A, Quinn N, Gannon C, Vuong L, Parmar K, Lazaro JB, D'Andrea AD, Shapiro GI. Phase 1 Combination Study of the CHK1 Inhibitor Prexasertib and the PARP Inhibitor Olaparib in High-grade Serous Ovarian Cancer and Other Solid Tumors. Clin Cancer Res 2021; 27:4710-4716. [PMID: 34131002 DOI: 10.1158/1078-0432.ccr-21-1279] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Checkpoint kinase 1 (CHK1) plays a central role in the response to replication stress through modulation of cell-cycle checkpoints and homologous recombination (HR) repair. In BRCA-deficient cancers with de novo or acquired PARP inhibitor resistance, the addition of the CHK1 inhibitor prexasertib to the PARP inhibitor olaparib compromises replication fork stability, as well as HR proficiency, allowing for sensitization to PARP inhibition. PATIENTS AND METHODS This study followed a 3+3 design with a 7-day lead-in of olaparib alone, followed by 28-day cycles with prexasertib administered on days 1 and 15 in combination with an attenuated dose of olaparib on days 1-5 and 15-19. Pharmacokinetic blood samples were collected after olaparib alone and following combination therapy. Patients enrolled to the expansion phase of the study underwent paired tumor biopsies for pharmacodynamic (PD) assessments. RESULTS Twenty-nine patients were treated. DLTs included grade 3 neutropenia and grade 3 febrile neutropenia. The MTD/recommended phase 2 dose (RP2D) was prexasertib at 70 mg/m2 i.v. with olaparib at 100 mg by mouth twice daily. Most common treatment-related adverse events included leukopenia (83%), neutropenia (86%), thrombocytopenia (66%), and anemia (72%). Four of 18 patients with BRCA1-mutant, PARP inhibitor-resistant, high-grade serous ovarian cancer (HGSOC) achieved partial responses. Paired tumor biopsies demonstrated reduction in RAD51 foci and increased expression of γ-H2AX, pKAP1, and pRPA after combination exposure. CONCLUSIONS Prexasertib combined with olaparib has preliminary clinical activity in BRCA-mutant patients with HGSOC who have previously progressed on a PARP inhibitor. PD analyses show that prexasertib compromises HR with evidence of induction of DNA damage and replication stress.
Collapse
Affiliation(s)
- Khanh T Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bose Kochupurakkal
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Kelland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrienne de Jonge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Hedglin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Powers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nicholas Quinn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Courtney Gannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Loan Vuong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Bernard Lazaro
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
87
|
Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open 2021; 6:100144. [PMID: 34015643 PMCID: PMC8141874 DOI: 10.1016/j.esmoop.2021.100144] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
The recognition of homologous recombination deficiency (HRD) as a frequent feature of high-grade serous ovarian cancer (HGSOC) has transformed treatment paradigms. Poly(ADP-ribose) polymerase inhibitors (PARPis), developed based on the rationale of synthetic lethality that predicates antitumor efficacy in tumors harboring underlying HRD, now represents an important class of therapy for HGSOC. Recent data have drawn attention to the assessment of homologous recombination DNA repair (HRR) as a prognostic and predictive biomarker in HGSOC, leading to increasing debate on the optimal means of defining and evaluating HRD, both genotypically and phenotypically. At present, clinical-grade assays such as myChoice CDx and FoundationOne CDx are approved companion diagnostics which can identify patients with HRD-positive HGSOC by diagnosing a 'genomic scar' reflecting underlying genomic instability. Yet despite the rapid maturation of this field, tumoral HRD status has been recognized to be dynamic over time and with treatment pressure. In practice, this means that restoration of HRR through mechanisms of platinum and PARPi resistance are not adequately represented by genomic scar assays, and contribute toward discordance with clinical PARPi response, or lack-thereof. It is thus critical that HRD testing is optimized to address the controversies of diverse HRD testing methodology, appropriate thresholds for HRD identification, and relevant timepoints for HRD testing, in order to realize the potential for PARPis to maximally benefit patients with HGSOC. Here, we discuss the premise of HRD testing in HGSOC, current methodologies for HRD identification and their performance in the clinic, highlight upcoming strategies, and discuss the challenges faced in moving this field forward.
Collapse
Affiliation(s)
- N Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - D S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore; Cancer Science Institute, National University of Singapore, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
88
|
Eder JP, Doroshow DB, Do KT, Keedy VL, Sklar JS, Glazer P, Bindra R, Shapiro GI. Clinical Efficacy of Olaparib in IDH1/IDH2-Mutant Mesenchymal Sarcomas. JCO Precis Oncol 2021; 5:466-472. [PMID: 34994649 PMCID: PMC9848565 DOI: 10.1200/po.20.00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Tumors with neomorphic mutations in IDH1/2 have defective homologous recombination repair, resulting in sensitivity to poly (ADP-ribose) polymerase (PARP) inhibition. The Olaparib Combination trial is a phase II, open-label study in which patients with solid tumors harboring IDH1/2 mutations were treated with olaparib as monotherapy, with objective response and clinical benefit rates as the primary end points. METHODS Ten patients with IDH1/2-mutant tumors by next-generation sequencing were treated with olaparib 300 mg twice daily. RESULTS Three of five patients with chondrosarcomas had clinical benefit, including one patient with a partial response and two with stable disease lasting > 7 months. A patient with pulmonary epithelioid hemangioendothelioma had stable disease lasting 11 months. In contrast, clinical benefit was not observed among four patients with cholangiocarcinoma. CONCLUSION These results indicate preliminary activity of PARP inhibition in patients with IDH1/2-mutant chondrosarcoma and pulmonary epithelioid hemangioendothelioma. Further studies of PARP inhibitors alone and in combination in this patient population are warranted.
Collapse
Affiliation(s)
- Joseph P. Eder
- Yale Cancer Center, New Haven, CT,Joseph P. Eder, Yale Cancer Center, 333 Cedar Street, WW219, New
Haven, CT 06520; e-mail:
| | - Deborah B. Doroshow
- Yale Cancer Center, New Haven, CT,Present address: Mount Sinai School of
Medicine, New York, NY
| | | | | | | | | | | | | |
Collapse
|
89
|
Sorrells S, McKinnon KE, McBratney A, Sumey C. Longitudinal and multi-tissue molecular diagnostics track somatic BRCA2 reversion mutations that correct the open reading frame of germline alteration upon clinical relapse. NPJ Genom Med 2021; 6:17. [PMID: 33619265 PMCID: PMC7900170 DOI: 10.1038/s41525-021-00181-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
BRCA-mutant cancers often develop therapeutic resistance through several mechanisms. Here, we report a case of pathogenic germline BRCA2-driven breast cancer monitored for disease progression and acquired resistance using longitudinal multi-tissue genomic testing. Briefly, genomic testing was performed throughout the course of disease on tumor tissue from multiple sites, circulating tumor DNA from blood plasma, and matched normal tissue. Genomic analyses identified actionable variants for targeted therapies, as well as emerging resistance mutations over time. Two unique BRCA2 somatic alterations (p.N255fs and p.D252fs) were identified upon resistance to PARP inhibitor and platinum treatment, respectively. Both alterations restored the open reading frame of the original germline alteration, likely accounting for acquired resistance. This case exemplifies the evolution of multiple subclonal BRCA reversion alterations over time and demonstrates the value of longitudinal multi-tissue genomic testing for monitoring disease progression, predicting measures of response, and evaluating treatment outcomes in oncology patients.
Collapse
|
90
|
Färkkilä A, Rodríguez A, Oikkonen J, Gulhan DC, Nguyen H, Domínguez J, Ramos S, Mills CE, Pérez-Villatoro F, Lazaro JB, Zhou J, Clairmont CS, Moreau LA, Park PJ, Sorger PK, Hautaniemi S, Frias S, D'Andrea AD. Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in TP53- and BRCA1-Deficient Cells. Cancer Res 2021; 81:2774-2787. [PMID: 33514515 DOI: 10.1158/0008-5472.can-20-2912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.
Collapse
Affiliation(s)
- Anniina Färkkilä
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alfredo Rodríguez
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Julieta Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Fernando Pérez-Villatoro
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sara Frias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.,Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
91
|
Janysek DC, Kim J, Duijf PHG, Dray E. Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. Transl Oncol 2021; 14:101012. [PMID: 33516088 PMCID: PMC7847957 DOI: 10.1016/j.tranon.2021.101012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cells are continuously subjected to DNA damaging agents. DNA damages are repaired by one of the many pathways guarding genomic integrity. When one or several DNA damage pathways are rendered inefficient, cells can accumulate mutations, which modify normal cellular pathways, favoring abnormal cell growth. This supports malignant transformation, which can occur when cells acquire resistance to cell cycle checkpoints, apoptosis, or growth inhibition signals. Mutations in genes involved in the repair of DNA double strand breaks (DSBs), such as BRCA1, BRCA2, or PALB2, significantly increase the risk of developing cancer of the breast, ovaries, pancreas, or prostate. Fortunately, the inability of these tumors to repair DNA breaks makes them sensitive to genotoxic chemotherapies, allowing for the development of therapies precisely tailored to individuals' genetic backgrounds. Unfortunately, as with many anti-cancer agents, drugs used to treat patients carrying a BRCA1 or BRCA2 mutation create a selective pressure, and over time tumors can become drug resistant. Here, we detail the cellular function of tumor suppressors essential in DNA damage repair pathways, present the mechanisms of action of inhibitors used to create synthetic lethality in BRCA carriers, and review the major molecular sources of drug resistance. Finally, we present examples of the many strategies being developed to circumvent drug resistance.
Collapse
Affiliation(s)
- Dawn C Janysek
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jennifer Kim
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Pascal H G Duijf
- Queensland University of Technology, IHBI at the Translational Research Institute, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, United States.
| |
Collapse
|
92
|
Mutations of Brca1 gene in a tumor tissue and effectiveness of preoperative taxotere therapy in patients with luminal B breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
93
|
Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol 2020; 32:240-249. [PMID: 33242536 DOI: 10.1016/j.annonc.2020.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The antitumor efficacy of PARP inhibitors (PARPi) for breast cancer patients harboring germline BRCA1/2 (gBRCA1/2) mutations is well established. While PARPi monotherapy was ineffective in patients with metastatic triple negative breast cancer (TNBC) wild type for BRCA1/2, we hypothesized that PARPi may be effective in primary TNBCs without previous chemotherapy exposure. PATIENTS AND METHODS In the phase II PETREMAC trial, patients with primary TNBC >2 cm received olaparib for up to 10 weeks before chemotherapy. Tumor biopsies collected before and after olaparib underwent targeted DNA sequencing (360 genes) and BRCA1 methylation analyses. In addition, BRCAness (multiplex ligation-dependent probe amplification), PAM50 gene expression, RAD51 foci, tumor-infiltrating lymphocytes (TILs) and PD-L1 analyses were performed on pretreatment samples. RESULTS The median pretreatment tumor diameter was 60 mm (range 25-112 mm). Eighteen out of 32 patients obtained an objective response (OR) to olaparib (56.3%). Somatic or germline mutations affecting homologous recombination (HR) were observed in 10/18 responders [OR 55.6%, 95% confidence interval (CI) 33.7-75.4] contrasting 1/14 non-responders (OR 7.1%; CI 1.3-31.5, P = 0.008). Among tumors without HR mutations, 6/8 responders versus 3/13 non-responders revealed BRCA1 hypermethylation (P = 0.03). Thus, 16/18 responders (88.9%, CI 67.2-96.9), in contrast to 4/14 non-responders (28.6%, CI 11.7-54.7, P = 0.0008), carried HR mutations and/or BRCA1 methylation. Excluding one gPALB2 and four gBRCA1/2 mutation carriers, 12/14 responders (85.7%, CI 60.1-96.0) versus 3/13 non-responders (23.1%, CI 8.2-50.3, P = 0.002) carried somatic HR mutations and/or BRCA1 methylation. In contrast to BRCAness signature or basal-like subtype, low RAD51 scores, high TIL or high PD-L1 expression all correlated to olaparib response. CONCLUSION Olaparib yielded a high clinical response rate in treatment-naïve TNBCs revealing HR deficiency, beyond germline HR mutations. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02624973.
Collapse
|
94
|
Tung NM, Robson ME, Ventz S, Santa-Maria CA, Nanda R, Marcom PK, Shah PD, Ballinger TJ, Yang ES, Vinayak S, Melisko M, Brufsky A, DeMeo M, Jenkins C, Domchek S, D'Andrea A, Lin NU, Hughes ME, Carey LA, Wagle N, Wulf GM, Krop IE, Wolff AC, Winer EP, Garber JE. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J Clin Oncol 2020; 38:4274-4282. [PMID: 33119476 DOI: 10.1200/jco.20.02151] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi), is approved for the treatment of human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC) in germline (g)BRCA1/2 mutation carriers. Olaparib Expanded, an investigator-initiated, phase II study, assessed olaparib response in patients with MBC with somatic (s)BRCA1/2 mutations or g/s mutations in homologous recombination (HR)-related genes other than BRCA1/2. METHODS Eligible patients had MBC with measurable disease and germline mutations in non-BRCA1/2 HR-related genes (cohort 1) or somatic mutations in these genes or BRCA1/2 (cohort 2). Prior PARPi, platinum-refractory disease, or progression on more than two chemotherapy regimens (metastatic setting) was not allowed. Patients received olaparib 300 mg orally twice a day until progression. A single-arm, two-stage design was used. The primary endpoint was objective response rate (ORR); the null hypothesis (≤ 5% ORR) would be rejected within each cohort if there were four or more responses in 27 patients. Secondary endpoints included clinical benefit rate and progression-free survival (PFS). RESULTS Fifty-four patients enrolled. Seventy-six percent had estrogen receptor-positive HER2-negative disease. Eighty-seven percent had mutations in PALB2, sBRCA1/2, ATM, or CHEK2. In cohort 1, ORR was 33% (90% CI, 19% to 51%) and in cohort 2, 31% (90% CI, 15% to 49%). Confirmed responses were seen only with gPALB2 (ORR, 82%) and sBRCA1/2 (ORR, 50%) mutations. Median PFS was 13.3 months (90% CI, 12 months to not available/computable [NA]) for gPALB2 and 6.3 months (90% CI, 4.4 months to NA) for sBRCA1/2 mutation carriers. No responses were observed with ATM or CHEK2 mutations alone. CONCLUSION PARP inhibition is an effective treatment for patients with MBC and gPALB2 or sBRCA1/2 mutations, significantly expanding the population of patients with breast cancer likely to benefit from PARPi beyond gBRCA1/2 mutation carriers. These results emphasize the value of molecular characterization for treatment decisions in MBC.
Collapse
Affiliation(s)
- Nadine M Tung
- Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Payal D Shah
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, PA
| | | | - Eddy S Yang
- University of Alabama at Birmingham, Birmingham, AL
| | - Shaveta Vinayak
- University of Washington, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA
| | - Michelle Melisko
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Adam Brufsky
- Division of Hematology Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | - Susan Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, PA
| | - Alan D'Andrea
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| | - Nancy U Lin
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Nick Wagle
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| | - Gerburg M Wulf
- Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ian E Krop
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| | - Antonio C Wolff
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Eric P Winer
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| | - Judy E Garber
- Harvard Medical School, Boston, MA.,Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
95
|
Hirsch S, Gieldon L, Sutter C, Dikow N, Schaaf CP. Germline testing for homologous recombination repair genes—opportunities and challenges. Genes Chromosomes Cancer 2020; 60:332-343. [DOI: 10.1002/gcc.22900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Steffen Hirsch
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ) Heidelberg Germany
| | - Laura Gieldon
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Christian Sutter
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Nicola Dikow
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Christian P. Schaaf
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
- Jan and Dan Duncan Neurological Research Institute Texas Children's Hospital Houston Texas
| |
Collapse
|
96
|
Tobalina L, Armenia J, Irving E, O'Connor MJ, Forment JV. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol 2020; 32:103-112. [PMID: 33091561 DOI: 10.1016/j.annonc.2020.10.470] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Germline mutations in the BRCA1 or BRCA2 (BRCA) genes predispose to hereditary breast and ovarian cancer and, mostly in the case of BRCA2, are also prevalent in cases of pancreatic and prostate malignancies. Tumours from these patients tend to lose both copies of the wild-type BRCA gene, which makes them exquisitely sensitive to platinum drugs and poly(ADP-ribose) polymerase inhibitors (PARPi), treatments of choice in these disease settings. Reversion secondary mutations with the capacity of restoring BRCA protein expression have been documented in the literature as bona fide mechanisms of resistance to these treatments. PATIENTS AND METHODS We analysed published sequencing data of BRCA genes (from tumour or circulating tumour DNA) in 327 patients with tumours harbouring mutations in BRCA1 or BRCA2 (234 patients with ovarian cancer, 27 with breast cancer, 13 with pancreatic cancer, 11 with prostate cancer and 42 with a cancer of unknown origin) that progressed on platinum or PARPi treatment. RESULTS We describe 269 cases of reversion mutations in 86 patients in this cohort (26.0%). Detailed analyses of the reversion events highlight that most amino acid sequences encoded by exon 11 in BRCA1 and BRCA2 are dispensable to generate resistance to platinum or PARPi, whereas other regions are more refractory to sizeable amino acid losses. They also underline the key role of mutagenic end-joining DNA repair pathways in generating reversions, especially in those affecting BRCA2, as indicated by the significant accumulation of DNA sequence microhomologies surrounding deletions leading to reversion events. CONCLUSIONS Our analyses suggest that pharmacological inhibition of DNA end-joining repair pathways could improve durability of drug treatments by preventing the acquisition of reversion mutations in BRCA genes. They also highlight potential new therapeutic opportunities when reversions result in expression of hypomorphic versions of BRCA proteins, especially with agents targeting the response to DNA replication stress.
Collapse
Affiliation(s)
- L Tobalina
- Bioinformatics and Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J Armenia
- Bioinformatics and Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - E Irving
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - M J O'Connor
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J V Forment
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
97
|
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020; 6:54. [PMID: 33088912 PMCID: PMC7568552 DOI: 10.1038/s41523-020-00197-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients' outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
98
|
Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, Yap TA, Haider S, Tutt ANJ, Lord CJ. Clinical BRCA1/2 Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discov 2020; 10:1475-1488. [PMID: 32699032 PMCID: PMC7611203 DOI: 10.1158/2159-8290.cd-19-1485] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Reversion mutations in BRCA1 or BRCA2 are associated with resistance to PARP inhibitors and platinum. To better understand the nature of these mutations, we collated, codified, and analyzed more than 300 reversions. This identified reversion "hotspots" and "deserts" in regions encoding the N and C terminus, respectively, of BRCA2, suggesting that pathogenic mutations in these regions may be at higher or lower risk of reversion. Missense and splice-site pathogenic mutations in BRCA1/2 also appeared less likely to revert than truncating mutations. Most reversions were <100 bp deletions. Although many deletions exhibited microhomology, this was not universal, suggesting that multiple DNA-repair processes cause reversion. Finally, we found that many reversions were predicted to encode immunogenic neopeptides, suggesting a route to the treatment of reverted disease. As well as providing a freely available database for the collation of future reversion cases, these observations have implications for how drug resistance might be managed in BRCA-mutant cancers. SIGNIFICANCE: Reversion mutations in BRCA genes are a major cause of clinical platinum and PARP inhibitor resistance. This analysis of all reported clinical reversions suggests that the position of BRCA2 mutations affects the risk of reversion. Many reversions are also predicted to encode tumor neoantigens, providing a potential route to targeting resistance.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jessica R Frankum
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yi Chen
- Scientific Computing Team, The Institute of Cancer Research, London, United Kingdom
| | - Timothy A Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
99
|
Fuh K, Mullen M, Blachut B, Stover E, Konstantinopoulos P, Liu J, Matulonis U, Khabele D, Mosammaparast N, Vindigni A. Homologous recombination deficiency real-time clinical assays, ready or not? Gynecol Oncol 2020; 159:877-886. [PMID: 32967790 DOI: 10.1016/j.ygyno.2020.08.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Cancers with deficiencies in homologous recombination-mediated DNA repair (HRR) demonstrate improved clinical outcomes and increased survival. Approximately 50% of high-grade serous ovarian cancers (HGSOC) exhibit homologous recombination deficiency (HRD). HRD can be caused by germline or somatic mutations of genes involved in the HR pathway. Given platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPis) are used in HGSOC, double-strand breaks (DSBs) are common. Unrepaired DSBs are toxic to cells as genomic instability ensues and cells eventually die. Thus, tumor cells with DSBs utilize the high-fidelity HRR as one of the central pathways for repair. In tumors that have HRD, an alternate pathway such as non-homologous end-joining (NHEJ) is used and leads to error-prone repair. To date, methods for clinical detection of homologous recombination deficiency (HRD) are limited to genomic changes of HRR genes and genomic mutation patterns resulting from HRD genes involved in HR-mediated DNA repair. However, these tests detect genomic scars that might not always correlate well with PARP inhibitor or platinum sensitivity in the current state. Therefore, a functional HRD assay should be able to more accurately predict tumor response in real-time. RAD51 foci formation has been used as a functional assay to define HRD and closely correlates with chemotherapy and PARPi sensitivity. The inability to form RAD51 foci is a common feature of HRD. DNA damage can also cause transient slowing or stalling of replication forks defined as replication stress. Replication fork stalling can lead to fork degradation and decreased cell viability if forks do not resume DNA synthesis. Fork degradation has been found to lead to chemosensitivity in BRCA-deficient tumors. To determine this fork degradation phenotype, replication fork/DNA fiber assays are utilized. This review will highlight functional assays for HRD in the context of translating these to real-time clinical assays.
Collapse
Affiliation(s)
- Katherine Fuh
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America.
| | - Mary Mullen
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Barbara Blachut
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Elizabeth Stover
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Panagiotis Konstantinopoulos
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Joyce Liu
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Ursula Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Dineo Khabele
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States of America
| |
Collapse
|
100
|
Zhou P, Wang J, Mishail D, Wang CY. Recent advancements in PARP inhibitors-based targeted cancer therapy. PRECISION CLINICAL MEDICINE 2020; 3:187-201. [PMID: 32983586 PMCID: PMC7501589 DOI: 10.1093/pcmedi/pbaa030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are a new class of agents with unparalleled clinical achievement for driving synthetic lethality in BRCA-deficient cancers. Recent FDA approval of PARPi has motivated clinical trials centered around the optimization of PARPi-associated therapies in a variety of BRCA-deficient cancers. This review highlights recent advancements in understanding the molecular mechanisms of PARP ‘trapping’ and synthetic lethality. Particular attention is placed on the potential extension of PARPi therapies from BRCA-deficient patients to populations with other homologous recombination-deficient backgrounds, and common characteristics of PARPi and non-homologous end-joining have been elucidated. The synergistic antitumor effect of combining PARPi with various immune checkpoint blockades has been explored to evaluate the potential of combination therapy in attaining greater therapeutic outcome. This has shed light onto the differing classifications of PARPi as well as the factors that result in altered PARPi activity. Lastly, acquired chemoresistance is a crucial issue for clinical application of PARPi. The molecular mechanisms underlying PARPi resistance and potential overcoming strategies are discussed.
Collapse
Affiliation(s)
- Ping Zhou
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Justin Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Mishail
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|